
International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

24

Security in Mobile: A Survey

Rashmi V R
P.G Student, Computer Science

Thejus Engineering College
Thrissur, Kerala

Sneha Johnson
Asst Professor,CSE

Thejus Engineering College
Thrissur, Kerala

ABSTRACT

 Security is a moving target. Never mind if the pursuit of

security can even be fully realized on mobile. Society at large

has accepted the tenuous nature of security on personal

computers as a virtually unavoidable consequence or side

effect of the modern age. But compared to the PC world,

mobile is still a relatively new and uncharted battlefield.

Nowadays, mobile devices are an important part of our

everyday lives since they enable us to access[4] a large variety

of ubiquitous services. In recent years, the availability of these

ubiquitous and mobile services has significantly increased due

to the different form of connectivity provided by mobile

devices, such as GSM, GPRS, Bluetooth and Wi-Fi. In the

same trend, the number and typologies of vulnerabilities

exploiting these services and communication channels have

increased as well. Therefore, smartphones may now represent

an ideal target for malware writers. As the number of

vulnerabilities and, hence, of attacks increase, there has been a

corresponding rise of security solutions proposed by

researchers.

General Terms

 Botnet, Smart Phone,Mobile malware

Keywords

Botnet, smart phone, mobile malware

1. INTRODUCTION
 Nowadays, mobile devices are an important part of our

everyday lives since they enable us to access a large variety of

ubiquitous services.The modern mobile platforms, like

Android, iOS and Symbian, increasingly resemble traditional

operating systems for PCs. Therefore, the challenges in

enforcing smart-phone security are becoming similar to those

present in PC platforms.The latest research has reported that

on average people own three internet-connected smart devices

such as smartphones and tablets.Botnets of mobile devices

(also known as mobile botnets) are a group of compromised

smart devices that are remotely controlled by botmasters via

command-and-control (C&C)[1] channels.Smart devices are

now widely used by billions of users due to their enhanced

computing ability, practicality and efficient Internet

access.Moreover, smart devices typically contain a large

amount of sensitive personal and corporate data and are often

used in online payments and other sensitive transactions. The

ide spread use of open-source smart device platforms such as

Android and third-party applications made available to the

public also provides more opportunities and attractions for

malware creators.By installing malicious content, smart-

phones can be infected with worms, trojan horses or other

virus families, which can compromise user’s security and

privacy or even gain complete control over the device. Such

malicious content can easily spread due to advances in mobile

network technologies which provide smart-phones with

capability of constant Internet connection over 3G or Wi-Fi

networks. Additionally, the improvements in smart-phone

features introduce new types of security concerns. By

compromising mobile OS, malicious applications can access

voice-recording devices, cameras, intercept SMS messages or

gain location information. Such security breaches severely

compromise user’s privacy. Various approaches and solutions

have been proposed to address these challenges, ranging from

device based intrusion detection systems to execution

isolation through application sandboxing and bare metal

hypervisors to ontology based firewalls to behavior based

detection to cloud-based protection via VPN technology.

2. MOBILE TECHNOLOGIES

2.1 Wireless Mobile Technologies
The most important wireless technologies targeted at mobile

communications are GSM, GPRS, EDGE and UMTS[4]

2.2 Network Technologies
Bluetooth, and Wireless LAN IEEE 802.11

Bluetooth is a standard that enables devices to exchange data

over a small area through short wavelength radio

transmissions. IEEE 802.11 is a family of standards for

WLAN that includes several protocols for communicating at

different frequencies (2.4, 3.6 and 5 GHz).

3. MOBILE MALWARE
Malware is any kind of hostile, intrusive, or annoying

software or program code (e.g. Trojan, rootkit, backdoor)

designed to use a device without the owner’s consent.

Malware is often distributed as [2]a spam within a malicious

attachment or a link in an infected websites. Malware can be

grouped in the following main categories, according to its

features.

3.1 Virus
A virus is a piece of code that can replicate itself

3.2 Worm
Worm is a self-replicating malicious application designed to

spread autonomously to uninfected systems. This type of

malware has been ported to mobile platforms since the

introduction of Cabir. A more recent example of a worm type

malware for mobile devices is Ikee.B which is used to steal

financially sensitive data from jailbroken iPhones.

3.3 Trojan Horse
By deploying malicious mobile applications the attacker could

gain control over the device. Such applications usually

perform some useful functionality[2] while running malicious

activities in the background. This way the Trojan can be used

to gather private information or to install other malicious

applications like worms or botnets. In addition, Trojans can be

used to commit phishing activities.

3.4 Botnet
Botnet is a set of compromised devices which can be

controlled and coordinated remotely. This attack strategy is

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

25

used to utilize the computing power of compromised devices

in order to commit various activities ranging from sending

spam mail to committing DOS attacks. An example of a

botnet designed specifically for mobile devices is Waledac.

Waledac uses SMS and MMS[2] messages to exchange the

data between nodes therefore enabling the botnet to remain

active even if the nodes are not connected to the Internet.

With PC-based botnets, cybercriminals often use zombies

within botnets to launch DDoS attacks. Even though there

have been no major mobile DDoS incidents, with current

trends we can expect to see this in the near future. Botnets are

maintained by malicious actors commonly referred to as

―bot-masters‖ that can access and manage the botnet

remotely or via bot proxy servers. The bots are then

programmed and instructed by the bot-master to perform a

variety of cyber-attacks, including attacks involving the

further distribution and installation of malware on other

information systems.

3.5 Rootkit
Rootkit is a malicious application which gained rights to run

in a privileged mode. Such[2] malicious applications usually

mask their presence from the user by modifying standard

operating system functionalities. Although no current rootkit

type threats for mobile devices exist, recent research efforts

indicate the potential of this attack strategy and classify it as

an emerging threat to mobile security.

4. THREAT MODEL FOR MOBILE

PLATFORMS

4.1 Attack Goals
There are three basic motives for breaching mobile devices

security. The first two goals described are covert, while the

latter is harmful. Covert approach to executing an attack is to

perform malicious operations[2] while avoiding users

detection. The goal of such attacks is to disrupt the operation

of the device as little as possible while performing activities

useful to the attacker. On the other hand, harmful attacks are

aimed at disrupting the normal operation of a mobile device.

4.1.1 Collect Private Data
Since the mobile devices are in effect becoming storage units

for personal data, they are an attractive target for breaching

users privacy. The attackers target both the confidentiality and

integrity of stored information. A successfully executed attack

can empower the attacker [2]with ability to read SMS and

MMS messages, e-mail messages, call logs and contact

details.

4.1.2 Utilize Computing Resource
Call The increase in computing resources is setting the

contemporary mobile [2]devices into focus for malicious

attacks with aim to covertly exploit the raw computing power

in combination with operating frequencies in excess of 1GHz,

and physical memory well over 512MB.

4.1.3 Harmful Malcious Action
Harmful malicious actions are aimed at generating device

users discomfort rather on performing useful operations for

the attacker[2].

4.2 Attack Vectors
Mobile platforms provide multiple attack vectors for delivery

of malicious content. The attack vectors are classified into

four categories: mobile network services, Internet access,

Bluetooth, and access to[2] USB and other peripheral devices.

4.2.1 Mobile Network Services
Cellular services like SMS, MMS and voice calls can be used

as attack vectors for mobile devices.

4.2.2 Internet Access
Mobile devices can access the Internet using Wi-Fi networks

or 3G/4G services provided by mobile network operators.

Although such high[2] speed Internet connections ensure

comfortable browsing, they also expose the mobile devices to

the same threats as PCs.

4.2.3 Bluetooth
Bluetooth attacks are a method used for device-to-device

malware spreading. Once the two devices are in range, the

compromised device[2] pairs with its target by using default

Bluetooth passwords.

4.2.4 USB and other Peripherals
Apart from the mentioned attack vectors, mobile devices

could be compromised by using other connections, like

widely spread USB. The USB connection in commonly used

to synchronize the [2]mobile device with a personal computer.

5. LITERATURE REVIEW

5.1 Android Security Model
5.1.1 Operating System Background
Android is a software stack for mobile devices that includes

an operating system, middleware and key applications.

Android is an application execution platform for mobile

devices comprised out of an operating system, core libraries,

development framework and basic applications. Android OS

has four layers: Linux kernel, libraries (+Android runtime),

application solution and applications layers.So, basically

Android runtime is a kind of glue between the Linux kernel

and the applications.

Fig:01 Android Layer[1]

5.1.2 Android Runtime
Android includes a set of core libraries that provides most of

the functionality available in the core libraries of the Java

programming language. Every Android application runs in its

own process, with its own been written so that a device can

run multiple efficiently. The Dalvik VM executes files in the

Dalvik Executable[1] (.dex) format which is optimized for

minimal memory footprint. The VM is register-based, and

runs classes compiled by a Java language compiler that have

been transformed into the .dex format by the included "dx"

tool. The Dalvik VM on the Linux kernel for underlying

functionality such as threading and low level memory

management.

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

26

5.1.3 Linux Kernel
Android relies on Linux version 2.6 for core system services

such as security, memory management, process management,

network stack, and driver model. The kernel also acts as an

abstraction layer between the hardware and the rest of the

software stack.It helps to manage security, memory

management, process management, network stack and other

important issues. Therefore, the user should bring Linux in his

mobile device as the main operating system and install all the

drivers required in order to run it. Developers have full access

to the same framework APIs used by the core applications.

The main security features common to Android involve

process and file system isolation; application or code signing;

ROM, firmware, and factory restore; and kill switches.

However, the main security issue with Android OS is it relies

heavily to the end-user to decide whether an application is

safe or not. Android operating system is built on top of a

Linux kernel. The Linux kernel is responsible for executing

core system services such as: memory access, process

management, access to physical devices through drivers,

network management and security. Atop the Linux kernel is

the Dalvik virtual machine along with basic system libraries.

The Dalvik VM is a register based execution engine used to

run Android applications. In order to access lower level

system services, the Android provides an API through afore

mentioned C/C++ system libraries.

5.1.4 Security Model
The model is based on application isolation in a sandbox

environment. This means that each application executes in its

own environment and is unable to influence or modify

execution of any other application. Application sandboxing is

performed at the Linux kernel level. In order to achieve

isolation, Android utilizes standard Linux access control

mechanisms. Each Android application package (.apk) is on

installation assigned a unique Linux user ID. This approach

allows the Android to enforce standard Linux file access

rights. Since each file is associated with its owne’s user ID,

applications cannot access files that belong to other

applications without being granted appropriate permissions.

Each file can be assigned read, write and execute access

permission. Since the root user owns system files, applications

are not able to act maliciously by accessing or modifying

critical system components. On the other hand, to achieve

memory isolation, each application is running in its own

process, i.e. each application has its own memory space

assigned. Additional security is achieved by utilizing memory

management unit (MMU),[2] a hardware component used to

translate between virtual and physical address spaces. This

way an application cannot compromise system security by

running native code in privileged mode. Furthermore,

exchange of data and functionalities between applications

enhances the capabilities of the development framework. The

shared user ID and permissions are two mechanisms,

introduced by the Android, which can be used to lift the

restrictions enforced by the isolation model. The mechanisms

must provide sufficient flexibility to the application

developers but also preserve the overall system security. In

order to address the security issues, the Android platform

implements a permission based security model, As presented

in Figure 04, two applications can share data and application

components, i.e. activities, content providers, services and

broadcast receivers

Fig:02 Android Security model[2]

5.1.5 Advantages Offered by Android

The Android Platform offers a variety of advantages not

currently available in other mobile operating systems. Google

opened the Android market, allowing 20 application

developers to publish applications without any restrictions.

Additionally, being an open platform encourages device and

service provider independency. Consumers are not tied to a

specific device or cellular service company to use Google

Android. Android provides fully-developed features to exploit

cloud-computing resources and supports a relational database

on the handset [HK09]. It supports 2D and 3D graphics as

well as various media file formats, allowing developers to

create media common applications. The Dalvik VM

significantly enhanced the power management system of the

Android Platform. This custom VM takes generated Java class

files and combines them in to its own native executable

format. Since it reuses duplicate information across various

class files, space requirements are half what the JVM .jar file

requires Google also fine-tunes the garbage collection, omits

the just-in-time (JIT) compiler, and uses registers instead of

the stack for generation of assembly code. These

enhancements significantly reduce the power requirements of

the system, making the Android Platform suitable for mobile

device use. Finally, Android application developers can

develop applications for any platform and applications can run

in parallel when loaded on the device. This allows processes

running in the background to send alerts and notifications to

the user.

5.1.6 Android Protection System Perfomance

The Android Protection System (APS) is a signed code

modification of the Android OS 1.5 running on a smartphone

device. White-list creation and hash digest placement are

described in the security mechanism implementation. The

evaluation technique is examined and results for functional

protection and performance overhead are reported and

analyzed.

5.1.7 Android Protection System Model
Proper identification of Android application code is essential

for successful APS implementation. Android application code

is delivered in packages called .jar or .apk files similar to .zip

archives. Android applications are typically written in the

Java programming language. The Dalvik Virtual Machine

(DVM) operates strictly on Dalvik bytecode, so all Java

bytecode is converted and stored in a file called Classes.dex,

which is packaged inside the applicationspecific .apk file. The

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

27

DVM must extract the Classes.dex file from the .apk to install

and run the application. Default applications come pre-

installed on the Android device and all default applications

are considered approved content.

5.2 IOS Security Model
Unlike the Android security architecture, iOS security model

provides different philosophy for achieving mobile device

security and user‟s protection. The iOS application platform

empowers developers to create new applications and to

contribute to the application store. However, each application

submitted by a third party developer is sent to the revision

process. During the revision process the application code is

analyzed by professional developers who make sure that the

application is safe before it is released the application store.

However, such an application, when installed, gets all the

permissions on a mobile device. Application might access

local camera, 3G/4G, Wi-Fi or GPS module without user's

knowledge.

5.2.1 System Architecture

The tight integration of hardware and software on iOS devices

allows for the validation of activities across all layers of the

device. From initial boot-up to iOS software installation and

through to third-party apps, each step is analyzed and vetted

to ensure that each activity is trusted and uses resources

properly. Once the system is running, this integrated security

architecture depends on the integrity and trustworthiness of

XNU, the iOS kernel. XNU enforces security features at

runtime and is essential to being able to trust higher-level

functions and apps.

5.2.2 Secure Boot Chain
Each step of the boot-up process contains components that are

cryptographically signed by Apple to ensure integrity, and

proceeds only after verifying the chain of trust. This includes

the bootloaders, kernel, kernel extensions, and baseband

firmware.When an iOS device is turned on, its application

processor immediately executes code from read-only memory

known as the Boot ROM. This immutable code is laid down

during chip fabrication, and is implicitly trusted. The Boot

ROM code contains the Apple Root CA public key, which is

used to verify that the Low-Level Bootloader (LLB) is signed

by Apple before allowing it to load. This is the first step in the

chain of trust where each step ensures that the next is signed

by Apple. When the LLB finishes its tasks, it verifies and runs

the next-stage bootloader, iBoot, which in turn verifies and

runs the iOS kernel. This secure boot chain ensures that the

lowest levels of software are not tampered with, and allows

iOS to run only on validated Apple devices. If one step of this

boot process is unable to load or verify the next, boot-up is

stopped and the device displays the Connect to iTunes‖ screen.

This is called recovery mode. If the Boot ROM is not even

able to load or verify LLB, it enters DFU (Device Firmware

Upgrade) mode. In both cases, the device must be connected

to iTunes via USB and restored to factory default settings.

5.2.3 Security Model
While Android lets each user handle its own security on their

own responsibility, the iOS platform makes developers to

write safe code using iOS secure APIs and prevents malicious

applications from getting into the app store.The iOS security

APIs are located in the Core Services layer of the operating

system and are based on services in the Core OS (kernel)

layer of the operating system. Application that needs to

execute a network task, may use secure networking functions

through the CFNetwork API, which is also located in the Core

Services layer. The iOS security implementation includes a

daemon called the Security Server that implements several

security protocols, such as access to keychain items and root

certificate trust management. The Security Server has no

public API. Instead,applications use the Keychain Services

API and the Certificate, Key, and Trust services API, which in

turn communicate with the Security Server.

 Keychain Services API is used to store passwords,

keys, certificates, and other secret data. Its

implementation therefore requires both

cryptographic functions (to encrypt and decrypt

secrets) and data storage functions (to store the

secrets and related data in files). To achieve these

aims, Keychain Services uses the Common Crypto

dynamic library.

 CFNetwork is a high-level API that can be used by

applications to create and maintain secure data

streams and to add authentication information to a

message. CFNetwork calls underlying security

services to set up a secure connection.

 The Certificate, Key, and Trust Services API

include functions to create, manage, and read

certificates, add certificates to a keychain, create

encryption keys, encrypt and decrypt data, sign data

and verify signatures and manage trust policies. To

carry out all these services, the API calls the

Common Crypto dynamic library and other Core

OS–level services.

 Randomization Services provides cryptographically

secure pseudorandom numbers. Pseudorandom

numbers are generated by a computer algorithm but

the algorithm is not discernible from the sequence.

To generate these numbers, Randomization Services

calls a random- number generator in the Core OS

layer. In case that the developers use the presented

API properly and do not integrate malicious

activities into the application, the application will be

accepted into the App store.

6. COMPARISON BETWEEN ANDROID

AND IOS

6.1 Development Environments

6.2 Language

 Android: Java

 IPhone: Objective-C

6.3 IDE
Android: Android development leverages the excellent JDT

tools.

Everything Java is indexed, the IDE has a rich model of the

source code, and refactoring is seamless; JDT’s incremental

compiler provides immediate feedback with errors and

warnings as you type.

IPhone: Xcode IDE, Instruments, iPhone simulator,

frameworks and samples, compilers, Shark analysis tool, and

etc.

6.4 Programming Model
Android: With Android’s support for multiple processes and

component reuse, the platform itself provides support for

Intents and Activities provide a way of declaring user

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

28

preferences in XML; XML format is extensible allowing

custom UI components to be integrated.

IPhone: MVC design pattern, provide a way of declaring user

preferences in XML; iPhone developers that wish to

customize preferences will have to implement a UI from

scratch.

6.5 UI Builder
Android: Android UI builder can’t display UIs how they’ll

actually appear.

IPhone: iPhone app developers are given a good UI builder;

It’s flexible and can model some sophisticated UIs.

6.6 Ease to Port Third Party Applications
Android: Basically speaking, Android shares more in common

with other Java platforms than with desktops with Desktop

Linux. Rather than running desktop Linux PC software like

Nokia’s N900 running Maemo Linux, Android supplies a

modified Java Virtual Machine similar in many respects to the

BlackBerry OS and Symbian phones designed to run Java ME

apps. Google has modified Android’s Java byte code

interpreter to avoid having to pay Sun licensing fees for the

official JVM in Android. This enables Google to offer

Android for free, and without any interference from Sun. It

also effectively makes Android a Java platform, not a Linux

platform. One fundamental characteristic of Android that is

both strength and weakness is its insular nature. Android’s

unique userspace stack offers no compatibility glide path for

porting applications to and from conventional Linux

environments, but it does offer a significantly higher degree of

cohesion across devices, which means less fragmentation and

a more predictable target for third party software developers.

IPhone: Apple has taken an entirely different approach to

delivering its mobile software platform. Rather than building

a byte code interpreter based upon a specific, customized

implementation of Java ME, Apple introduced the iPhone

running a scaled down version of its desktop Mac OS X

Cocoa development environment. This leverages the installed

brain trust of the company’s Mac developers rather than the

installed base of Java ME coders in the existing smart phone

market. It’s still possible to port Java code to the iPhone, but it

requires more translation work as Apple only supports

Objective-C/C as an iPhone development language in its own

tools. Rather than allowing iPhone developers to easily port

over desktop Mac apps to the iPhone, the great overlap

between iPhone and Mac development tools appears to have

been more of strategy to draw developer attention to the Mac.

Apple already sells about twice as many iPhones as it does

Macs, and the iPhone certainly casts a larger mindshare net

than the Mac platform does itself.

6.7 Reliability and Security
Android: Android is a multi-process system, in which each

application (and parts of the system) runs in its own process.

Most security between applications and the system is enforced

at the process level through standard Linux facilities, such as

user and group IDs that are assigned to applications.

Additional finer-grained security features are provided

through a "permission" mechanism that enforces restrictions

on the specific operations that a particular process can

perform, and per-URI permissions for granting ad-hoc access

to specific pieces of data. As an open platform, Android

allows users to load software from any developer onto a

device. As with a home PC, the user must be aware of who is

providing the software they are downloading and must decide

whether they want to grant the application the capabilities it

requests. This decision can be informed by the user’s

judgment of the software developer’s trustworthiness, and

where the software came from.

IPhone: IPhone has no security software and Apple doesn’t let

people load third party programs on the device, which could

reduce the risk of infection from malicious software. When

the iPhone is connected to the Web, dangerous possibilities

emerge.The iPhone Auto-Lock disables the device’s screen

after a preset time period of non-use, but the Passcode Lock

feature takes that a step further. Whenever the device’s

display locks, whether due to Auto-Lock or because you’ve

hit the iPhone Sleep button–found on the top right of the

device Passcode Lock requires a four-digit code to be entered

before the device can be employed again. The iPhone OS

security APIs are located in the Core Services layer of the

operating system and are based on services in the Core OS

(kernel) layer of the operating system. Applications on the

iPhone call the security services APIs directly rather than

going through the Cocoa Touch or Media layers. Networking

applications can also access secure networking functions

through the CFNetwork API, which is also located in the Core

Services layer.

6.8 Some Important Points Clearing the

Differences
Android:

1. SMS delivery report - for the IPhone you need a third party

apparently

2. Notifications without INTERNET - one of the biggest

drawback of the IPhone is that you cannot have notifications

without Internet the notifications are stored on the Apple

servers

3 Can install applications from any site - IPhone applications

can only be installed from the Apple store (unless the phone is

jail broken)

4 Multiple physical menu buttons - used for navigation and

quick shortcuts, allows greater screen size (no more software

menus)

5 Physical menu button allows recent 6 tasks (like ALT+TAB

in Windows) absolutely useful

6 Can install on the Home screen - widgets, shortcuts, folders

7 Physical keyboard - on some models

8 Can install different/homebrewed firmware

9 Background apps/ multitasking

10 Dev. SDK is free and cross platform. IPhone is for $100+

and only works on MAC.

11 Programming is done in Java; bridges exist from J2ME,

C#, etc. IPhone uses Objective C

12 Programming - can run interpreters. IPhone only allows

running Objective C byte code

13 Easy access to the SD card (both from computer and from

the phone). Can copy MP3s, read eBooks, etc.

14 Cheaper than the IPhone

15 Easy removable/replaceable battery.

IPhone:

International Journal of Computer Applications (0975 – 8887)

Advanced Computing and Communication Techniques for High Performance Applications (ICACCTHPA-2014)

29

1. Screen brightness/clarity

2. Bigger software keyboard - because of the wider screen

3. Great 3D apps and hardware

4. Easy data synchronization

5. Proximity sensor - saves battery and "locks" the screen

6. Zoom using two fingers - pictures, browser, etc - though

some Android phones also support multi touch.

7. CONCLUSION
Recent advancements in mobile technology have brought the

mobile devices into focus of malicious attacks. The trends

show a severe increase in mobile malware as many threats,

designed for PC operating systems, migrate to mobile

platforms.Striking increase in malware and notable

advancements in malware-related attacks, particularly on the

Android platform as the user base has grown exponentially.

Today’s users utilize their mobile smart devices for

everything from accessing emails to sensitive transactions

such as online banking and payments. As users become more

dependent on their mobile devices as digital wallets, this

creates a very lucrative target for cybercriminals. Mobile

smart device users can expect to see a significant malware

increase on finance related applications, such as mobile

Internet banking. Detecting and preventing malware in mobile

device need comprehensive and multi-level approaches. There

is a analysis attacker’s goals, attack vectors and attack

strategies. Furthermore, discuss about the security models

implemented by two widely spread mobile platforms: the

Google Android and Apple iOS. The two platforms have

distinctly different approaches in dealing with security issues.

The Android security model relies on user‟s judgment to

install applications from reliable sources or to evaluate

whether the application requests reasonable permissions for

its intended operation.

8. REFERENCES
[1] Abdullahi Arabo_ and Bernardi Pranggono.Mobile

Malware and Smart Device Security: .Trends,

Challenges and Solutions, 19th International Conference

on Control Systems and Computer Science, _The Oxford

Internet Institute (OII), Oxford University, Oxford, OX1

3JS,

[2] G. Delac, M. Silic and J. Krolo.2011,.Emerging Security

Threats for Mobile Platforms”, International Conference

on Privacy Communication System & Mobile Platforms

,Faculty of Electrical Engineering and Computing,

University of Zagreb, CroatiaK.

[3] Atul M. Tonge1, Suraj S. Kasture2 , Surbhi R. May. -

Jun. 2013.Chaudhari,Cyber security: challenges for

society. IOSR Journal of Computer Engineering (IOSR-

JCE) e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume

12, Issue 2 (), PP 67-75 www.iosrjournals.org

[4] Mariantonietta La Polla, Fabio Martinelli, and Daniele

Sgandurra,” A Survey on Security for Mobile Devices”,

ieee communications surveys & tutorials, vol. 15, no. 1,

first quarter 2013

[5] Mohsen Sharifi, Somayeh Kafaie, and Omid Kashefi,

Member, IEEE,” A Survey and Taxonomy of Cyber

Foraging of Mobile Devices”, Ieee Communications

Surveys & Tutorials, Vol. 14, No. 4, Fourth Quarter

2012.

[6] Henne, B. ; Distrib. Comput. & Security Group, Leibniz

Univ. Hannover, Hannover, Germany ; Szongott, C. ;

Smith, M. “ Coupled multi-agent simulations for mobile

security & privacy research “ Date of Conference: 18-20

June 2012

[7] Hong-Il Ju ,”Security architecture for smart devices:,

Mobile Security Res. Team, Electron. & Telecommun.

Res. Inst., Daejeon, South Korea ; Jeong-Nyeo Kim 15-

17 Oct. 2012

[8] Wanqing You, Xiamen, China ; Longteng Xu ; Jingyu

Rao, “A comparison of TCP and SSL for mobile

security “ , Dept. of Software Eng., Univ. of Xiamen,

18-19 May 2013

[9] Mariantonietta La Polla, Fabio Martinelli, and Daniele

Sgandurra, “Survey on Security for Mobile Devices”,

IEEE communications surveys & tutorials, vol. 15, no. 1,

first quarter

