
International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

59

TCP/IP Data Normalization

Smita Verma

M.Tech. (CSE)
UKTECH, Dehradoon

Garima Krishna
COER, Roorkee

UKTECH, Dehradoon

ABSTRACT

Defending networks against today's attackers is especially

challenging for modern intrusion detection/prevention systems for

two reasons: the sheer amount of state they must maintain, and the

possibility of resource exhaustion attacks on the defense system

itself. Our work shows how to cope with these challenges in the

context of a TCP stream normalizer whose job is to detect all

instances of inconsistent TCP retransmissions.

Keywords

TCP, IP, Data Normalization

1. INTRODUCTION

1.1Normalizer: Network intrusion detection systems’

fundamental property is the ability of a skilled attacker to evade

detection by exploiting ambiguities in the traffic stream as seen by

the monitor. Network intrusion detection and prevention systems

are widely used to improve the security of networks used by

providers, enterprises, and even home users. etwor They observe

all traffic coming in and out of the network and flag or block

activities that appear malicious. A normalizer is a network

element that prevents evasion attempts by removing ambiguities

in network traffic. It sits directly in the path of traffic into a site

and observes the packet stream to eliminate potential ambiguities

before going into the network.

Normalizer differs from a firewall in several ways. It does not

prevent access to services on internal hosts, but ensures that

access to these hosts takes place in a secure manner that is

unambiguous to the site’s Network Intrusion Detection System.

Normalizers can prevent known attacks, or shut down access to

internal machines from an external host when it detects a probe or

an attack. It can shut down and discard state for flows that do not

appear to be making progress, while passing and normalizing

those that do make progress. In the next section we briefly discuss

the possible ways in which a normalizer can be implemented, the

various types of normalizers as well as the techniques which are

used to develop them.

Various types of Normalizers implemented and related research

done in this field

1.1Recent work done by G. Varghese, J. A. Fingerhut, and F.

Bonomi, “Detecting Evasion Attacks at High Speeds without

Reassembly,” addresses one type of evasions, namely an attacker

attempting to prevent a specific signature match against text they

transmit. The authors developed a scheme based on introducing a

modest change in end-system TCP behavior in order to allow a

monitor to detect attempts to ambiguously transmit byte

sequences that match a given set of signatures. Their scheme is

appealing in that by exploiting the introduced end-system change,

they avoid needing to reassemble TCP byte streams. However,

their scheme is also significantly limited in that it only applies to

evasions that correspond to directly manipulating a known byte-

sequence signature. As such, the scheme does not handle cases

where the ambiguity does not constitute an actual attack in itself,

but only confuses the monitor’s protocol parsing and obscures the

occurrence of an attack later in the stream. [8.2]

1.1Y. Sugawara, M. Inaba, and K. Hiraki in their paper

“High-speed and Memory Efficient TCP Stream

Scanning Using FPGA,” describe an FPGA-based

solution to efficient TCP stream-level signature

detection. Their system detects inconsistent

retransmissions by storing hashes of transmitted

packets. To handle retransmissions that do not overlap

with original segment boundaries, the authors simply

propose holding onto the partial overlaps till other

packets that “fill the gap” arrive. However, our trace

evaluation shows that such an approach will result in a

significant number of connections stalling on pending

consistency checks; RoboNorm addresses this problem

with the ACK promotion mechanism.[8.3]

1.2Normalization as a general feature has been

incorporated into secure operating systems and

commercial products. Some of these latter include

explicit options to check for inconsistent

retransmissions, but do not provide technical details as

to how such detection works. From informal

discussions with other vendors, it appears that a

common approach is to use payload hashes, but

without addressing the crucial problem of misaligned

retransmissions for which the hashes cannot be

matched.

1.3Shankar and Paxson explored a different approach

to defending against evasion attacks which they term

“Active Mapping”. Here, the idea is for the network

monitor to proactively determine how specific end

systems and network paths will resolve potential
ambiguities. While this approach is a valid point in the

overall design space, we argue that eliminating

ambiguities rather than attempting to correctly guess

their outcome, provides a more robust foundation for

security monitoring technology.

1.4Work by Levchenko et al. demonstrates in formal

terms that many security detection tasks (e.g., detecting

SYN flooding, port scans, connection hijacking and

evasion attacks) fundamentally require maintaining

per-connection state. This finding highlights the

importance of reducing the amount of per-connection

state.

1.5In work done by S. Dharmapurikar and V. Paxson,

“Robust TCP Stream Reassembly in the Presence of

Adversaries,” explores how to robustly reassemble

TCP byte streams when faced with adversaries who

attempt to overwhelm the accompanying state

management. Reassembly involves maintaining out-of-

order data only until sequence “holes” are filled, while

normalization requires maintaining data until it is

acknowledged and hence requires a different

solution.[8.4]

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

60

2. LITERATURE REVIEW

2.1 Evasion Attacks: The reviewed literature presents a keen

insight into another important class of network security attacks i.e.

the evasion attacks. Evasion is a term used to describe techniques

of bypassing an information security device in order to deliver

an exploit, attack or other malware to a target network or system,

without detection.[8.1] Evasions are typically used to counter

network-based intrusion detection and prevention systems (IPS,

IDS) but can also be used to by-pass firewalls. A further target of

evasions can be to crash a network security device, rendering it

in-effective to subsequent targeted attacks. Evasions can be

particularly nasty because a well-planned and implemented

evasion can enable full sessions to be carried forth in packets that

evade IDS. Attacks carried in such sessions will happen right

under the nose of the network and service administrators. The

security systems are rendered ineffective against well-designed

evasion techniques, in the same way a stealth fighter can attack

without detection by radar and other defensive systems. Network

attackers often use network IPS evasion techniques to attempt to

bypass the intrusion detection, prevention, and traffic filtering

functions provided by network IPS sensors. [8.6]Some commonly

used network IPS evasion techniques are listed below:

2.1.1 Encryption and Tunneling

2.1.2 Timing Attacks

2.1.3 Resource Exhaustion

2.1.4 Traffic Fragmentation

2.1.5 Protocol-level Misinterpretation

2.1.6 Traffic Substitution and Insertion

2.1.1 Encryption and Tunneling: One common method of

evasion used by attackers is to avoid detection simply by

encrypting the packets or putting them in a secure tunnel. As

discussed now several times, IPS sensors monitor the network and

capture the packets as they traverse the network, but network

based sensors rely on the data being transmitted in plaintext.

When and if the packets are encrypted, the sensor captures the

data but is unable to decrypt it and cannot perform meaningful

analysis. This is assuming the attacker has already established a

secure session with the target network or host. Some examples

that can be used for this method of encryption and tunneling are:

2.1.1.1 Secure Shell (SSH) connection to an SSH server

2.1.1.2 Client-to-LAN IPSec (IP Security) VPN (virtual

private network) tunnel

2.1..1.3 Site-to-site IPSec VPN tunnel

2.1.1.4 SSL (Secure Socket Layer) connection to a secure

website

There are other types of encapsulation that the sensor cannot

analyze and unpack that attackers often use in an evasion attack.

For example, GRE (Generic Route Encapsulation) tunnels are

often used with or without encryption.

2.1.2Timing Attacks: Attackers can evade detection by

performing their actions slower than normal, not exceeding the

thresholds inside the time windows the signatures use to correlate

different packets together. These evasion attacks can be mounted

against any correlating engine that uses a fixed time window and a

threshold to classify multiple packets into a composite event. An

example of this type of attack would be a very slow

reconnaissance attack sending packets at the interval of a couple

per minute. In this scenario, the attacker would likely evade

detection simply by making the scan possibly unacceptably long.

2.1.3Resource Exhaustion: A common method of evasion used

by attackers is extreme resource consumption, though this subtle

method doesn't matter if such a denial is against the device or the

personnel managing the device. Specialized tools can

be used to create a large number of alarms that

consume the resources of the IPS device and prevent

attacks from being logged. These attacks can

overwhelm what is known as the management systems

or server, database server, or out-of-band (OOB)

network. Attacks of this nature can also succeed if they

only overwhelm the administrative staff, which does

not have the time or skill necessary to investigate the

numerous false alarms that have been triggered.

Intrusion detection and prevention systems rely on

their ability to capture packets off the wire and analyze

them quickly, but this requires the sensor has adequate

memory capacity and processor speed. The attacker

can cause an attack to go undetected through the

process of flooding the network with noise traffic and

causing the sensor to capture unnecessary packets. If

the attack is detected, the sensor resources may be

exhausted but unable to respond within a timely

manner due to resources being exhausted.[8.7]

2.1.4Traffic Fragmentation: Fragmentation of traffic

was one of the early network IPS evasion techniques

used to attempt to bypass the network IPS sensor. Any

evasion attempt where the attacker splits malicious

traffic to avoid detection or filtering is considered a

fragmentation-based evasion by:

2.1.4.1 Bypassing the network IPS sensor if it

does not perform any reassembly at all.

2.1.4.2 Reordering split data if the network IPS

sensor does not correctly order it in the

reassembly process.

2.1.4.3 Confusing the network IPS sensor's

reassembly methods which may not reassemble

split data correctly and result in missing the

malicious payload associated with it.

2.1.4.4 A few classic examples of

fragmentation-based evasion are below:

2.1.4.5 TCP segmentation and reordering,

where the sensor must correctly reassemble the

entire TCP session, including possible corner

cases, such as selective ACKs and selective

retransmission.

2.1.4.6 IP fragmentation, where the attacker

fragments all traffic if the network IPS does not

perform reassembly. Most sensors do perform

reassembly, so the attacker fragments the IP

traffic in a manner that it is not uniquely

interpreted. This action causes the sensor to

interpret it differently from the target, which leads

to the target being compromised.

In the same class of fragmentation attacks, there is a

class of attacks involving overlapping fragments.

In overlapping fragments the offset values in the IP

header don't match up as they should, thus one

fragment overlaps another. The IPS sensor may not

know how the target system will reassemble these

packets, and typically different operating systems

handle this situation differently.[8.2]

2.1.5 Protocol-level Misinterpretation: Attackers

also evade detection by causing the network IPS sensor

to misinterpret the end-to-end meaning of network

protocols. In this scenario the traffic is seen differently

from the target by the attacker causing the sensor either

to ignore traffic that should not be ignored or vice

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

61

versa. Two common examples are packets with bad TCP

checksum and IP TTL (Time-to-live) attacks.[8.5]

A bad TCP checksum could occur in the following manner: An

attack intentionally corrupts the TCP checksum of specific

packets, thus confusing the state of the network IPS sensor that

does not validate checksums. The attacker can also send a good

payload with the bad checksum. The sensor can process it, but

most hosts will not. The attacker follows with a bad payload with

a good checksum. From the network IPS sensor this appears to be

a duplicate and will ignore it, but the end host will now process

the malicious payload.[8.3]

The IP TTL field in packets presents a problem to network IPS

sensor because there is no easy way to know the number of hops

from the sensor to the end point of an IP session stream. Attackers

can take advantage of this through a method of reconnaissance by

sending a packet that has a very short TTL which will pass

through the network IPS fine, but be dropped by a router between

the sensor and the target host due to a TTL equaling zero. The

attacker may then follow by sending a malicious packet with a

long TTL, which will make it to the end host or target. The packet

looks like a retransmission or duplicate packet from the attacker,

but to the host or target this is the first packet that actually reached

it. The result is a compromised host and the network IPS sensor

ignored or missed the attack.

2.1.6 Traffic Substitution and Insertion: Another class of

evasion attacks includes traffic substitution and insertion. Traffic

substitution is when that attacker attempts to substitute payload

data with other data in a different format, but the same meaning.

A network IPS sensor may miss such malicious payloads if it

looks for data in a particular format and doesn't recognize the true

meaning of the data. Some examples of substitution attacks are

below

1 Substitution of spaces with tabs, and vice versa, for

example inside HTTP requests.

2. Using Unicode instead of ASCII strings and characters

inside HTTP requests.

3 Exploit mutation, where specific malicious shell code

(executable exploit code that forces the target system to

execute it) can be substituted by completely different shell

code with the same meaning and thus consequences on the

end host or target.

4 Exploit case sensitivity and changing case of characters in a

malicious payload, if the network IPS sensor is configured

with case-sensitive signature.

Insertion attacks act in the same manner in that the attacker inserts

additional information that does not change the payload meaning

into the attack payload. An example would be the insertion of

spaces or tabs into protocols that ignore such sequences.[8.4]

Intrusion detection is an important component of a security

system, and it complements other security technologies. By

providing information to site administration, ID allows not only

for the detection of attacks explicitly addressed by other security

components (such as firewalls and service wrappers), but also

attempts to provide notification of new attacks unforeseen by

other components. Intrusion detection systems also provide

forensic information that potentially allow organizations to

discover the origins of an attack. In this manner, ID systems

attempt to make attackers more accountable for their actions, and,

to some extent, act as a deterrent to future attacks.[8.8]

Given the implications of the failure of an ID component, it is

reasonable to assume that ID systems are themselves logical

targets for attack. A smart intruder who realizes that an IDS has

been deployed on a network she is attacking will likely attack the

IDS first, disabling it or forcing it to provide false information

(distracting security personnel from the actual attack in

progress, or framing someone else for the attack).

In order for a software component to resist attack, it

must be designed and implemented with an

understanding of the specific means by which it can be

attacked. Unfortunately, very little information is

publicly available to IDS designers to document the

traps and pitfalls of implementing such a system.

Furthermore, the majority of commercially available

ID systems have proprietary, secret designs, and are

not available with source code. This makes

independent third-party analysis of such software for

security problems difficult.

The most obvious aspect of an IDS to attack is its

``accuracy''. The ``accuracy'' of an IDS is compromised

when something occurs that causes the system to

incorrectly identify an intrusion when none has

occurred (a ``false positive'' output), or when

something occurs that causes the IDS to incorrectly fail

to identify an intrusion when one has in fact occurred

(a ``false negative''). Some researchers discuss IDS

failures in terms of deficiencies in ``accuracy'' and

``completeness'', where ``accuracy'' reflects the number

of false positives and ``completeness'' reflects the

number of false negatives.

Other attacks might seek to disable the entire system,

preventing it from functioning effectively at all. We

say that these attacks attempt to compromise the

``availability'' of the system.

3. OBJECTIVE

The objective of this project is to implement a network

element that detects and blocks inconsistent

retransmissions in any TCP byte stream, in a manner

that takes care of the memory requirements and is also

resistant to attacks.

The programs will run on Linux operating system and

the entire project will be developed and coded using C

language and socket programming.

4. SCOPE OF THE PROJECT

We have envisaged our normalizer to work on a Linux

platform on a three node network with a simple client-

server architecture. Our endeavor is to implement the

functionality of this essential network element, the

normalizer in software using the C programming

language. The same can be extended to hardware

implementation with the aid of assembly language. The

scope of this normalizer can be extended to other

dynamic network configurations and on other

platforms (Windows, Mac etc.). There are still

possibilities of exploring a different approach to

defending against evasion attacks in which the network

monitor may proactively determine how specific end

systems and network paths will resolve potential

ambiguities. While this approach can be a valid point

in the overall design space, eliminating ambiguities,

rather than attempting to correctly guess their outcome,

seems to provide a more robust foundation for security

monitoring technology

5 RESULT AND DISCUSSION

Defending networks against today's attackers is

especially challenging for modern intrusion

detection/prevention systems for two reasons: the sheer

amount of state they must maintain, and the possibility

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

62

of resource exhaustion attacks on the defense system itself. Our

work shows how to cope with these challenges in the context of a

TCP stream normalizer whose job is to detect all instances of

inconsistent TCP retransmissions. The two currently used

methods to detect inconsistent retransmissions, maintaining

complete contents of unacknowledged data, or maintaining only

the corresponding hashes suffer from a set of flaws each. Systems

that maintain complete contents consume an amount of memory

problematic for high-speed operation. Systems that maintain

hashes cannot verify the consistency of the 20-30% of

retransmissions that fail to preserve original segment boundaries;

as a result attackers can easily encode their evasions in these

unverified segments. Our normalizer stores hashes of data and

verifies the consistency of all retransmissions. The resulting

design is necessarily somewhat complex. In considering resource

exhaustion attacks, the observation that provisioning for a worst-

case traffic pattern is simply impractical led us to develop a

simple framework to evict connections when space is at a

premium. Thus, our most important conclusion is that TCP stream

normalization does not have to choose between correctness and

implement ability; it can achieve both goals, while resisting a

range of resource exhaustion attacks. [8.9]

6 . LIMITATIONS

We have implemented the normalizer for TCP at user-level. For

high performance a production normalizer would need to run in

the kernel rather than at user level, but our current implementation

makes testing, debugging and evaluation much simpler.

The application of this project seems more probable on a high

speed network where the internal network of a home user/

organization needs to be protected from any malicious activity by

an attacker. That would require full control on the transmission of

packets so that the inconsistent retransmissions can be blocked

and not allowed to pass by the normalizer.

7 . CONCLUSION

The work done in this semester brings us to the end of our Project.

Having prepared the three key components namely, the packet

sniffer program, the SHA -1 implementation and the setting up of

a client server network through socket programming, we were

able to combine them to prepare our TCP stream normalizer.

These three components essentially form the major part of the

requirements for implementing a robust and efficient network

normalizer. Next came the logical implementation of how the

normalizer works to prevent the typical kind of attack that we

discussed i.e. the evasion attack. The client server configuration

served the purpose of simulating the actual working of a hardware

implementation of the normalizer where the normalizer helps

prevent our internal network from any inconsistent

retransmissions. The packet sniffer allowed the

capturing of essential details required to track and

distinguish genuine packets from the others. With the

help of the SHA-1 hashing algorithm, the memory

requirements of our normalizer were reduced great

deal. Comparing the incoming packets with the hash

codes of previously monitored packets enabled the

working of the normalizer that prepares a table for

each incoming packet and holds three key entities – the

sequence number, identification field and the hash of

data payload. The normalizer was thus successful in

demarcating genuine packets forwarded by the TCP

protocol from any malicious packet that an attacker

may have introduced in the TCP stream.

8. REFERENCE

[1] M. Handley,V. Paxson, and C. Kreibich,

“Network Intrusion Detection: Evasion, Traffic

Normalization, and End-to-End Protocol

Semantics,” in Proc. USENIX Security

Symposium, Aug. 2001.

[2] G. Varghese, J. A. Fingerhut, and F. Bonomi,

“Detecting Evasion Attacks at High Speeds

without Reassembly,” in Proc. ACM SIGCOMM,

Sept. 2006.

[3] “Configuring TCP Normalization,” 2006,

http://www.cisco.com/en/US/products/ps6120/pro

ducts configuration guide

chapter09186a008054ecb8. html#wp1051891.

[4] Mythili Vutukuru, H. Balakrishnan, “Efficient and

Robust TCP Stream Normalization”, IEEE

Symposium on Security and Privacy, May 2008.

[5] Anderson, Ross (2008). “Security Engineering –

A Guide to Building Dependable Distributed

Systems – 2nd edition. John Wiley & Sons.

[6] Burns, David (2011). “CCNP Security IPS 642-

627 Official Cert Guide”. Cisco Press.

[7] Thomas H. Ptacek, Timothy N. Newsham,

“Insertion, Evasion and denial of service: Eluding

Network Intrusion Detection”. Jan 1998.

[8] Tanenbaum, Andrew S., “Computer Networks”

4th edition. Pearson Education. “Secure Hash

Standard”, FIPS – 180, National Institute of

Standards and Technology.

