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ABSTRACT 

This research paper deals with the question of finite 

termination of the Algorithm for Dynamic bundle method. For 

a polyhedral dual function f , if the stopping parameter is set 

to tol = 0, and the bundle management is either “no bundle 

deletion” or “bundle selection”, we provide a positive answer 

for that question. 
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I. INTRODUCTION   

We proceed somewhat similarly to Kiwiel.[1], we will show 

finite termination by using the asymptotic dual results to 

obtain a contradiction.  

Our main assumption is that there exists a finite number q of 

primal points,  

                              
1 2{ , ,..., } ,qp p p Q    

such that the dual function can be written as  

                              

 ( ) max ( ) ( ), ,i i

i q
f x C p g p x


                        (1) 

i.e., the dual function is polyhedral.  

Although this assumption is made on the dual function, there 

are many primal conditions that ensure the form (1) for f .  

       Condition (1) implies that at each given 
ix  there are at 

most q different maximizes 
ip as in (4), yielding a finitely 

generated sub differential  

                               ( ) ( ) :i i if x conv g p p   and 

,i q  

Likewise, bundle elements corresponding to past dual 

evaluations, i.e,  

 ( ) :i i

iC C p p Q   where i q , 

can only take a finite number of different values. This is not 

the case for aggregate elements, which can take an infinite 

number of values, simply because they have the expression  

                               

ˆ ˆ( ), ,i i

i i

i i

C C p p  
 

  
 

   

where ˆ  conv Q  . This is the underlying reason why we 

in our next result we cannot handle the “bundle compression” 

strategy.  

Theorem:  Suppose the primal problem  

max  ( )  

( ) 0, : {1,......, },

p

p

j

C p

p Q IR

g p j L n





 
   


                             (2)   

Satisfies either,      

 For all 0d      inf ( ), 0.
p Q

g p d


            (3)           

or ( )i

i ji r
g p

   for all   1,....,j n                         (4)  

with g affine, conv Q compact, and a dual function of the 

form (1). Consider Algorithm applied to the minimization 

problem  

0
min ( ), where ( ) : max ( ) ( )j j

x p Q
j L

f x f x C p g p x
 



 
  

 
    (5)  

with separation procedure satisfying, ( ) 0lg p  . Suppose 

tol = 0 and that    Step 5 of the algorithm (Choose a reduced 

bundle Bred; Define    1 : ( , )l

l red lB B C p   ), always 

sets the bundle management strategy to be either “no bundle 

deletion” or “bundle selection”. If at null steps ( ) ,l k l   

while at serious steps maxkl
  , then the algorithm stops 

after a finite number of iterations having found a primal 

convex point ˆ last , solution to conv (1), with 
lastx solving 

(5).  

Proof. Suppose that there is a last serious step x̂  followed by 

infinitely many null steps and let ̂ denote the corresponding 

proximal parameter. Note first that, since 

  1( ),l l

lC p p B    for any bundle management strategy, 

having 
1l lx x   implies 

that
1 1( ) ( ) ( ) ( ), .l l l l lf x f x C p g p x    But 

since by construction f f


 and 

1 1

1( ) ( ) ( ), .l l l l

lf x C p g p x 

  


, we conclude that 
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1 1

1( ) ( )l l

lf x f x 

 


and, hence, 

1

1
ˆ( ) ( ).l

l f x f x 

                          

By 

2 2
1 1 1 1

1

1 1
ˆ ˆ ˆ ˆ( ) ( )

2 2

l l l l

lf x x x f x x x    

    


1ˆ( ) ( ),lf x f x    so 
1ˆ .lx x   In this case the 

algorithm would eventually stop ( 1 0l  , contradicting 

our starting assumption. Thus, infinite null steps occur only 

with 
1l lx x  For l last , consider the following 

problem :  

  

2

,

\

1
ˆ ˆmin

2

( ) ( ),  

0  0,

nr R x R

i i

l

J L J

r x x

r C p g p x for i B

x and x


 


 


  


 



                     (6)                    

and denote its optimal 

value
21

ˆ ˆ: ( ) .
2

l l

l lO f x x x  


 Relation  in [HUL93] 

                                  
2

1

1

1
ˆ ,

2

l l

l lO O x x 

     

together with the fact that
1l lx x   imply that the values of 

lO are strictly  

increasing. The assumption that Q is finite implies that 

lB contains at most q different pairs ( , )i

iC p . As a result, 

there is a finite number of different feasible sets in (22) for 

l last , contradicting the fact that the (infinite) values of 

lO  are strictly increasing.  

 Consider kl L ,
1ˆ ˆ( )k

k

l k

ls f x 


, 
1ˆ ˆ( ).k

lk

l k

Jv N x   

Since Q is finite there is only a finite number of different 

combinations of 
kl

J and  : : .
k k

i

l lQ p Q i B    

There exists 0  such that ˆ ˆk kl l
s v    implies that 

ˆ ˆ 0.k kl l
s v   As a result, using(8), 

11ˆ ˆ .klk kx x x
   For this value of 

1ˆkx 
, the descent test 

in Step 3 of Algorithm (which must hold because kl  gave a 

serious step) becomes ˆ ˆ( ) ( ) .
k

k k

lf x f x m   This 

inequality is only possible if 0,
kl

  , or,  
1ˆ ˆ ,k kx x   if  

                   
1 1ˆ ˆ( ) ( ).

k

k k

lf x f x 


                                (7)                               

Let k  be the first index such that ˆ ˆ 0,k kl l
s v    i.e. such 

that 
1ˆkx


minimizes 

kl
f




 on the set  \0 : 0 .

lk
L Jx x



   

For every \
kl

l L J


 there is an index 
kl

j J


 such that 

ˆ ˆ ˆ ˆ( ) ( )
k

k kk
l

l ll l

l l jv s g g  


     

ˆ ˆ 0,
k

kll

j js v 


                              

so 
1ˆkx


 solves the problem 

0
min ( )

klx
f x




by Corollary 3. 

Since f f


 by construction, we see that 

                                
1ˆ( ) ( ),

k

k

lf x f x


 


                     (8)                                                   

and by (7), this means that 
1ˆ( ) ( ),kf x f x

   i.e, the 

relation is satisfied with  equality, because x
solves (2). 

Therefore, the algorithm would have 0
kl 

   with 

,
k kl lI J
 
  and the stopping test would be activated.  

II. CONCLUSION 
   It is worth mentioning that finite termination results in the 

(static) bundle literature need to modify the descent test in 

Step 3 by setting the Armijo-like parameter m equal to 1. Such 

requirement is used for example in [1],and [2] to show that 

there can only be a finite number of serious steps when the 

function f is polyhedral, with the same assumptions on the 

bundle management strategy, i.e., either no deletion or bundle 

selection. Since the static case is covered by the dynamic 

setting, Theorem extends the known results of finite 

termination to include the case  (0,1).m   
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