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ABSTRACT        

The classical Fritz John conditions have been enhanced 

through the addition of an extra necessary condition, and their 

effectiveness has been significantly improved (for the case 

where X is a closed convex set, and Bertsekas and Ozdaglar [1] 

for the case where X is a closed set). In this paper we will use 

the following assumptions instead of smoothness and the 

assumption of existence of an optimal solution will retain. 
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1. INTRODUCTION 

Assumption: (Closedness) The functions  

1and ,...., rf g g  are closed. 

We note that 1and ,....., rf g g  are closed if and only if 

they are lower semicontinuous on ,X  i.e., for each ,x X   

we have  
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Now we will prove the Fritz John conditions. 

Lemma 1: Consider the convex problem (P) and assume  

 

that
*.q If 

* is a dual optimal solution, then 
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*|| ||,
|| ||

q f x

g x





    for all x X  that are 

infeasible . 

Proof: For any x X that is infeasible, we have from the 

definition of the dual function that 
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The preceding lemma shows that the minimum distance to the 

set of dual optimal solutions is an upper bound for the cost 

improvement/constraint violation ratio 

(  * ( )) / || || .q f x g x The next proposition shows that, 

under certain assumptions including the absence of a duality 

gap, this upper bound is sharp, and is asymptotically attained 

by an appropriate sequence { } .kx X   

Proposition 1: Let the convex problem (P) and  x* be an 

optimal solution Then there exists a FJ-multiplier 

 * *

0 ,  satisfying the following condition (C1).  

(C1) If 
* 0,   then there exists a sequence { }kx X  of 

infeasible points that converges to x*and satisfies  

    *, 0,k kf x f g x            (1) 
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Proof: For positive integers k and m , we consider the saddle 

function  

 

     
2 2*

, 3

1 1
,

2
k mL x f x x x g x

k m
      

,  ,0, ,k mL x  .  

Furthermore, for a fixed  ,, ,k mx L x   is negative definite 

quadratic in  . For each k , we consider the set 
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  *| .kX X x x x k     

Since f and gj are closed and convex when restricted to X , they 

are closed, convex, and coercive when restricted to 
kX . 

Thus, we can use the Saddle Point theorem to assert that 
,k mL  

has a saddle point over and 0.kx X   . This saddle 

point is denoted by  , ,,k m k mx   

The infimum of  ,

, , overk m k

k mL x x X   is attained 

at 
,k mx , implying that  

 
   

2
, , * , ,

3

1k m k m k m k mf x x x g x
k

     

   

 
   

 
 

 

2
* ,

3

2
* ,

3
, 0

2
*

3
, 0

*

1
inf

1
inf

1
inf

k

k

k

k m

x X

k m

x X g x

x X g x

f x x x g x
k

f x x x g x
k

f x x x
k

f x











 

 

 
    

 

 
    

 

 
   

 



       (4)        

Hence, we have 
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Since  ,

, ,k m

k mL x   is quadratic in , the supremum of 

 ,

, ,k m

k mL x   over 0   is attained at  

  , , .k m k mmg x                    (6) 

             

This implies that 
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 (7)         

From Eqs. (5) and (7), we see that the sequence  ,k mx  , 

with k fixed, belongs to the 

set     *|kx X f x f x  , which is compact, for 

each k,  , ,

, ,k m k m

k mL x   is bounded from above by 

 *f x , so 

 

 ,limsup 0, 1,......, .k m

j
m

g x j r


    

Therefore, by using the lower semicontinuity of 
jg , we 

obtain   0,kg x   implying that
kx feasible solution of 

problem (P), so that    * .kf x f x  Using Eqs. (5) and 

(7) together with the lower semicontinuity of f , we also have 

 

       , , *lim inf lim sup ,k k m k m

m m

f x f x f x f x
 

    

thereby showing that for each k, 

    , *lim k m

m
f x f x


  

Together with Eqs. (5) and (7), this also implies that for each k 

, 

 
, *lim k m

m
x x


  

Combining the preceding relations with Eqs.(5) and (7), for 

each k, we obtain 

 

      , * , ,lim 0k m k m k m

m
f x f x g x 

 
    

                                                       (8) 

Denote 

,2
, , , ,

0 , ,

1
1 , ,

k m
k m k m k m k m

k m k m


   

 
         (9) 

dividing (8) by 
,k m , we obtain  

 

      , , , * , ,

0 0lim 0k m k m k m k m k m

m
f x f x g x   

 
    

By the preceding relations, for each k we can find a sufficiently 

large integer km such that 

     , , , , ,*

0 0

1
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f x f x g x
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and 
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        Dividing both sides of the first relation 

in Eq. (4) by
, kk m , we obtain  
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also 
*x x k   , 

kx X  . 

Without loss of generality, we will assume that the entire 

sequence   , ,

0 ,k kk m k m   converges to  * *

0 ,  . 

Taking the limit as k    , and using Eq. (10), we obtain 

  

     * * * *

0 0 ,f x f x g x x X       . 

Since 
* 0,  , this implies that 
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Thus we have 

       * * * *

0 0inf
x X

f x f x g x   


  , 

 * *

0 ,   satisfies (i). 

If 
* 0,  , then 

*

0 0,   (C1) is automatically satisfied, 

and 
* *

0 0    has minimum norm. 

 Moreover, condition (i) yields 

 * inf ,x Xf f x  so that (C1), is satisfied by only 

* 0  . 

 Assume now that 
* 0  , so that the index set 

 *0 | 0jJ j     is nonempty. For large k , 

,
0kk m

j   ,  ,
0kk m

jg x   , j J  . Using Eqs. (6), 

(9) and the fact that 
, *kk m   we obtain 
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Using also Eq. (5) and  * *f x f , we have that  

 
 

 
 

. , . .

.

,. .
0

* k k k k

k

kk k

k m k m k m k m

k m

k mk m k m

f x g x

g x g x

 







 


         (12) 

  If 
*

0 0  , then 
,

0 0kk m  , so with 

, * 0kk m    we have 
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If
*

0 0  , then together with 
, *

0 0
kk m   and 

, *kk m   we have 

 
 

 

.* *

*.
0

liminf

k

k

k m

k m
k

f f x

g x




 




 

Using geometric multiplier 
* *

0   and
* *f q , Lemma 

1 implies that 
* *

0   is of minimum norm. Hence, sequence 

 , kk m
x  also satisfies conditions (1)-(3) of the proposition, 

concluding the proof. 

2. Minimum-norm Dual Optimal solutions 

Proposition 2: (Fritz John Conditions) Consider the convex 

problem (P), and assume that 
*f   . Then there exists a 

FJ-multiplier  * *

0 ,  . 

Proof: If f = -8 , then
*

0 1  and
* 0  form a FJ-

multiplier. We may thus assume that 
*f  is finite. Consider 

the subset of  
1rR 

 given by 
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We first show that M is convex. Consider vectors 

 ,u w M  and  ,u w M , and we show that their 

convex combinations lie in M . The definition of M implies 

that for some x X  and x X , we have 
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For any  0, 1  , we multiply these relations with   

and 1 -  , respectively, and add them. By using the convexity 

of f  and 
jg  , we obtain 
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 In view of the convexity of X , we have 

 1x x X    ax +(1 - a )˜ x X , so these inequalities 

imply that the convex combination of ( , )u w and  ,u w  ,i.e., 

    1 , 1u u w w        , belongs to M . This 

proves the convexity of M . 

 Therefore, there exists a hyper-plane passing through 

 *0, f  and containing M in one of its closed half spaces, 

i.e., there exists a vector    * *

0, 0,0    such that  

 * * * *'

0 0 , , .f u w u w M       (13) 

 This relation implies that 

 
* *

0 0, 0, 1,........, ,j j r      

since for each  , ,u w M  we have that 

 ,u w M  and   

 1,...., ,......, ,j ru u u w M  for all  

>0 and j.  

Finally, since for all ,x X  we have g  

    , ,g x f x M Eq. (13) implies that 

   * * * *'

0 0 , .f f x g x x X       

Taking the infimum over all x X , it follows that 
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Hence above equality holds, that proves the result.  

Lemma 2: Consider the convex problem (P), and assume that 
* .f     

For each 0,  let 

  

 

 
, 1,...,
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j

x X
g x j r

f f x




 

   

          (14) 

Then the dual optimal value q
 satisfies f = 

*f q   for all 

0   and  

    

 
*

0
lim .q f 


  

Proof: We note that either lim 0 f    exists and is finite, 

or else lim 0 f     , 

since f 
 is monotonically nondecreasing as 0,   

and
*f f   for all 0.   Since

* ,f   there exists 

some x X  such that   0.g x   Thus, for each 0   

such that ,f    the Slater condition is satisfied by Prop. 

2 and the subsequent discussion, there exists 

a 0  satisfying. 
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For each 0  such that  ,f   we also 

have
*,f q   so that  

    

 
*, 0.f q     

By taking the limit as 0,  we obtain 
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Consider (1) f    for all 0   that are sufficiently 

small, and (2) f   for all 0  . In case (1), for each 

0    with f    choose x X  such that 

 jg x   for all j and  f x  . Then, for any 

0,   
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Taking the limit as 0  , we obtain 

 
0

limq f 





  

so that 
*q   lim 0,   In case (2), choose x X   such 

that  jg x   for all j and  f 1/x   Then, 

similarly, for any  0,  we have 

  

 

     
1

1
,

r

j

j

q f x g x    
 

      

so by taking 0  , we obtain   q    for all 0 , 

and hence also 

*

0lim .q f  
 

3. CONCLUSION 

It is shown that the minimum distance to the set of dual 

optimal solutions is an upper bound for the cost 

improvement/constraint violation ratio 

(  * ( )) / || || .q f x g x Under the certain assumptions 

including the absence of a duality gap it is also shown that this 

upper bound is sharp, and is asymptotically attained by an 

appropriate sequence { } .kx X   
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