
International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

1

Automatic Generation of Test Suits by Applying Genetic

Algorithm

Mohd Athar

Research Scholar
Shri Venkateshwara University,

Gajraula, India

Avdhesh Gupta
IMS Engineering College
Ghaziabad (U.P.) India

ABSTRACT

The only objective of programming is not to determine the

algorithm to accomplish a result, but relevance and

correctness of the result also need to be ascertained.

Correctness can be insured by applying testing to the result.

Testing is most critical practice which is performed for

supporting quality assurance. It is substantial but also arduous

to warrant the quality of software; half of the cost is

consecrated to testing when we converse about software

development. Efficient ways can reduce percentage of cost

and time incurred in testing. In spite of scads of theoretical

work in field of Software Testing, its advancement is slow

towards automation. In this approach, Genetic Algorithm

(GA), which is a meta-heuristic algorithm, is employed for

optimizing path testing to achieve total code coverage.

General Terms

Genetic Algorithm, Software Under Test, Test Suits

Keywords

Software Testing, SUT, Code Coverage.

1. INTRODUCTION
Software testing is important but it possesses some

fundamental challenges. It poses two essentially arduous jobs;

selecting tests and assessing test results. Selecting test cases

are hard as there is enormous number of potential test inputs

in varied sequences but only some of them unwrap failures. In

Evaluation/assessment, the real output of test run is compared

with expected result. This evaluation is done in opaque-

testing. Test Suite(TS) generation from operational profile can

be automated but it poses substantial hardheaded problems.

Time plays a foremost constraint in case of testing. Another

vital component is cost. Due to these two constraints, it is

intricate task to execute all test cases. When coverage is taken

as optimization parameter then target is formulation of TS that

could give 100 % code coverage. Optimization problems can

be unriddled by GA which can be regarded as computer

model of biological evolution. It works on principle of

evolution, where superior chromosomes (having greater

fitness value) are chosen for mutation and crossover

operations. Evolution continues until the optimized solution is

achieved. Good results are found astoundingly speedily when

GA is implemented. Generating optimized TS is meta-

heuristic problem which can be resolved by GA.

2. LITERATURE SURVEY
Testing can be; Opaque box and glass box. Program is viewed as

“black box” in opaque box testing approach. Test cases are

grounded on system specifications. Glass box study internal

structure of program, i.e., it utilizes control structure of the

procedural design to obtain test cases. Opaque box and glass box

are two broad categories of testing. In opaque box, code

structure is not analyzed. Aim of opaque box testing is checking

the functionalities of Software Under Test (SUT) only. Glass

box testing complement opaque box testing and it is employed

for examining codes‟ structure. Path, statement and branch

testing are measures of glass box testing.

In nearly every field, optimization problems rise up and

engineering domain is not an elision. As consequence, different

types of optimization techniques have been formulated. Yet,

these techniques quite frequently have troubles with functions

which aren‟t continuous (differentiable) all over, multi-modal

(multiple peaks) & noisy. Hence, robust optimization techniques

are required which may be adequate to handle these troubles.

John H. Holland coined one of such optimization techniques

known as GA which is grounded on biological evolution. GA

constitutes a class of adaptive search techniques & routines

founded on Darwin's principal which says that weak perish

while fitter lingers, famously quoted as “survival of fittest”.

Artificial chromosomes exchange morphological data among

themselves. GAs can be seen as computer model of biological

evolution. Good results are found astoundingly speedily when

GA is implemented. In software testing, the canonical idea is to

seek domain for input variables which meet testing‟s goal.
Creatures are ideal trouble solver. They have to handle diverse

tasks such as adaptation, changing environment. To the

frustration of software developers, they do better than the finest

computer programs because they develop their capability by the

evidently directionless evolution mechanism. The elementary

idea of GAs is evolution of succeeding generations of

progressively superior combinations of chromosomes. The

progression is grounded on parameters which notably regulate

the performances of a design. The evolution stratagem is the

foundation of GA. The software designer has to face a hitch; it is

indispensable to be acquainted with “what to do”, beforehand,

for each circumstance which may confront a program but to the

advantage of evolution; this hindrance isn‟t faced by it.

Evolution is governed by two elementary actions; natural

selection and recombination/combining. The natural selection

influences which member of population is chosen, lasts &

reproduces while recombination ascertains that the genes(or

entire chromosome) will amalgamate to form new ones.
A strong non-linear exploration technique is proposed by GA.

The GA accomplishes the optimal answer by the stochastic

exchange of data between progressively fit samples. It is

modeled on natural selection whose incentive is to design and

implement stout adaptive system. GA is being used to

unbridle array of problems and have emerged as crucial tool

in function optimization & machine learning. Natural

selection is used to produce adaptation.

The evaluation phase embarks on with configuration of first

populace of chromosomes. Chromosomes are differentiated

according to their fitness. Fitness in GA is determined through

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

2

a non-negative function and maximizing fitness is major

target. The intent is the upgrading of the average fitness of

population. Healthier chromosomes are given more

probability of engagement during selection and reproduction

phases & weaker are tossed out. The adequate discriminatory

distinction between chromosomes can be made out by only

fitness. The GAs is blind, so, does not know anything of the

problem except the fitness information.

In the selection stage, chromosomes can be picked for the

reproduction in many ways; they may be picked arbitrarily, or

inclination may be towards the fitter members.

In the reproduction phase, two chromosomes are chosen from

populace. Mutation and Crossover are carried out to fabricate

two offspring for following generation.

Crossover operator is practiced on two parents

(chromosomes) which are picked by selection operator &

swap subsequent substrings of the parents to yield two

offspring. The plan is to construct superior chromosomes by

fusing genetic material (genes) of fitter parents.

The mutation operator interpolates one or more genes of

chosen structure with a low probability. This secures certain

diverseness in the chromosomes and precludes doldrums near

a local optimum.

Entire procedure is repeated over generation by generation

until a global optimum is discovered or some stopping

condition is accomplished. One of the minuses can be the

overweening iteration numbers and therefore time taken for

computation can be high. GA is a robust optimization

technique which constitutes a class of adaptive search

routines. Working of GA has been explicated through flow

diagram in this chapter as well algorithm is also discussed.

GA has found application in various problems like game

theory, scheduling and state assignment problem.

Now talks about the particulars of all literature reviews

accomplished in this paper for resolving problem statement.

Now discuss on an imminent analysis of software testing,

problems confronted by software testers, different methods

used for Test Suits (TS) optimization, importance of GA in

software testing, comparison of GA with other alternatives.

Problems linked to search and optimization can be figured

out by GA. It has been enforced to both Black Box Testing

(BBT) and White Box Testing (WBT). Testing tools can be

put in two class; dynamic & static.

Static analyzers: It probes programs thoroughly and

automatically. It is employed on particular language, i.e., it

is language dependent.

Code inspectors: It scrutinizes program to vouch that it hold

on minimum quality criteria. Some COBOL tools abide it,

for e.g., AORIS librarian system.

Output comparators: It checks weather anticipated and

obtained outputs are same or not. For e.g. JUnit is such a

tool.

Coverage analyzers: It finds degree of coverage. One of its

e.g. CodeCover tool.

Coverage analyzers and output comparators are dynamic

testing tools while static analyzers and code inspectors are

static testing tools. JUnit and CodeCover are extremely

noted testing tools.

JUnit: It is UT framework for Java. It is applied for testing

of single component, IT and system testing.

CodeCover tool: It is a well-known Eclipse plug-in,

employed as white box coverage tool. This tool is very

apposite to assure weather TS is giving full code coverage or

not.

It‟s important to have adequate test cases for

accomplishment of testing and making software more

dependable. Making system reliable is vital as flunking it

could sustain massive losses. BBT is optimized by applying

GA. It‟s implemented in Matlab. Test cases of SUT are

heavily influenced by GA. GA depends on various

parameters. Population size is vital parameter. Bigger

population size brings variation in initial populace at cost of

more function evaluations and longer completing times.

Figure 1: Proposed solution

Figure 1 shows that fitness function is defined, threshold

fitness is set, population size is set, crossover rate taken 0.6,

mutation rate taken .001.While halt condition is not met,

reproduce by crossover and mutation

Testing job is reckoned to be optimization problem whose

intent is maximization of noticing errors with minimization

of effort. GAs with specification can obtain results with

superior quality in lesser time.

Figure 2: GA implemented on matlab

Figure 2 shows the implementation of GA on test cases of a

program. Implementation is done on matlab. Value which

differs from specification (expected value) of the software is

depicted as error.

Two central issues in process of evolution of genetic search

are population diversity and selective pressure. There may

be chances of converging early to local optimum solutions if

strong pressure is given on selection. On other hand, weaker

selection pressure may leads to unproductive search and

optimization. Fitness is the key for selection of parents.

Fitter chromosomes have more likelihood to get selected.

Crossover works on two chromosomes which are chosen as

parents to construct two children. In this research work,

point crossover is employed; two parents are divided partly,

with both children getting half of each of parents. Mutation

is applied to amend genes in chromosome. For example, let a

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

3

chromosome be: „abdfag‟, Mutation may pick gene at

position 2 and transform it to a „z‟, thus, ensuing a new

chromosome: „azdfag‟.

In the work done by Dhawan et.al. test data for input set is

delimitated in terms of stipulations which illustrate valid and

invalid data values. Stipulations are determined from

program‟s specification. Figure 8 shows fitness values for

different input variables.

Figure 3 Graph between fitness initial population and input

Figure 3: shows 3-D graph between three variables. X-axis

represents “number of variables”, y-axis represents “initial

population”, z-axis represents “fitness function”. The graph

is depicting that as values of number of variables and initial

population are increased, fitness function also increases.

Prerequisite for WBT is availability of source code of SUT.

Software testing can be optimized by discovering most

critical paths in modules of SUT. Comprehensive testing is

very convoluted task. There can be case that part of program

which is checked is not error prone also error prone part may

be left untested. Also more priority is given to parts of

programs which are most critical and they are tested first.

Most critical parts of program are branches, loops and

predicate nodes. This increases testing efficiency. Srivastava

et.al. proposed to take weighted CFG.

 Figure 4: Control Flow Graph with weighted edges

Figure 4 displays weighted CFG. Weighted CFG is CFG

whose edges are allotted weight. 80-20 rule is followed to

give weights, i.e., 80% of the weight coming from input

edge is allotted to loops or branches and 20% is allotted to

the sequential statements.

GA is employed to find test data that covers most critical

paths in program. Fitness function used is: F = Σ wi where

wi is edge “i‟s” weight which is part of path.

Probability of selection of path „i‟ is calculated as: pi=Fi/

ΣFi

Then cumulative probability cj for each path „j‟ is calculated

by: cj=Σpi.

A single point crossover is used. A genetic search technique

for random generation of test data has been proposed. GA

can be employed to discover most critical paths which can

improve testing efficiency. According to Srivastava et.al,

GA works better than exhaustive search and local search

technique as GA tends to find global optimum solution.

RT is used to validate altered program but it‟s considered as

very costly activity. This lays the significance of TS

optimization to have prioritized test cases. Askarunisa et. al.

discussed about APFDc which is influenced by APFD for

valuating rate of fault detection of optimized TS. Other

metrics discussed are APBC, APSC, APCC and APLC.

Coverage and cost are driving forces which influence

prioritization of test case.

Extent of coverage can be evaluated by metrics APSC,

APLC, APBC and APCC.

APSC assesses rate at which prioritized TS covers statement.

APBC assesses rate at which prioritized TS covers branch

APLC assesses rate at which prioritized TS covers loop

APCC assesses rate at which prioritized TS covers condition

According to previous research, for prioritizing test cases,

GA is employed and total code coverage is prioritization

criteria. It has used APCC metric to show success of GA in

optimizing the TS. It has applied GA on path testing to

achieve full code coverage. In first step, CFG of module is

drawn. Then, different paths in the CFG have been

discovered. Test cases are acquainted with paths they cover.

Test cases are grouped together to form initial population of

chromosomes. So, TS are the chromosomes and test case is a

gene and TS needs to be optimized. Fitness function is

picking out least count of test cases to address all

independents paths. Crossover applied is explained through

the figure.

Takagi et. al. discussed about generation of TS from

operational profile and optimizing by using GA. Operational

profile contain set of all operations that are carried out by

SUT and their probability of occurrence. Large amount of

test data can be framed using operational profile in order to

ascertain consistency of SUT. But because constraints (time

& cost), all test cases can‟t be executed. Usage Distribution

Coverage (UDC) has been taken as the criteria to optimize

the test suite. UDC shows percentage of software operation

executed by TS. Chromosomes are TS and test case

represents gene.

T1 T2 T3 T4 T5 T6 T7

 Chromosome

Takagi et.al has employed two point crossover. Two TS are

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

4

selected randomly and two cut positions are arbitrarily

selected on each TS and test cases between cut positions are

swapped.

CFG is data structure; graph of program with purpose of

representing control flow of program and widely used in

software analysis. Directed graph is used to signify CFG.

Control flown between code lines are denoted by edges of

CFG, i.e., edges represent flow and node in CFG represents

code lines without any jumps.

CFG can be employed to find cyclomatic complexity (CC)

of program. CC computes program‟s complexity. Total

linearly independent paths in source code are detected by

CFG.

Formulas for CC:

E-V+2 where „E‟ is edges‟ count, „V‟ is vertices‟ count

Or No. of regions+1 or No. of predicates+1

The value of CC supplies upper bound for total independent

paths and, by inference, upper bound on count of test which

ought to be reckoned to assure coverage of all program

statements.

GA is used by WBT to search for precise test data which

give high coverage of SUT. Fitness function is necessary

feature of GA and is engineered on basis of SUT. Objective

function is used to construct fitness function which is

applied to sequent genetic ops. Intent of GA is to maximize

fitness function. If fitness function is modeled well,

probability of reaching higher coverage is enhanced

considerably. Based on CFG and requisite test aim, test

criteria are separated in different classes:

Node-oriented methods: It requires traversal of particular

nodes in CFG. Statement test and condition test can be

categorized in this class. Accomplishment of partial aim of

this method isn‟t reliant on path executed in CFG.

Path-oriented methods: It requires traversal of definite path

in CFG. This class comprise of every variation of path test.

Finding fitness functions for this class of test is less

sophisticated compare to node-oriented method.

Other test criteria can be node-path-oriented method and

node-node-oriented method.

Baresel et.al separates test into partial objectives and fitness

functions are defined for each partial objective, i.e., each

statement corresponds partial objective when applying

coverage criterion. Ultimate goal of fitness function can be

summarized as:

Substantially enhance chance of detecting solution and attain

improved coverage of SUT

Reduce count of iterations to achieve optimization.

Intention of Baresel et.al is to better formulation of fitness

functions, so that, evolutionary testing could be enhanced by

getting prominent coverage. It is difficult to investigate

reasons behind unsuccessfulness of optimizations because of

large search space and existence of many dimensions.

Execution of GA commence with stochastic population of

chromosomes. Fitness function assist evaluation of

population and reproductive chances is allowed to

population which symbolizes a more adept solution to

problem. Chromosomes having superior fitness value are

selected by Selection operator. Selection operator is crucial

in GA. Jadaan et.al. proposed altered Roulette Wheel

Selection(RWS) to reduce incertitude in selection process.

RWS probabilistically choose individuals based on their

fitness values (F).

\

Fittest chromosome takes largest share within roulette wheel

and chromosome with least fitness value takes smallest

share. A random number is generated in interval [0, S] where

S is ΣF, chromosome whose segment is closer to random

number is picked.

Ranked based RWS

Jadaan et. al. modified RWS where individuals are

designated fitness values equal to their rank in population;

probability of selection of highest ranked chromosome is

maximum. Probability is computed as :

P(Ranked based RWS) : 2* Rank/(N_Pop*(N_Pop+1))

RWS is easy to apply. But ranked based RWR is faster than

RWR. In RWR, fitness value overlooks other fitness values

if good result is disclosed early. This abbreviates diverseness

in mating pool and cause GAs to go to awry answers. RRWS

overpowers this difficulty and raises diverseness. GA

becomes firmer and quicker in getting optimum solutions

when RRWS is used instead of RWS.

Reproduction of chromosomes is done by mutation and

crossover operator. Travelling Salesman Problem (TSP) and

Test suite optimization; both are metaheuristic problems.

One of the first problems encountered by any natural

language processing (NLP) task is of ambiguity. The inability

to resolve the problem of lexical ambiguity is one explanation

for the poor performance of the NLP based systems like

information retrieval (IR). The disambiguation process, which

helps people identify the correct sense of a word, is not difficult

for us. We can perform it easily and accurately. However, this

disambiguation process is not so easy for computer applications.

Given a text including an ambiguous word like “crane”, without

performing some sort of disambiguation, it is impossible

for a machine to know whether we are talking about the machine

that lifts and moves heavy objects or the large long-necked

wading bird of marshes and plains in many parts of the world.

And, unfortunately, even when after Disambiguating words,

machines may not be able to resolve ambiguities. The task

of word sense disambiguation is to make machines perform as

well as people in identifying the senses of ambiguous words

in a context. The ambiguity removal is a difficult task for

the computer systems and so it‟s detection. The query is

 Sequence If While Case
Figure 5 The Structured constructs in flow graph form

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

5

ambiguous or not it actually depends upon the results that are

generated by the query.

3. OBJECTVE
Software testing is a principal technique which is employed

for bettering quality attributes of Software Under Test (SUT),

particularly reliability and correctness but is also regarded to

be tedious. This is also supposed to be intricate work.

Software testing suffers from the cognitive biasing of the

testers. Automation of testing is a proficient way which can

foreshorten time taken and cost incurred in software

development. It can also notably better the quality of

software.

Intent is to optimize TS which could give 100 % code

coverage. This optimization which is grounded on total code

coverage needs that inner composition of program is well-

known. Inner composition of program can be discovered by

Path testing in which a set of test-paths are selected in a

program. The different independent paths in the program

could be determined through CFG. An independent path is

that path in CFG that has one novel set of processing

statements or novel conditions. Test cases carrying the

information of the path covered by them are grouped together

to form initial population of chromosomes and GA is applied.

In the end, TS is obtained for each module that gives hundred

percent code coverage.

4. METHODOLOGY
This section delves into minutia of approach that is complied

to reach the motive of optimizing software testing using GA.

Generating TS that guarantees full coverage of statements in

program, is complex task. There are also odds that more than

one test case in TS are checking same path. This redundancy

is not appreciated. It is imperative to have optimized test data

sets. In this section, GA is employed for optimizing Path

testing.

Figure 6: Block diagram of methodology

Figure 6 illustrates approach applied in this work to

accomplish the objective. Program analyzer analyzes the java

program and discovers all the modules in it. CFG generator

generates the CFG for each module. CFG is used to find CC

and total independent paths. Test cases are generated and

paths followed by them are found. The data regarding test

cases and path followed are put in a file. This file is utilized

when GA is employed.

WBT is a verification technique, applied by Software

Engineers to probe if their codes work as anticipated.

Software‟s structure is tested by codes‟ execution. In WBT,

inner composition of SUT is studied.

In first step, program‟s analysis is automated by code

analyzer; program written in C++ which find all modules in

program. The code analyzer parses java programs to be tested.

Parsing of program is done to find all modules in it. It is

substantive to find all modules as CFG is generated for each

module separately. For each module, TS is generated and

optimized. Input to the code analyzer is path of a java file.

CFG is graph of program with purpose of representing control

flow of program. Directed graph is used to signify CFG.

Control flown between statements are denoted by edges of

CFG, i.e., edges represent flow and node in CFG represents

code lines without any jumps. CFG is used to find CC from

which total count of independent paths can be determined.

Count of independent paths is used to fix size of

chromosomes.

CFG of a module determines its CC. It computes program‟s

complexity. Total linearly independent paths in source code

are determined by CC.

K-Shortest Path problem is discovering set of

paths(P1,P2,P3…) between given pair of nodes. Here this

algorithm is applied to detect all independent paths between

start and end nodes. All paths are displayed along with CC.

The TS for that module should cover all independent paths.

Population of test cases is generated using operational profile.

For each test case, corresponding path in CFG is determined.

5. CONCLUSION
In this work, optimization of software testing is achieved by

employing GA and the process is automated. It will results in

formulation of test suite for a module that gives 100 % code

coverage, this is our task for next. The process of code

analysis to find all modules in a program, generation of CFG,

finding cyclomatic complexity, determination of all

independent paths and GA steps are automated. GA is

employed on a set of different software programs and

analyses are done on results obtained which decide

performance of GA.

In this future work, test cases will be created manually and

paths followed by them will be manually determined. RSW

selection operator will be employed for selecting parents and

single point crossover will be employed as crossover operator.

Also, In future, test case generation from operational profile

and path followed by them in CFG can be automated. Other

selection operators and crossover operator can be applied and

comparison can be drawn between performances of different

operators.

In this work very basic fitness function is used. In future,

fitness function can be formulated based on APCC and other

metrics.

6. REFERENCES
[1] Bayliss, D. and Taleb-Bendiab, A.: 'A global

optimisation technique for concurrent conceptual design',

Proc. Of ACEDC'94, PEDC, University of Plymouth,

UK., pp. 179-184, 1994

[2] BCS SIGIST (British Computer Society, Specialist

Interest Group in Software Testing): Glossary of terms

used in software testing, 1995

[3] DeMillo R. A. and Offutt A. J.: 'Experimental results

from an automatic test case generator', ACM

Transactions on Software Engineering and Methodology,

Vol. 2, No. 2, pp. 109-127, April 1993

[4] Feldman, M. B. and Koffman, E. B.: 'ADA, problem

solving and program design', Addison-Wesley Publishing

Company, 1993

[5] Frankl P. G. and Weiss S. N.: 'An experimental

Comparison of the effectiveness of branch testing and

Data Flow Testing', IEEE Transactions on Software

Engineering, Vol. 19, No. 8, pp. 774-787, August 1993

International Conference on Advances in Computer Application (ICACA - 2013)

Proceedings published in International Journal of Computer Applications® (IJCA) (0975 – 8887)

6

[6] Gallagher M. J. and Narasimhan V. L.: 'A software

system for the generation of test data for ADA programs',

Micro processing and Microprogramming, Vol. 38, pp.

637-644, 1993

[7] Gutjahr W.: 'Automatische Testdatengenerierung zur

Unterstuetzung des Software tests', Informatik Forschung

und Entwicklung, Vol. 8, Part 3, pp. 128-136, 1993

[8] Hills, W. and Barlow, M. I.: 'The application of

simulated annealing within a knowledge-based layout

design system', Proc. of ACEDC'94, PEDC, University

of Plymouth, UK., pp. 122-127, 1994

[9] Holmes, S. T., Jones, B. F. and Eyres, D. E: 'An

improved strategy for automatic generation of test data',

Proc. of Software Quality Management '93, pp. 565-77,

1993

[10] Jin L., Zhu H. and Hall P.: 'Testing for quality assurance

of hypertext applications', Proceedings of the third Int.

Conf. on Software Quality Management SQM 95, Vol. 2,

pp. 379-390, April 1995

[11] Korel B.: 'Dynamic method for software test data

generation', Software Testing, Verification and

Releliability, Vol. 2, pp. 203-213, 1992

[12] Lucasius C. B. and Kateman G.: 'Understanding and

using genetic algorithms; Part 1. Concepts, properties

and context', Chemometrics and Intelligent Laboratory

Systems, Vol. 19, Part 1, pp. 1-33, 1993

[13] Müllerburg, M.: 'Systematic stepwise testing: a

method for testing large complex systems',

Proceedings of the third Int. Conf. on Software Quality

Management SQM 95, Vol. 2, pp. 391-402, April 1995

[14] O'Dare, M. J. and Arslan, T.: ' Generating test patterns

for VLSI circuits using a genetic algorithm', Electronics

Letters, Vol. 30, No. 10, pp. 778-779, February 1994

[15] Parmee, I. C. and Denham, M. J.: 'The integration of

adaptive search techniques with current engineering

design practice', Proc. of ACEDC'94, PEDC, University

of Plymouth, UK., pp. 1-13, 1994

[16] Parmee I. C., Denham M. J. and Roberts A.:

'evolutionary engineering design using the Genetic

Algorithm', International Conference on Design ICED'93

The Hague 17-19, August 1993

[17] Rayward-Smith, V. J. and Debuse, J. C. W.: 'Generalized

adaptive search techniques', Proc. of ACEDC'94, PEDC,

University of Plymouth, UK., pp. 141-145, 1994

[18] Reeves, C., Steele, N. and Liu, J.: 'Tabu search and

genetic algorithms for filter design', Proc. of ACEDC'94,

PEDC, University of Plymouth, UK., pp. 117-120, 1994

[19] Roberts, A. and Wade, G.: 'Optimization of finite

wordlength Filters using a genetic algorithm', Proc. of

ACEDC'94, PEDC, University of Plymouth, UK., pp.

37-43, 1994

[20] Roper, M.: 'Software testing', International software

quality assurance Series, 1994

[21] Schultz A. C., Grefenstette J. J. and DeJong K. A.: 'Test

and evaluation by Genetic Algorithms', U.S. Naval Res.

Lab. Washington D.C. USA, IEEE Expert, Vol. 8, Part 5,

pp. 9-14, 1993

[22] Sthamer, H.-H., Jones, B. F. and Eryes, D. E.:

'Generating test data for ADA generic Procedures using

Genetic Algorithms', Proc. of ACEDC'94, PEDC,

University of Plymouth, UK., pp. 134-140, 1994

[23] Tennant A. and Chambers, B.: 'Adaptive optimization

techniques for the design of microwave absorbers', Proc.

of ACEDC'94, PEDC, University of Plymouth, UK., pp.

44-49, 1994

[24] Watkins, A. L.: 'The automatic Generation of Test Data

using Genetic Algorithms', Conference proceedings

Dundee, 1995

[25] Yang, X., Jones, B. F. and Eyres, D.: 'The automatic

generation of software test data from Z specifications',

Research Project Report III, CS-95-2, February 1995

