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ABSTRACT 

The only objective of programming is not to determine the 

algorithm to accomplish a result, but relevance and 

correctness of the result also need to be ascertained. 

Correctness can be insured by applying testing to the result. 

Testing is most critical practice which is performed for 

supporting quality assurance. It is substantial but also arduous 

to warrant the quality of software; half of the cost is 

consecrated to testing when we converse about software 

development. Efficient ways can reduce percentage of cost 

and time incurred in testing. In spite of scads of theoretical 

work in field of Software Testing, its advancement is slow 

towards automation. In this approach, Genetic Algorithm 

(GA), which is a meta-heuristic algorithm, is employed for 

optimizing path testing to achieve total code coverage. 

General Terms 

Genetic Algorithm, Software Under Test, Test Suits 

Keywords 

Software Testing, SUT, Code Coverage. 

1. INTRODUCTION 
Software testing is important but it possesses some 

fundamental challenges. It poses two essentially arduous jobs; 

selecting tests and assessing test results. Selecting test cases 

are hard as there is enormous number of potential test inputs 

in varied sequences but only some of them unwrap failures. In 

Evaluation/assessment, the real output of test run is compared 

with expected result. This evaluation is done in opaque-

testing. Test Suite(TS) generation from operational profile can 

be automated but it poses substantial hardheaded problems. 

Time plays a foremost constraint in case of testing. Another 

vital component is cost. Due to these two constraints, it is 

intricate task to execute all test cases. When coverage is taken 

as optimization parameter then target is formulation of TS that 

could give 100 % code coverage. Optimization problems can 

be unriddled by GA which can be regarded as computer 

model of biological evolution. It works on principle of 

evolution, where superior chromosomes (having greater 

fitness value) are chosen for mutation and crossover 

operations. Evolution continues until the optimized solution is 

achieved. Good results are found astoundingly speedily when 

GA is implemented. Generating optimized TS is meta-

heuristic problem which can be resolved by GA.  

2. LITERATURE SURVEY 
Testing can be; Opaque box and glass box. Program is viewed as 

“black box” in opaque box testing approach. Test cases are 

grounded on system specifications. Glass box study internal 

structure of program, i.e., it utilizes control structure of the 

procedural design to obtain test cases. Opaque box and glass box 

are two broad categories of testing. In opaque box, code 

structure is not analyzed. Aim of opaque box testing is checking 

the functionalities of Software Under Test (SUT) only. Glass 

box testing complement opaque box testing and it is employed 

for examining codes‟ structure. Path, statement and branch 

testing are measures of glass box testing. 

In nearly every field, optimization problems rise up and 

engineering domain is not an elision. As consequence, different 

types of optimization techniques have been formulated. Yet, 

these techniques quite frequently have troubles with functions 

which aren‟t continuous (differentiable) all over, multi-modal 

(multiple peaks) & noisy. Hence, robust optimization techniques 

are required which may be adequate to handle these troubles. 

John H. Holland coined one of such optimization techniques 

known as GA which is grounded on biological evolution. GA 

constitutes a class of adaptive search techniques & routines 

founded on Darwin's principal which says that weak perish 

while fitter lingers, famously quoted as “survival of fittest”. 

Artificial chromosomes exchange morphological data among 

themselves. GAs can be seen as computer model of biological 

evolution. Good results are found astoundingly speedily when 

GA is implemented. In software testing, the canonical idea is to 

seek domain for input variables which meet testing‟s goal. 
Creatures are ideal trouble solver. They have to handle diverse 

tasks such as adaptation, changing environment. To the 

frustration of software developers, they do better than the finest 

computer programs because they develop their capability by the 

evidently directionless evolution mechanism. The elementary 

idea of GAs is evolution of succeeding generations of 

progressively superior combinations of chromosomes. The 

progression is grounded on parameters which notably regulate 

the performances of a design. The evolution stratagem is the 

foundation of GA. The software designer has to face a hitch; it is 

indispensable to be acquainted with “what to do”, beforehand, 

for each circumstance which may confront a program but to the 

advantage of evolution; this hindrance isn‟t faced by it. 

Evolution is governed by two elementary actions; natural 

selection and recombination/combining. The natural selection 

influences which member of population is chosen, lasts & 

reproduces while recombination ascertains that the genes(or 

entire chromosome) will amalgamate to form new ones. 
A strong non-linear exploration technique is proposed by GA. 

The GA accomplishes the optimal answer by the stochastic 

exchange of data between progressively fit samples. It is 

modeled on natural selection whose incentive is to design and 

implement stout adaptive system. GA is being used to 

unbridle array of problems and have emerged as crucial tool 

in function optimization & machine learning. Natural 

selection is used to produce adaptation.  

The evaluation phase embarks on with configuration of first 

populace of chromosomes. Chromosomes are differentiated 

according to their fitness. Fitness in GA is determined through 
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a non-negative function and maximizing fitness is major 

target. The intent is the upgrading of the average fitness of 

population. Healthier chromosomes are given more 

probability of engagement during selection and reproduction 

phases & weaker are tossed out. The adequate discriminatory 

distinction between chromosomes can be made out by only 

fitness. The GAs is blind, so, does not know anything of the 

problem except the fitness information. 

In the selection stage, chromosomes can be picked for the 

reproduction in many ways; they may be picked arbitrarily, or 

inclination may be towards the fitter members.  

In the reproduction phase, two chromosomes are chosen from 

populace. Mutation and Crossover are carried out to fabricate 

two offspring for following generation.  

Crossover operator is practiced on two parents 

(chromosomes) which are picked by selection operator & 

swap subsequent substrings of the parents to yield two 

offspring. The plan is to construct superior chromosomes by 

fusing genetic material (genes) of fitter parents.  

The mutation operator interpolates one or more genes of 

chosen structure with a low probability. This secures certain 

diverseness in the chromosomes and precludes doldrums near 

a local optimum.  

Entire procedure is repeated over generation by generation 

until a global optimum is discovered or some stopping 

condition is accomplished. One of the minuses can be the 

overweening iteration numbers and therefore time taken for 

computation can be high. GA is a robust optimization 

technique which constitutes a class of adaptive search 

routines. Working of GA has been explicated through flow 

diagram in this chapter as well algorithm is also discussed. 

GA has found application in various problems like game 

theory, scheduling and state assignment problem. 

Now talks about the particulars of all literature reviews 

accomplished in this paper for resolving problem statement. 

Now discuss on an imminent analysis of software testing, 

problems confronted by software testers, different methods 

used for Test Suits (TS) optimization, importance of GA in 

software testing, comparison of GA with other alternatives. 

Problems linked to search and optimization can be figured 

out by GA. It has been enforced to both Black Box Testing 

(BBT) and White Box Testing (WBT). Testing tools can be 

put in two class; dynamic & static. 

Static analyzers: It probes programs thoroughly and 

automatically. It is employed on particular language, i.e., it 

is language dependent. 

Code inspectors: It scrutinizes program to vouch that it hold 

on minimum quality criteria. Some COBOL tools abide it, 

for e.g., AORIS librarian system.  

Output comparators: It checks weather anticipated and 

obtained outputs are same or not. For e.g. JUnit is such a 

tool. 

Coverage analyzers: It finds degree of coverage. One of its 

e.g. CodeCover tool. 

Coverage analyzers and output comparators are dynamic 

testing tools while static analyzers and code inspectors are 

static testing tools. JUnit and CodeCover are extremely 

noted testing tools. 

JUnit: It is UT framework for Java. It is applied for testing 

of single component, IT and system testing.  

CodeCover tool: It is a well-known Eclipse plug-in, 

employed as white box coverage tool. This tool is very 

apposite to assure weather TS is giving full code coverage or 

not. 

It‟s important to have adequate test cases for 

accomplishment of testing and making software more 

dependable. Making system reliable is vital as flunking it 

could sustain massive losses. BBT is optimized by applying 

GA. It‟s implemented in Matlab. Test cases of SUT are 

heavily influenced by GA. GA depends on various 

parameters. Population size is vital parameter. Bigger 

population size brings variation in initial populace at cost of 

more function evaluations and longer completing times. 

 
Figure 1: Proposed solution 

 

Figure 1 shows that fitness function is defined, threshold 

fitness is set, population size is set, crossover rate taken 0.6, 

mutation rate taken .001.While halt condition is not met, 

reproduce by crossover and mutation 

Testing job is reckoned to be optimization problem whose 

intent is maximization of noticing errors with minimization 

of effort. GAs with specification can obtain results with 

superior quality in lesser time.  

 
Figure 2: GA implemented on matlab 

 

Figure 2 shows the implementation of GA on test cases of a 

program. Implementation is done on matlab. Value which 

differs from specification (expected value) of the software is 

depicted as error. 

Two central issues in process of evolution of genetic search 

are population diversity and selective pressure. There may 

be chances of converging early to local optimum solutions if 

strong pressure is given on selection. On other hand, weaker 

selection pressure may leads to unproductive search and 

optimization. Fitness is the key for selection of parents. 

Fitter chromosomes have more likelihood to get selected. 

Crossover works on two chromosomes which are chosen as 

parents to construct two children. In this research work, 

point crossover is employed; two parents are divided partly, 

with both children getting half of each of parents. Mutation 

is applied to amend genes in chromosome. For example, let a 
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chromosome be: „abdfag‟, Mutation may pick gene at 

position 2 and transform it to a „z‟, thus, ensuing a new 

chromosome: „azdfag‟. 

In the work done by Dhawan et.al. test data for input set is 

delimitated in terms of stipulations which illustrate valid and 

invalid data values. Stipulations are determined from 

program‟s specification. Figure 8 shows fitness values for 

different input variables. 

 
Figure 3 Graph between fitness initial population and input 

 

Figure 3: shows 3-D graph between three variables. X-axis 

represents “number of variables”, y-axis represents “initial 

population”, z-axis represents “fitness function”. The graph 

is depicting that as values of number of variables and initial 

population are increased, fitness function also increases. 

Prerequisite for WBT is availability of source code of SUT. 

Software testing can be optimized   by discovering most 

critical paths in modules of SUT. Comprehensive testing is 

very convoluted task. There can be case that part of program 

which is checked is not error prone also error prone part may 

be left untested. Also more priority is given to parts of 

programs which are most critical and they are tested first.  

Most critical parts of program are branches, loops and 

predicate nodes. This increases testing efficiency. Srivastava 

et.al. proposed to take weighted CFG.  

 

 
               Figure 4: Control Flow Graph with weighted edges  

 

Figure 4 displays weighted CFG. Weighted CFG is CFG 

whose edges are allotted weight. 80-20 rule is followed to 

give weights, i.e., 80% of the weight coming from input 

edge is allotted to loops or branches and 20% is allotted to 

the sequential statements. 

GA is employed to find test data that covers most critical 

paths in program. Fitness function used is:    F = Σ wi where 

wi is edge “i‟s” weight which is part of path. 

Probability of selection of path „i‟ is calculated as:  pi=Fi/ 

ΣFi 

Then cumulative probability cj for each path „j‟ is calculated 

by: cj=Σpi. 

A single point crossover is used. A genetic search technique 

for random generation of test data has been proposed. GA 

can be employed to discover most critical paths which can 

improve testing efficiency. According to Srivastava et.al, 

GA works better than exhaustive search and local search 

technique as GA tends to find global optimum solution. 

RT is used to validate altered program but it‟s considered as 

very costly activity. This lays the significance of TS 

optimization to have prioritized test cases. Askarunisa et. al. 

discussed about APFDc which is influenced by APFD for 

valuating rate of fault detection of optimized TS. Other 

metrics discussed are APBC, APSC, APCC and APLC. 

Coverage and cost are driving forces which influence 

prioritization of test case. 

 

Extent of coverage can be evaluated by metrics APSC, 

APLC, APBC and APCC. 

APSC assesses rate at which prioritized TS covers statement. 

APBC assesses rate at which prioritized TS covers branch 

APLC assesses rate at which prioritized TS covers loop 

APCC assesses rate at which prioritized TS covers condition 

 

According to previous research, for prioritizing test cases, 

GA is employed and total code coverage is prioritization 

criteria. It has used APCC metric to show success of GA in 

optimizing the TS. It has applied GA on path testing to 

achieve full code coverage. In first step, CFG of module is 

drawn. Then, different paths in the CFG have been 

discovered. Test cases are acquainted with paths they cover.  

Test cases are grouped together to form initial population of 

chromosomes. So, TS are the chromosomes and test case is a 

gene and TS needs to be optimized. Fitness function is 

picking out least count of test cases to address all 

independents paths. Crossover applied is explained through 

the figure. 

  
Takagi et. al. discussed about generation of TS from 

operational profile and optimizing by using GA. Operational 

profile contain set of all operations that are carried out by 

SUT and their probability of occurrence. Large amount of 

test data can be framed using operational profile in order to 

ascertain consistency of SUT. But because constraints (time 

& cost), all test cases can‟t be executed. Usage Distribution 

Coverage (UDC) has been taken as the criteria to optimize 

the test suite. UDC shows percentage of software operation 

executed by TS. Chromosomes are TS and test case 

represents gene. 

 

T1 T2 T3 T4 T5 T6 T7 

     Chromosome 

 

Takagi et.al has employed two point crossover. Two TS are 
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selected randomly and two cut positions are arbitrarily 

selected on each TS and test cases between cut positions are 

swapped. 

 

CFG is data structure; graph of program with purpose of 

representing control flow of program and widely used in 

software analysis. Directed graph is used to signify CFG. 

Control flown between code lines are denoted by edges of 

CFG, i.e., edges represent flow and node in CFG represents 

code lines without any jumps. 

 

 
 

CFG can be employed to find cyclomatic complexity (CC) 

of program. CC computes program‟s complexity. Total 

linearly independent paths in source code are detected by 

CFG.  

Formulas for CC:  

E-V+2  where „E‟ is edges‟ count, „V‟ is vertices‟ count 

Or No. of regions+1 or     No. of predicates+1 

The value of CC supplies upper bound for total independent 

paths and, by inference, upper bound on count of test which 

ought to be reckoned to assure coverage of all program 

statements. 

GA is used by WBT to search for precise test data which 

give high coverage of SUT. Fitness function is necessary 

feature of GA and is engineered on basis of SUT. Objective 

function is used to construct fitness function which is 

applied to sequent genetic ops. Intent of GA is to maximize 

fitness function. If fitness function is modeled well, 

probability of reaching higher coverage is enhanced 

considerably. Based on CFG and requisite test aim, test 

criteria are separated in different classes: 

Node-oriented methods: It requires traversal of particular 

nodes in CFG.  Statement test and condition test can be 

categorized in this class. Accomplishment of partial aim of 

this method isn‟t reliant on path executed in CFG. 

Path-oriented methods: It requires traversal of definite path 

in CFG. This class comprise of every variation of path test. 

Finding fitness functions for this class of test is less 

sophisticated compare to node-oriented method. 

Other test criteria can be node-path-oriented method and 

node-node-oriented method. 

Baresel et.al separates test into partial objectives and fitness 

functions are defined for each partial objective, i.e., each 

statement corresponds partial objective when applying 

coverage criterion. Ultimate goal of fitness function can be 

summarized as: 

Substantially enhance chance of detecting solution and attain 

improved coverage of SUT 

Reduce count of iterations to achieve optimization. 

Intention of Baresel et.al is to better formulation of fitness 

functions, so that, evolutionary testing could be enhanced by 

getting prominent coverage. It is difficult to investigate 

reasons behind unsuccessfulness of optimizations because of 

large search space and existence of many dimensions.  

Execution of GA commence with stochastic population of 

chromosomes. Fitness function assist evaluation of 

population and reproductive chances is allowed to 

population which symbolizes a more adept solution to 

problem. Chromosomes having superior fitness value are 

selected by Selection operator. Selection operator is crucial 

in GA. Jadaan et.al. proposed altered Roulette Wheel 

Selection(RWS) to reduce incertitude in selection process. 

RWS probabilistically choose individuals based on their 

fitness values (F). 

 

 

 

 

 

 

 

\ 

 

 

 

 

 

 

Fittest chromosome takes largest share within roulette wheel 

and chromosome with least fitness value takes smallest 

share. A random number is generated in interval [0, S] where 

S is ΣF, chromosome whose segment is closer to random 

number is picked.  

Ranked based RWS 

Jadaan et. al. modified RWS where individuals are 

designated fitness values equal to their rank in  population; 

probability of selection of highest ranked chromosome is 

maximum. Probability is computed as : 

 

P(Ranked based RWS) : 2* Rank/(N_Pop*(N_Pop+1)) 

 

RWS is easy to apply. But ranked based RWR is faster than 

RWR. In RWR, fitness value overlooks other fitness values 

if good result is disclosed early. This abbreviates diverseness 

in mating pool and cause GAs to go to awry answers. RRWS 

overpowers this difficulty and raises diverseness. GA 

becomes firmer and quicker in getting optimum solutions 

when RRWS is used instead of RWS.  

Reproduction of chromosomes is done by mutation and 

crossover operator. Travelling Salesman Problem (TSP) and 

Test suite optimization; both are metaheuristic problems.  

One of the first problems encountered by any natural 

language processing (NLP) task is of ambiguity. The inability 

to resolve the problem of lexical ambiguity is one explanation  

for the poor performance of the NLP based systems like 

information retrieval (IR). The disambiguation process, which 

helps people identify the correct sense of a word, is not difficult    

for us. We can perform it easily and accurately. However, this 

disambiguation process is not so easy for computer applications.   

Given a text including an ambiguous word like “crane”, without 

performing   some   sort   of   disambiguation,   it is   impossible 

for a machine to know whether we are talking about the machine 

that lifts and moves heavy objects or the large long-necked   

wading bird of marshes and plains in many parts of the world. 

And, unfortunately, even when after Disambiguating words, 

machines may not be able to resolve ambiguities. The task 

of word sense disambiguation is to make machines perform as 

well as people in identifying the senses of ambiguous words 

in a context. The ambiguity removal is a difficult task for 

the computer systems and so it‟s detection. The query is 

 Sequence                                       If                                    While                                 Case 
Figure 5 The Structured constructs in flow graph form 
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ambiguous or not it actually depends upon the results that are 

generated by the query.  

3. OBJECTVE 
Software testing is a principal technique which is employed 

for bettering quality attributes of Software Under Test (SUT), 

particularly reliability and correctness but is also regarded to 

be tedious. This is also supposed to be intricate work. 

Software testing suffers from the cognitive biasing of the 

testers. Automation of testing is a proficient way which can 

foreshorten time taken and cost incurred in software 

development. It can also notably better the quality of 

software. 

Intent is to optimize TS which could give 100 % code 

coverage. This optimization which is grounded on total code 

coverage needs that inner composition of program is well-

known. Inner composition of program can be discovered by 

Path testing in which a set of test-paths are selected in a 

program. The different independent paths in the program 

could be determined through CFG. An independent path is 

that path in CFG that has one novel set of processing 

statements or novel conditions. Test cases carrying the 

information of the path covered by them are grouped together 

to form initial population of chromosomes and GA is applied. 

In the end, TS is obtained for each module that gives hundred 

percent code coverage.  

4. METHODOLOGY 
This section delves into minutia of approach that is complied 

to reach the motive of optimizing software testing using GA. 

Generating TS that guarantees full coverage of statements in 

program, is complex task. There are also odds that more than 

one test case in TS are checking same path. This redundancy 

is not appreciated. It is imperative to have optimized test data 

sets. In this section, GA is employed for optimizing Path 

testing. 

 

 

 

Figure 6: Block diagram of methodology 

Figure 6 illustrates approach applied in this work to 

accomplish the objective. Program analyzer analyzes the java 

program and discovers all the modules in it. CFG generator 

generates the CFG for each module. CFG is used to find CC 

and total independent paths. Test cases are generated and 

paths followed by them are found. The data regarding test 

cases and path followed are put in a file. This file is utilized 

when GA is employed. 

WBT is a verification technique, applied by Software 

Engineers to probe if their codes work as anticipated. 

Software‟s structure is tested by codes‟ execution. In WBT, 

inner composition of SUT is studied. 

In first step, program‟s analysis is automated by code 

analyzer; program written in C++ which find all modules in 

program. The code analyzer parses java programs to be tested. 

Parsing of program is done to find all modules in it. It is 

substantive to find all modules as CFG is generated for each 

module separately. For each module, TS is generated and 

optimized. Input to the code analyzer is path of a java file. 

CFG is graph of program with purpose of representing control 

flow of program. Directed graph is used to signify CFG. 

Control flown between statements are denoted by edges of 

CFG, i.e., edges represent flow and node in CFG represents 

code lines without any jumps. CFG is used to find CC from 

which total count of independent paths can be determined. 

Count of independent paths is used to fix size of 

chromosomes.   

CFG of a module determines its CC. It computes program‟s 

complexity. Total linearly independent paths in source code 

are determined by CC. 

K-Shortest Path problem is discovering set of 

paths(P1,P2,P3…) between given pair of nodes. Here this 

algorithm is applied to detect all independent paths between 

start and end nodes. All paths are displayed along with CC. 

The TS for that module should cover all independent paths. 

Population of test cases is generated using operational profile. 

For each test case, corresponding path in CFG is determined. 

5. CONCLUSION 
In this work, optimization of software testing is achieved by 

employing GA and the process is automated. It will results in 

formulation of test suite for a module that gives 100 % code 

coverage, this is our task for next. The process of code 

analysis to find all modules in a program, generation of CFG, 

finding cyclomatic complexity, determination of all 

independent paths and GA steps are automated.  GA is 

employed on a set of different software programs and 

analyses are done on results obtained which decide 

performance of GA.  

In this future work, test cases will be created manually and 

paths followed by them will be manually determined. RSW 

selection operator will be employed for selecting parents and 

single point crossover will be employed as crossover operator. 

Also, In future, test case generation from operational profile 

and path followed by them in CFG can be automated. Other 

selection operators and crossover operator can be applied and 

comparison can be drawn between performances of different 

operators. 

In this work very basic fitness function is used. In future, 

fitness function can be formulated based on APCC and other 

metrics. 
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