
International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

8

Power Aware Testing by Proper Don’t Care Filling of
Test Patterns

Oindrila Chakraborty, Parna Chakraborty, Priyanka Choudhury and Sambhu Nath Pradhan

Department of ECE, NIT Agartala
Jirania,Agartala

Pin-799055, Tripura, India.

ABSTRACT

With the advancement in automation, the importance of

periodic testing of electronic circuits during their lifetime is

increasing day by day. Generally, a circuit or system

consumes more power in test mode than in normal mode. This

extra power consumption can give rise to severe hazards in

circuit reliability or, in some cases, can provoke instant circuit

damage. Thus it is necessary to reduce the power consumption

during test mode. This power is proportional to the number of

node switching due to the feeding of successive test patterns.

Test patterns generated by ATALANTA with –D option,

contains don‟t cares. Efficient filling of don‟t cares in the

patterns may reduce the number of switching when they are

applied in succession. In this paper we have presented an

approach based on Genetic Algorithm (GA) for don‟t care

filling of the test patterns generated by Atalanta to reduce

switching during circuit testing without compromising fault

coverage. The proposed GA based formulation can save upto

58% power compared to existing approach. A trade-off

between fault coverage and transitions also has been presented

in this paper.

General Terms

Low Power VLSI Testing.

Keywords

Testing, Low Power, Genetic Algorithm, Don‟t care, Fault

coverage, Switching.

1. INTRODUCTION
Modern VLSI devices such as computers and electronics

devices has become complex because of the decreased

dimensions, referred to as feature size of transistors and

interconnecting wires from tens of microns to tens of

nanometers. The reduction in feature size has increase the

implementation of millions of transistors and also resulted in

increased operating frequencies and clock speeds. However

the reduction in feature size increases the probability that a

manufacturing defect in the IC will result in a faulty chip. A

very small defect can easily result in a faulty transistor or

interconnecting wire when the feature size is less than 100

nm. Furthermore, one faulty transistor or a single wire can

make the entire chip fail to function properly or at the

required operating frequency. Yet, defects generated during

the manufacturing process are unavoidable, and, thus, some

number of ICs is expected to be faulty. Therefore, testing is

required to guarantee fault free products, regardless of

whether the product is a VLSI device or an electronic system

composed of many VLSI devices.

In this work we have targeted single stack-at faults of the

device. A stuck-at fault transforms the correct value on the

faulty signal line to appear to be stuck at a constant logic

value, either logic 0 or logic 1, referred to as stuck-at-0 or

stuck-at-1 respectively.

Test currently ranks among the most expensive and

problematic aspects in a circuit design cycle, revealing the

ceaseless need for test-related innovative solutions. As a

result, several techniques have been developed [1], both for

enhancing the testability of a design through Design-for-

Testability (DFT) modifications and for improving the test

generation and application process. Traditionally, these

techniques are evaluated according to a number of parameters:

the area overhead, the fault coverage achieved, the test

application time, the test development effort, etc. The recent

development of complex, high-performance, low-power

devices implemented in deep submicron technologies creates

a new class of more sophisticated electronic products, such as

laptop computers, cellular telephones, audio and video-based

multimedia products, energy efficient desktop computers.

This new class of systems makes power management a critical

parameter that cannot be ignored during test development as

the power and energy of a digital system are considerably

higher in test mode than in system mode [2-4]. The reason is

that test patterns cause as many nodes switching as possible

while a power saving system mode only activates a few

modules at the same time. Another reason is that successive

functional input vectors applied to a given circuit during

system mode have a significant correlation, while the

correlation between consecutive test patterns can be very low

[5]. To meet specified power limits during test and avoid

system destruction, it is really important to reduce power

dissipation during testing.

Some approaches have been reported in the literature [5-6]

with the intent of generating a test pattern set which is able to

minimize power dissipation during the test application in

addition to the classical ATPG parameters. The initial set of

patterns is generated by ATPGs like ATALANTA [7] etc.

In [8], the authors proposed a strategy to generate a set of test

patterns that minimizes power dissipation during testing.

Apart from judiciously selecting test patterns from a large set

generated by ATALANTA, it also optimizes the order in

which the selected patterns are to be applied to minimize

switching of individual circuit gates under a zero gate delay

model.

Example 1: All the test patterns generated by ATALANTA

are not required for examining the fault coverage of a circuit.

The power dissipation during testing [10] is minimized by

reducing the number of transition in the circuit. Usually test

vectors are in random and hence it is necessary to efficiently

fill don‟t cares and rearrange the order of occurrence of test

vectors so that the switching activity between successive test

vectors is minimum. This can be explained with an example.

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

9

Fig 1: An example circuit

Suppose the test pattern generated for the above circuit are

„x1‟ and „1x‟, where „x‟ denotes don‟t care. Since there is

only one x in each patterns therefore the don‟t cares can be

filled in two ways. Let, after filling don‟t cares the test

patterns are „01‟and „11‟. If the sequence of test application is

„1x‟ and then „x1‟, the number of transitions is 4 but the

number of transitions would be 5 for the filling of don‟t cares

such that the patterns are „11‟ and „10‟. By this example it is

evident that the number of transitions depends on the way of

filling don‟t cares. For filling two don‟t cares in two patters

there are four choices. So, for a big circuit having large inputs,

number of test patterns and don‟t cares are very high. All

possible filling and finding the best patterns giving lowest

transitions is hard problem. To solve this problem we have

formulated a Genetic Algorithm (GA) based heuristic which

gives the proper way of filling don‟t cares such that dynamic

power dissipation during testing is reduced by minimizing the

node transitions without compromising the fault coverage.

The rest of the paper is organized as follows. Proposed GA-

based technique for don‟t care filling is presented in Section

2. Section 3 depicts the experimental results and conclusion is

given in Section 4.

2. PROPOSED GA-BASED TECHNIQUE

FOR DON’T CARE FILLING
Don‟t cares, present in the test patterns are filled using

Genetic Algorithm (GA). GA is search algorithm based on the

mechanics of the natural selection process (biological

evolution). The most basic concept of GA is that the strong

tend to adapt and survive while the weak tend to die out. GA‟s

have the ability to create an initial population of feasible

solutions, and then recombine them in a way to guide their

search to only the most promising areas of the solution space.

Each feasible solution is encoded as a chromosome and each

chromosome is given a measure of fitness via a fitness

(evaluation or objective) function. The fitness of a

chromosome determines its ability to survive and produce

offspring. A finite number of chromosomes, having different

fitness values are called population. This size of the

population is maintained throughout all the generations.

Chromosome structure-The chromosome is a string of „0‟

and „1‟ which corresponds to don‟t care bit present in the

pattern.

Generation of initial population-with an example let us

illustrate how initial populations are created.

Example 2: The test patterns obtained after running

ATALANTA with –D 1 option for c17.bench circuit are

„100xx11‟, „00xxx1x‟, „xx101xx‟, „0 x1xx11‟, „1xx10111‟,

„00x1x10‟ and „001xx01‟. Here, „x‟ represents don‟t care. As

the number of don‟t cares present in the set of test pattern is

19, the size of the chromosome is 19. Then, each bit of the

chromosome is filled by „1‟ or „0‟ which are generated

randomly. Let the chromosome be “010100011101000000”.

The first bit i.e. „0‟ replaces the first don‟t care of the first test

pattern. Similarly the next bit of the chromosome replaces the

next don‟t care bit of the test pattern and this goes on until it

reaches the last bit of chromosomes. So, the test patterns

generated are 1000111, 0001010 etc.

2.1 Operators of GA
Operators are used to generate the populations for the next

generation. The operators in GA are selection, crossover and

mutation.

Selection - selection is usually the first operator applied on

population. From the population, the chromosomes are

selected based on fitness value for to crossover, mutation and

to produce offspring.

Crossover - Crossover is a genetic operator that combines

(mates) two chromosomes (parents) to produce a new

chromosome (offspring). The idea behind crossover is that the

new chromosome may be better than both of the parents if it

takes the best characteristics from each of the parents.

Crossover occurs during evolution according to the user

definable crossover probability. In this work we have used

two point crossovers [5].

Two point crossover operators randomly select two crossover

points within chromosomes. Between these two points part of

chromosome is exchanged to produce two new offspring.

Consider the following crossover operation as below.

Parent 1: „11011|0010011|0110‟ and Parent 2:

„11011|1100001|1110‟. Interchanging the parent

chromosomes across the crossover points-The offspring

produced are: Offspring 1: „11011|1100001|0110‟ and

Offspring 2: „11011|0010011|1110‟.

Mutation- Mutation is a genetic operator used to maintain

genetic diversity from one generation of a population of

chromosomes to the next. Mutation alters one or more gene

values in a chromosome from its initial state. This can result

in entire new gene values being added to the gene pool. With

the new gene, the genetic algorithm may be able to arrive at

better solution than was previously possible. Mutation is

intended to prevent the search falling into the local optimum

of the state space. For mutation to occurs we have randomly

generated two numbers between 1 and N (N is the size of the

chromosome). All the digits within these two numbers are

flipped.

2.2 Cost Function
In this section we formulate the cost function used to measure

the fitness of chromosomes in a population. Fitness function

quantifies the optimality of the solution (chromosomes) so

that particular chromosomes may be ranked against all the

other solutions. The function depicts the closeness of a given

„solution‟ to the desired result. As, we are targeting to

maximize fault coverage and minimize transition, the cost

function contains weighted sum of both the parameters. Let,

max_fault and max_tran are the maximum fault coverage and

maximum transitions among all the chromosomes in the initial

population respectively. For i-th chromosome, let FCi be the

fault coverage and TRi be the total number of transitions. Cost

of the i-th chromosome is then formulated as,

Cost = w1 × (FCi /max_fault) + w2 × (1 − (TRi/max_tran))

Where, w1 and w2 are two empirically determined constants

such that w1 + w2 = 1.

Complete flow of the proposed technique is depicted in Fig. 2.

After filling the bit values of chromosome of example 2 in the

test patterns, patterns no. 2, 3 and 4, 6 are same. These

repeated test patterns are removed and fault coverage and

transitions are calculated. The steps that are followed in this

method are as follows.

Step1: Input: test patterns, weight (w1, w2).

Step2: Output: fault coverage and transition count.

a

b

d c

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

10

Step3: Create chromosomes whose size equal to number of

don‟t care in the set of test vectors.

Step4: Random function generates number (1 & 0) for

chromosomes generated in step 3.

Step5: Replace the don‟t cares of test patterns and filter the

repetition.

Step6: Calculate fault coverage and transition for the filtered

test vectors.

Step7: Calculate the cost function (Cost = w1 × (FCi

/max_fault) + w2 × (1 − (TRi/max_tran))).

Step8: Sort the cost and the chromosome of don‟t care in

ascending order.

Step9: Undergo direct copy, selection, mutation on all the

chromosomes.

 Step10: repeat from step5 to step9 on new generated

chromosomes until the cost function doesn‟t change anymore.

Step11: when cost function doesn‟t change for 20 consecutive

generations, terminate the generation.

Fig 2: Flow chart of the proposed GA-based don’t care filling

Table 1: Fault coverage and transition for different weights

Weight w1=0,w2=1 w1=0.25,w2=0.75 w1=0.5,w2=0.5 w1=0.75,w2=0.25 w1=1,w2=0 Max

Gen

 H4 [9]

Circuit FC Trans FC Trans FC Trans FC Trans FC Trans FC Trans

C17 100 8 100 10 100 16 100 20 100 64 58 100 44

C432 92.9 8427 98.2 8601 99.7 8887 99.8 8765 99.7 23070 299 93.89 22215

C499 98.9 10392 98.9 11034 98.9 10766 98.9 10744 98.9 19777 361 97.83 6756

C880 98.3 9936 99.8 9845 99.3 9919 99.9 10184 99.8 19737 300 63.96 7451

C1355 98.7 10379 98.8 12527 99.3 11025 99.7 11947 99.7 11834 498 61.28 10789

C1908 98.9 28709 99.9 29123 98.9 30714 99.9 30836 99.4 20920 595 83.97 16963

C6288 97.9 626947 98.9 692544 98.8 647547 98.9 632588 97.9 903063 680 97.97 2555792

Avg

FC/trans

 wrt only w1=1,w2=1

0.986

1.000 0.998 1.093 0.999 1.179 1.0023 1.262 1.000 2.562 0.862 2.177

Start

Whole set/selected of test patterns

Size of chromosomes equal to the

no. of don’t cares

odchromosomes equal to

the no. of don’t cares
Filter the test patterns after

filling them

Calculate the cost
Sort according to the requirement

GA

Stop

If cost does not

change for 10

iteration

 YES

 NO

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

11

3. RESULTS
 In a circuit dynamic power consumption will be there if there

is node switching for a particular technology. So, in our

experiments we have considered dynamic power as the

number of transition (0 to 1& from 1 to 0). We have

performed experiments on iscas85 benchmark circuits. In the

experiment, the whole redundant set of test patterns

(generated using “– D 1” option of ATALANTA) is taken.

For different values of w1 and w2, FC and transitions after

running our GA-based algorithm are tabulated in table 1.

Table 1 shows fault coverage and transition count at different

values of w1 and w2. Column, „FC‟ and „Trans‟ are the fault

coverage and number of transitions before termination

respectively for different values of weights. Column „Max

Gen‟ is the maximum number of generation among all the

weighted solutions. From table 1 it can be observed that fault

coverage obtained for different circuits are approximately

high and same. It can be observed also that when w1=1 and

w2=0, the cost function depends only on fault coverage, not on

transition count. If the values of the fault coverage at (w1=1,

w2=0) is taken as unity then the faults coverage at different

values of w1 and w2 with respect to this is shown in the last

row of the above table 1. Similarly cost function is dependent

on transition count only when w1=0 and w2=1. If the values of

the transition is at w1=0, w2=1 is taken as unity then the

transition count at different values of w1and w2 with respect to

the transition at w1=0 and w2=1 is shown in the above table. It

can be observed that optimized fault coverage and transition

count obtained at w1=w2=0.5. The last row of table 1 shows

the average of fault coverage and transition for different

values of weight with respect to fault coverage (at w1=1,

w2=0) and transition (w1=0, w2=1) respectively. For different

weighted combinations fault coverage almost remain same but

the number of transitions reduces as the weight associated

with transition increases. Last two columns are the fault

coverage and transition count after filling don‟t care with H4

heuristic [9]. This fault coverage is 14% lower and transition

is 117% higher. This shows the effectiveness of our approach

in terms of high fault coverage and reduced power

(transition).

4. CONCLUSION
 In this paper we have presented a GA based approach to fill

don‟t cares present in test patterns such that test power is

reduced by reducing transition without compromising fault

coverage. Fault coverage is more than 99% and reduction in

test power is more than 58% compared to previous work H4

[9].

5. ACKNOWLEDGMENTS
This work was supported by RPS project (Ref. No.:

8023/RID/RPS-24/(NER)2011-12) sponsored by All India

Council of Technical Education, New Delhi – 110 001.

6. REFERENCES
[1] Patrick Girard “Survey of low power testing of VLSI

circuits”, IEEE design and test of computers, may-

june2002

[2] Y. Zorian, “A Distributed BIST Control Scheme for

Complex VLSI Devices,” IEEE VLSI Test Symp., pp. 4-

9, April 1993.

[3] W.H. Debany, “Quiescent Scan Design for Testing

Digital Logic Circuits,” Dual-Use Tech. & App., pp.

142-I 5 I , 1994.

[4] J. Rajski and J. Tyszer, “Arithmetic Built-In Self-Test

for Embedded Systems,” Prentice Hall PTR, 1998.

[5] S. Wang and S.K. Gupta, “DS-LFSR : A New BIST

TPG for Low Heat Dissipation,” IEEE Int. Test Conf.,

pp. 848-857, October 1997.

[6] F. Corno et al., “A Test Pattern Generation Methodology

for Low Power Consumption,” Proc. 16th VLSI Test

Symp. (VTS 98), IEEE CS Press, Los Alamitos, Calif.,

1998, pp 453-459.

 [7] H. Lee and D. Ha, “On the Generation of Test Patterns

for Combinational Circuits,” Tech. Rep. 12-93, Dept. of

Electrical Engg., Virginia Polytechnic Institute and Statr

University, 1993.

[8] S. Chattopadhyay, N. Choudhary “Genetic Algorithm

based Approach for Low Power Combinational Circuit

Testing,” Proceedings of the 16th International

Conference on VLSI Design (VLSI‟03).

[9] P. Flores, J. Costa, H. Neto, J. Monterio, and J.

Marquessilva, “Assignment and Reordering of

Incompletely Specified Pattern Sequences Targeting

Minimum Power Dissipation,” in 12th International

Conference on VLSI Design, pp. 37–41, January 1999.

[10] M.Abromovici, M.A.Breuer and A.D. Friedman,“Digital

System Testing and Testable Design” New York,

Computer science press, 1990.

