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ABSTRACT 

With the advancement in automation, the importance of 

periodic testing of electronic circuits during their lifetime is 

increasing day by day. Generally, a circuit or system 

consumes more power in test mode than in normal mode. This 

extra power consumption can give rise to severe hazards in 

circuit reliability or, in some cases, can provoke instant circuit 

damage. Thus it is necessary to reduce the power consumption 

during test mode. This power is proportional to the number of 

node switching due to the feeding of successive test patterns. 

Test patterns generated by ATALANTA with –D option, 

contains don‟t cares. Efficient filling of don‟t cares in the 

patterns may reduce the number of switching when they are 

applied in succession. In this paper we have presented an 

approach based on Genetic Algorithm (GA) for don‟t care 

filling of the test patterns generated by Atalanta to reduce 

switching during circuit testing without compromising fault 

coverage. The proposed GA based formulation can save upto 

58% power compared to existing approach. A trade-off 

between fault coverage and transitions also has been presented 

in this paper. 

General Terms 

Low Power VLSI Testing. 

Keywords 

Testing, Low Power, Genetic Algorithm, Don‟t care, Fault 
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1. INTRODUCTION 
Modern VLSI devices such as computers and electronics 

devices has become complex because of the decreased 

dimensions, referred to as feature size of transistors and 

interconnecting wires from tens of microns to tens of 

nanometers. The reduction in feature size has increase the 

implementation of millions of transistors and also resulted in 

increased operating frequencies and clock speeds. However 

the reduction in feature size increases the probability that a 

manufacturing defect in the IC will result in a faulty chip. A 

very small defect can easily result in a faulty transistor or 

interconnecting wire when the feature size is less than 100 

nm. Furthermore, one faulty transistor or a single wire can 

make the entire chip fail to function properly or at the 

required operating frequency. Yet, defects generated during 

the manufacturing process are unavoidable, and, thus, some 

number of ICs is expected to be faulty. Therefore, testing is 

required to guarantee fault free products, regardless of 

whether the product is a VLSI device or an electronic system 

composed of many VLSI devices. 

In this work we have targeted single stack-at faults of the 

device. A stuck-at fault transforms the correct value on the 

faulty signal line to appear to be stuck at a constant logic 

value, either logic 0 or logic 1, referred to as stuck-at-0 or 

stuck-at-1 respectively. 

Test currently ranks among the most expensive and 

problematic aspects in a circuit design cycle, revealing the 

ceaseless need for test-related innovative solutions. As a 

result, several techniques have been developed [1], both for 

enhancing the testability of a design through Design-for- 

Testability (DFT) modifications and for improving the test 

generation and application process. Traditionally, these 

techniques are evaluated according to a number of parameters: 

the area overhead, the fault coverage achieved, the test 

application time, the test development effort, etc. The recent 

development of complex, high-performance, low-power 

devices implemented in deep submicron technologies creates 

a new class of more sophisticated electronic products, such as 

laptop computers, cellular telephones, audio and video-based 

multimedia products, energy efficient desktop computers. 

This new class of systems makes power management a critical 

parameter that cannot be ignored during test development as 

the power and energy of a digital system are considerably 

higher in test mode than in system mode [2-4]. The reason is 

that test patterns cause as many nodes switching as possible 

while a power saving system mode only activates a few 

modules at the same time. Another reason is that successive 

functional input vectors applied to a given circuit during 

system mode have a significant correlation, while the 

correlation between consecutive test patterns can be very low 

[5]. To meet specified power limits during test and avoid 

system destruction, it is really important to reduce power 

dissipation during testing. 

Some approaches have been reported in the literature [5-6] 

with the intent of generating a test pattern set which is able to 

minimize power dissipation during the test application in 

addition to the classical ATPG parameters. The initial set of 

patterns is generated by ATPGs like ATALANTA [7] etc. 

In [8], the authors proposed a strategy to generate a set of test 

patterns that minimizes power dissipation during testing. 

Apart from judiciously selecting test patterns from a large set 

generated by ATALANTA, it also optimizes the order in 

which the selected patterns are to be applied to minimize 

switching of individual circuit gates under a zero gate delay 

model. 

Example 1: All the test patterns generated by ATALANTA 

are not required for examining the fault coverage of a circuit. 

The power dissipation during testing [10] is minimized by 

reducing the number of transition in the circuit. Usually test 

vectors are in random and hence it is necessary to efficiently 

fill don‟t cares and rearrange the order of occurrence of test 

vectors so that the switching activity between successive test 

vectors is minimum. This can be explained with an example. 
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Fig 1: An example circuit 

Suppose the test pattern generated for the above circuit are 

„x1‟ and „1x‟, where „x‟ denotes don‟t care. Since there is 

only one x in each patterns therefore the don‟t cares can be 

filled in two ways. Let, after filling don‟t cares the test 

patterns are „01‟and „11‟. If the sequence of test application is 

„1x‟ and then „x1‟, the number of transitions is 4 but the 

number of transitions would be 5 for the filling of don‟t cares 

such that the patterns are „11‟ and „10‟. By this example it is 

evident that the number of transitions depends on the way of 

filling don‟t cares. For filling two don‟t cares in two patters 

there are four choices. So, for a big circuit having large inputs, 

number of test patterns and don‟t cares are very high. All 

possible filling and finding the best patterns giving lowest 

transitions is hard problem. To solve this problem we have 

formulated a Genetic Algorithm (GA) based heuristic which 

gives the proper way of filling don‟t cares such that dynamic 

power dissipation during testing is reduced by minimizing the 

node transitions without compromising the fault coverage. 

The rest of the paper is organized as follows. Proposed GA-

based technique for don‟t care filling is presented in Section 

2. Section 3 depicts the experimental results and conclusion is 

given in Section 4. 

2. PROPOSED GA-BASED TECHNIQUE 

FOR DON’T CARE FILLING  
Don‟t cares, present in the test patterns are filled using 

Genetic Algorithm (GA). GA is search algorithm based on the 

mechanics of the natural selection process (biological 

evolution).  The most basic concept of GA is that the strong 

tend to adapt and survive while the weak tend to die out. GA‟s 

have the ability to create an initial population of feasible 

solutions, and then recombine them in a way to guide their 

search to only the most promising areas of the solution space. 

Each feasible solution is encoded as a chromosome and each 

chromosome is given a measure of fitness via a fitness 

(evaluation or objective) function. The fitness of a 

chromosome determines its ability to survive and produce 

offspring. A finite number of chromosomes, having different 

fitness values are called population. This size of the 

population is maintained throughout all the generations.  

Chromosome structure-The chromosome is a string of „0‟ 

and „1‟ which corresponds to don‟t care bit present in the 

pattern.  

Generation of initial population-with an example let us 

illustrate how initial populations are created.  

Example 2: The test patterns obtained after running 

ATALANTA with –D 1 option for c17.bench circuit are 

„100xx11‟, „00xxx1x‟,  „xx101xx‟,  „0 x1xx11‟, „1xx10111‟,  

„00x1x10‟ and  „001xx01‟. Here, „x‟ represents don‟t care. As 

the number of don‟t cares present in the set of test pattern is 

19, the size of the chromosome is 19. Then, each bit of the 

chromosome is filled by „1‟ or „0‟ which are generated 

randomly.  Let the chromosome be “010100011101000000”. 

The first bit i.e. „0‟ replaces the first don‟t care of the first test 

pattern. Similarly the next bit of the chromosome replaces the 

next don‟t care bit of the test pattern and this goes on until it 

reaches the last bit of chromosomes. So, the test patterns 

generated are 1000111, 0001010 etc. 

2.1 Operators of GA  
Operators are used to generate the populations for the next 

generation. The operators in GA are selection, crossover and 

mutation.  

Selection - selection is usually the first operator applied on 

population. From the population, the chromosomes are 

selected based on fitness value for to crossover, mutation and 

to produce offspring.  

Crossover - Crossover is a genetic operator that combines 

(mates) two chromosomes (parents) to produce a new 

chromosome (offspring). The idea behind crossover is that the 

new chromosome may be better than both of the parents if it 

takes the best characteristics from each of the parents. 

Crossover occurs during evolution according to the user 

definable crossover probability. In this work we have used 

two point crossovers [5]. 

Two point crossover operators randomly select two crossover 

points within chromosomes. Between these two points part of 

chromosome is exchanged to produce two new offspring. 

Consider the following crossover operation as below. 

Parent 1:  „11011|0010011|0110‟ and Parent 2:  

„11011|1100001|1110‟. Interchanging the parent 

chromosomes across the crossover points-The offspring 

produced are: Offspring 1: „11011|1100001|0110‟ and 

Offspring 2: „11011|0010011|1110‟. 

Mutation- Mutation is a genetic operator used to maintain 

genetic diversity from one generation of a population of 

chromosomes to the next. Mutation alters one or more gene 

values in a chromosome from its initial state. This can result 

in entire new gene values being added to the gene pool. With 

the new gene, the genetic algorithm may be able to arrive at 

better solution than was previously possible. Mutation is 

intended to prevent the search falling into the local optimum 

of the state space. For mutation to occurs we have randomly 

generated two numbers between 1 and N (N is the size of the 

chromosome). All the digits within these two numbers are 

flipped.  

2.2 Cost Function  
In this section we formulate the cost function used to measure 

the fitness of chromosomes in a population. Fitness function 

quantifies the optimality of the solution (chromosomes) so 

that particular chromosomes may be ranked against all the 

other solutions. The function depicts the closeness of a given 

„solution‟ to the desired result. As, we are targeting to 

maximize fault coverage and minimize transition, the cost 

function contains weighted sum of both the parameters. Let, 

max_fault and max_tran are the maximum fault coverage and 

maximum transitions among all the chromosomes in the initial 

population respectively. For i-th chromosome, let FCi be the 

fault coverage and TRi be the total number of transitions. Cost 

of the i-th chromosome is then formulated as, 

Cost = w1 × (FCi /max_fault) + w2 × (1 − (TRi/max_tran)) 

Where, w1 and w2 are two empirically determined constants 

such that w1 + w2 = 1. 

Complete flow of the proposed technique is depicted in Fig. 2. 

After filling the bit values of chromosome of example 2 in the 

test patterns, patterns no. 2, 3 and 4, 6 are same. These 

repeated test patterns are removed and fault coverage and 

transitions are calculated. The steps that are followed in this 

method are as follows. 

Step1: Input: test patterns, weight (w1, w2). 

Step2: Output: fault coverage and transition count. 

a 

b 

d c 
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Step3: Create chromosomes whose size equal to number of 

don‟t care in the set of test vectors. 

Step4: Random function generates number (1 & 0) for 

chromosomes generated in step 3. 

Step5: Replace the don‟t cares of test patterns and filter the 

repetition. 

Step6: Calculate fault coverage and transition for the filtered 

test vectors. 

Step7: Calculate the cost function (Cost = w1 × (FCi 

/max_fault) + w2 × (1 − (TRi/max_tran))). 

Step8: Sort the cost and the chromosome of don‟t care in 

ascending order. 

Step9: Undergo direct copy, selection, mutation on all the 

chromosomes. 

 Step10: repeat from step5 to step9 on new generated 

chromosomes until the cost function doesn‟t change anymore. 

Step11: when cost function doesn‟t change for 20 consecutive 

generations, terminate the generation. 

 
 

 

 

 

 

 

 

 

Fig 2: Flow chart of the proposed GA-based don’t care filling 

 

Table 1: Fault coverage and transition for different weights 

 
 

 

 

 

 

Weight w1=0,w2=1 w1=0.25,w2=0.75 w1=0.5,w2=0.5 w1=0.75,w2=0.25 w1=1,w2=0 Max 

Gen 

      H4 [9] 

Circuit FC Trans FC Trans FC Trans FC Trans FC Trans FC Trans 

C17 100 8 100 10 100 16 100 20 100 64 58 100 44 

C432 92.9 8427 98.2 8601 99.7 8887 99.8 8765 99.7 23070 299 93.89 22215 

C499 98.9 10392 98.9 11034 98.9 10766 98.9 10744 98.9 19777 361 97.83 6756 

C880 98.3 9936 99.8 9845 99.3 9919 99.9 10184 99.8 19737 300 63.96 7451 

C1355 98.7 10379 98.8 12527 99.3 11025 99.7 11947 99.7 11834 498 61.28 10789 

C1908 98.9 28709 99.9 29123 98.9 30714 99.9 30836 99.4 20920 595 83.97 16963 

C6288 97.9 626947 98.9 692544 98.8 647547 98.9 632588 97.9 903063 680 97.97 2555792 

Avg  

FC/trans 

 wrt only w1=1,w2=1  

0.986 

 

1.000 0.998 1.093 0.999 1.179 1.0023 1.262 1.000 2.562  0.862 2.177 

Start 

Whole set/selected of test patterns 

Size of chromosomes equal to the 

no. of don’t cares 

odchromosomes equal to 

the no. of don’t cares 
Filter the test patterns after 

filling them 

Calculate the cost 
Sort according to the requirement 

GA 

Stop 

If cost does not 

change for 10 

iteration 

            YES 

          NO 
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3. RESULTS 
 In a circuit dynamic power consumption will be there if there 

is node switching for a particular technology. So, in our 

experiments we have considered dynamic power as the 

number of transition (0 to 1& from 1 to 0). We have 

performed experiments on iscas85 benchmark circuits.  In the 

experiment, the whole redundant set of test patterns 

(generated using “– D 1” option of ATALANTA) is taken. 

For different values of w1 and w2, FC and transitions after 

running our GA-based algorithm are tabulated in table 1. 

Table 1 shows fault coverage and transition count at different 

values of w1 and w2. Column, „FC‟ and „Trans‟ are the fault 

coverage and number of transitions before termination 

respectively for different values of weights. Column „Max 

Gen‟ is the maximum number of generation among all the 

weighted solutions. From table 1 it can be observed that fault 

coverage obtained for different circuits are approximately 

high and same.  It can be observed also that when w1=1 and 

w2=0, the cost function depends only on fault coverage, not on 

transition count. If the values of the fault coverage at (w1=1,  

w2=0) is taken as unity then the faults coverage at different 

values of w1 and w2 with respect to this is shown in the last 

row of the above table 1. Similarly cost function is dependent 

on transition count only when w1=0 and w2=1. If the values of 

the transition is at w1=0, w2=1 is taken as unity then the 

transition count at different values of w1and w2 with respect to 

the transition at w1=0 and w2=1 is shown in the above table. It 

can be observed that optimized fault coverage and transition 

count obtained at w1=w2=0.5. The last row of table 1 shows 

the average of fault coverage and transition for different 

values of weight with respect to fault coverage (at w1=1, 

w2=0) and transition (w1=0, w2=1) respectively. For different 

weighted combinations fault coverage almost remain same but 

the number of transitions reduces as the weight associated 

with transition increases. Last two columns are the fault 

coverage and transition count after filling don‟t care with H4 

heuristic [9]. This fault coverage is 14% lower and transition 

is 117% higher. This shows the effectiveness of our approach 

in terms of high fault coverage and reduced power 

(transition). 

4. CONCLUSION 
 In this paper we have presented a GA based approach to fill 

don‟t cares present in test patterns such that test power is 

reduced by reducing transition without compromising fault 

coverage. Fault coverage is more than 99% and reduction in 

test power is more than 58% compared to previous work H4 

[9].  
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