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ABSTRACT 

Traditional tests for memories are based on conventional fault 

models, involving the address decoder, individual memory 

cells and a limited coupling between them.  Built-in self-test 

(BIST) solutions for testing memories today incorporate 

hardware for test pattern generation and application for a 

variety of the algorithms. The NPSF fault model is recognized 

as a high quality fault model for memory arrays, the excessive 

test algorithm time cost associated with it, compared to other 

fault models, restricts its adoption for memory testing. These 

faults are of different classes and types. More specifically, 

active, passive and static faults for distance 1 and 2 

neighborhoods, of types 1 and 2, are considered. This paper 

presents a BIST implementation using cellular automata (CA) 

for detection of static neighborhood pattern sensitive faults 

(SNPSFs) in random access memories (RAMs).    

  

1. INTRODUCTION 
 Testing semiconductor RAMs has become of increasing im 

portance lately. This is due to high density of current memory 

chips and to the fact that older algorithms required test times 

of the order n² or n*log2 n (where n is the number of bits in 

chip). At the same time, due to miniaturization, the types of 

faults became more complex and therefore more difficult to 

find, where as the test time had to become of the order n in 

order to economically acceptable. 

Built-in self-test (BIST) methods for testing RAMs, based on 

conventional March tests and their extensions, are becoming 

popular. These tests are easy to implement, have a cycle count 

complexity which is linear to the number of bits or words 

addressed, and provide good fault coverage for functional 

faults and some structural faults, covering the address 

decoder, individual memory cells and a limited coupling 

between them. Existing BIST implementations for memories 

are, however, inadequate for some other fault models like 

stronger and widespread coupling faults [3]. Hence to ensure 

the desired defect coverage in a memory core, it is necessary 

to consider these newer fault models and provide a matching 

BIST implementation for effective test generation. It is also 

important to make this implementation programmable for the 

desired combination of fault coverage and test time so that 

BIST can be efficiently used. 

This paper describes a BIST technique for the detection of 

neighborhoods pattern sensitive faults (NPSFs) in random 

access memories. Although the NPSF model is not new, it is 

now becoming important in deep-submicron processes, 

especially for DRAMs. Traditional March tests are not 

adequate for detection of such NPSFs. Here  a test pattern of 

Hamiltonian sequence from 3 bit Eulerian graph is generated 

for  static neighborhood pattern sensitive fault (SNPSF) test 

and also implemented in BIST using 4-neighborhood Cellular 

Automata (CA) to obtain shortest possible test. 

.  

2. PRILIMINARIES 

2.1 Neighborhoods Pattern Sensitive Faults 

 
A Pattern Sensitive Fault is a conditional coupling fault in 

which the content of a memory cell, or the ability to change 

its content, is influenced by a certain bit pattern in other cells 

in the memory. Here the data retention and transition of the 

victim cell are affected by a set of aggressor cells. A 

neighborhood pattern sensitive Fault (NPSF) is a special case 

of pattern sensitive faults, wherein the influencing (coupling) 

cells are in the neighborhood of the influenced (coupled) cell 

[1]. The coupled cell is called the base (or victim) cell and the 

coupling cells are called the deleted neighborhood cells. The 

neighborhood includes all the cells in the deleted 

neighborhood as well as the base cell. 

 

2.1.1 Classification of NPSFs 
Different NPSFs can be grouped based on the nature of faults 

in the base cell and on the neighborhood. 

2.1.1.1 Active NPSF: The base cell changes its contents due to 

changes in the deleted neighborhood pattern. To detect these 

faults, each cell must be read in state 0 and in state1 for all 

possible transitions in the deleted neighborhood pattern. There 

are two different possible values for the base cell (0 and 1), k-

1 ways of choosing the deleted neighborhood cell which must 

undergo one of two possible transitions (↑ or ↓), and 2 k-2 

possibilities for the remaining neighborhood cell contents. 

The total number of active neighborhood patterns (ANPs) is 

2* (k-1)*2*2k-2 = (k-1)* 2k  [2]. In Figure1. for  type-1 active 

NPSF 2- base cell; 0,1,3 and 4 are deleted neighborhood cells.  

Notation: C i,j <d0, d1, d3, d4; b > 

Examples: ANPSF: C i,j < 0, ↓, 1, 1; 0 > 

                 ANPSF: C i,j < 0, ↓, 1, 1; ↕ >                                                                                                                  
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   Figure 1. Type-1 Active NPSF 

2.1.1.2 Passive NPSF: The contents of the base cell cannot be 

changed due to a certain neighborhood pattern. Each cell must 

be written and read in state0 and in state1 for all permutations 

of the deleted neighborhood pattern. For each of the 2k-1 

deleted neighborhood patterns, the two possible transitions ↑ 

and ↓ must be verified. Therefore, the total number of 

PNPSFs is 2*2k-1=2k. The total pattern count for APNPSFs is 

therefore, (k-1)* 2k +2k =k*2k. 

2.1.1.3 Static NPSF: The content of a base cell is forced to a 

certain state due to a certain neighborhood pattern. To detect 

these faults, apply the 2k combinations of 0s and 1s to the k-

cell neighborhood, and verify by reading each cell that each 

pattern can be stored. It differs from ANPSF that it need not 

have a transition to sensitize an SNPSF. 

Example:  C i,j < 0, 1, 0, 1; -/ 0 > means that base cell forced 

to 0 

                  C i,j < 0, 1, 0, 1; -/ 1 > means that base cell forced 

to 1 

2.1.2 Existing test methods for NPSFs 
There are several methods and algorithms to perform tests for 

Neighborhood Pattern Sensitive Faults (NPSFs). A type 1 

neighborhood contains five cells: The base cell and the four 

cells physically adjacent to the base cell. Usually the type 1 

neighborhood is used because the deleted neighborhood of the 

type 1 neighborhood is most likely to influence the base cell 

(since all neighborhood share a row or a column with the base 

cell) and because of its simplicity and smaller test time.   

2.1.2.1 Eulerian and Hamiltonian sequences:  

For optimal write sequences, it is essential to minimize the 

number of writes during NPSF testing. An Eulerian graph has 

a node for each k-bit pattern of 0s and 1s and there is an arc 

between two nodes, if and only if they differ by exactly one 

bit [2]. When two nodes are connected, they are connected by 

only two arcs; depicted in Figure 6. The arcs in the graph 

correspond to ANPs, PNPs and APNPs of a k-bit 

neighborhood. An Eulerian sequence traverses each arc in the 

graph exactly once while a Hamiltonian sequence traverses 

each node in the graph exactly once. ANPSFs, PNPSFs and 

APNPSFs are tested with an Eulerian sequence. A 

Hamiltonian sequence is used for writing during SNPSF tests. 

Patterns in a k-bit Hamiltonian sequence differ by only 1 bit 

from their preceding pattern as this minimizes the number of 

writes needed to generate the patterns.                                                                         

2.1.2.2 Tiling method: 

The tiling method totally covers memory with non-

overlapping neighborhoods. Figure-2a and 2b depicts this for 

a 5-element Type-1 neighborhood. Cell 2 is always the base 

cell, and the deleted neighborhood cells are numbered shown. 

When all static neighborhood patterns (SNPs) are applied 

simultaneously to the neighborhoods of all base cells-2, they 

are automatically applied to the neighborhoods of all base 

cells in the memory [1]. This reduces the pattern length from 

n*2k   patterns to (n/k)* 2k patterns. 

                                        

      Figure 2a. Type 1 tiling neighborhoods 

 

                
 

          Figure 2b. Neighborhoods of base cells 0,1,2,3, and 4 

2.1.2.3 Two-group method: 

For the two-group method, a cell is simultaneously a base cell 

in one group and a deleted neighborhood cell in the other 

group, and vice versa [2]. With this duality property, cells are 

divided into two groups, group-1 and group-2, in a 

checkerboard pattern; depicted in Figure-3. Base cells of 

group-1 are deleted neighborhood cells of group-2, and vice 

versa. Each group has n/2 base cells b and n/2 deleted 

neighborhood cells formed by 4 subgroups A, B, C and D. 

This only works for Type-1 neighborhoods. 

    

               Figure 3. Cell labels in two group method 
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2.1.2.4 NPSF fault detection and location 

algorithm: 

Step 1: write base cells with 0; 

Step-2: loop  

   Apply a pattern; 

                                {it could change the base cell from 0 to 1} 

    Read base cell;  

              Endloop; 

Step 3: write base cells with 1;      

Step 4: loop  

                 Apply a pattern; 

                               {it could change the base cell from 1 to 0} 

   Read base cell;  

             Endloop; 

                                                                         

2.1.3 BIST for detection of NPSFs: 

Built-in self-test (BIST) is a design technique in which parts 

of a circuit are used to test the circuit itself.  MBIST (Memory 

BIST) is a technique specifically used for testing memories. It 

typically consists of tests circuits that apply, read and compare 

tests pattern design to expose defects in the memory device 

[5]. One of the MBIST algorithms is March algorithm. The 

advantage of such memory design modification is often offset 

by the overheads that they introduce. The main goal of these 

approaches is to reduce the memory testing time.             

 

 

                         Figure 4. Hardwired-based BIST 

A memory BIST unit consists of a controller to control the 

flow of test sequences and other components to generate the 

necessary test control and data. A hardwired-based BIST 

controller is a hardware realization of a selected memory test 

algorithm, usually in the form of a Finite State Machine  

(FSM) [4]. This type of memory BIST architecture has 

optimum logic overhead; however, this results in re-design 

and re-implementation of the hardwired-based memory BIST 

for any minor changes for the selected memory test algorithm. 

Although it is the oldest memory BIST scheme amongst the 

BIST, hardwired-based BIST is still much in use and 

techniques have been kept developing. The hardwired- based 

BIST is shown in Figure 4. 

For implementation of BIST, linear feedback shift register 

(LFSR) is the shift register with feedback linearly related to 

the nodes using xor gates and cellular automata (CA) is a 

collection of nodes logically related to their neighbors using 

xor gates. LFSRs are more compact and simple to design, but 

CAs provides patterns with higher randomness. In 

applications LFSR is used to reduce the area overhead but 

CAs are implemented where high fault coverage is needed. 

2.2 Cellular Automata (CA): 
Cellular Automata (CA) is introduced to identify the memory 

with the faulty cells, simultaneously satisfying the 

requirements of reduced test time as well as the overhead of 

test logic. Each cell stores a discrete variable at time t that 

refers to the present state (PS) of the cell. The next state (NS) 

of the cell at (t+1) is affected by its state and the states of its 

neighbors at time t [5]. In 3-neighborhood CA (self, left and 

right neighbors), where a CA cell is having two states 0 or 1 

and the next state of ith CA cell is  Si
t+1  =  fi  ( Si-1

t,  Si
t,  Si+1

t )  

Si-1
t,  Si

t  and  Si+1
t   are the present states of the left neighbor, 

self and right neighbor of the ith cell at time t and fi is the next 

state function. The next state function of the ith CA cell can be 

expressed in the form of a truth table (Table 1). The decimal 

equivalent of the 8 outputs is called Rule Ri. In a 2-state 3-

neighbourhood CA, there can be 28 (256) rules. Two such 

rules 192 and 207 are illustrated in Table-1. The first row lists 

the possible 23 (8) combinations of present states of (i-1)th, ith 

and (i+1)th cells at t. The 3rd and 5th rows indicate the next 

states of the ith cell at (t+1). The mathematical expression of 

next state function can be obtained when the next state of a 

rule is plotted in a Karnaugh Map in Figure 5.                                                                                      

 
Figure  5.  Next state function for rule 192 and 207 

               Table -1: RMTs of the CA<207,192> 
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3. PROPOSED WORK 
A Hamiltonian sequence is used for writing during SNPSF 

tests. The Hamiltonian sequence from the Eulerian graph is 

following: [111 101 001 000 100 110 010 011 111]. We have 

applied this Hamiltonian sequence or bit pattern using 4-

neighborhood CA to detect the SNPSFs. 

 

Table 2. RMTs upto 7of the CA < 39321, 46064, 52464> 

 

The next state function of the ith CA cell can be expressed in 

the form of a truth table (Table 2 and 3). The decimal 

equivalent of the 16 outputs is called Rule Ri . In a 2-state 4-

neighbourhood CA, there can be 216 (65536) rules. Three such 

rules 39321, 46064 and 52464 those required to realize the 

stated Hamiltonian sequence or bit pattern to detect the 

SNPSFs [2], are illustrated in Table 2 and 3. The first row lists 

the possible 24 (16) combination of present states of 4 cells at 

t [5]. The 3rd 4th and 5th rows indicate the next states of the 

ith cell at (t+1). The mathematical expression of next state 

function is obtained when the next state of the rule is plotted 

in a Karnaugh Map (Shown in Figure 7). A circuit diagram is 

implemented by using those Boolean expressions and shown 

in Figure 8. The simulation result and RTL schematic of 

Hamiltonian sequence for SNPSF test is shown in Figure 9 

and 10 respectively. 

 

Table 3. RMTs from 7 to 15 of the CA < 39321, 46064, 

52464 > 

  

Figu

re 6.  State transition diagram of the Hamiltonian 

sequence 

 

                 Figure 7. Next state function for rule 39321 

 

                Figure 8. Next state function for rule 46064  
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                    Figure 9. Next state function for rule 52464 

 

 

        Figure 10. Circuit diagram of Hamiltonian sequence   

 

             Figure 11. Waveform of Hamiltonian sequence  

 
 
         Figure 12. RTL schematic of Hamiltonian sequence 

 

4. CONCLUTION AND FUTURE WORK 
We have described the fault model of bit oriented memory 

(BOM) and test algorithms for that in details. There are so 

many test pattern generator (TPG) to design efficient Memory 

Built-in self-test (MBIST). We have shown test patterns using 

Cellular Automata (CA) to implement in Built-in self-test 

(BIST). Here a Hamiltonian sequence is implemented in a 

BIST circuit using 4-neighborhood CA for Static 

neighborhood pattern sensitive fault (SNPSF) tests in bit 

oriented memory (BOM). This is essential to minimize the 

number of writes during NPSF testing, in order to obtain the 

shortest possible tests. We have also done the verilog coding 

to generate the test pattern in MBIST for SNPSF tests. The 

waveform of the verilog coding and RTL schematic is also 

shown. The future work in this direction includes the efficient 

algorithm  of CA based BIST design for neighborhood pattern 

sensitive fault (NPSF) detection for word oriented memory 

(WOM) and also  the length of 24 optimal 3 bit Eulerian 

sequence with the help of Cellular Automata (CA) to 

implement in Memory Built-in Self-test (MBIST) for Active 

and passive neighborhood pattern sensitive fault (APNPSF) 

tests. 
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