
International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

23

 BIST Design For Static Neighbourhood Pattern
Sensitive Fault Test

 Anu Samanta
Dept. of Electronics and comm.

Engg.
NSHM, Durgapur

Durgapur

 Mousumi Saha
Dept. of Computer Application
 NIT, Durgapur
 Durgapur

 Ajay Kumar Mahato
Dept of Electronics and Comm.
Engg. NIT, Sikkim, Sikkim

ABSTRACT

Traditional tests for memories are based on conventional fault

models, involving the address decoder, individual memory

cells and a limited coupling between them. Built-in self-test

(BIST) solutions for testing memories today incorporate

hardware for test pattern generation and application for a

variety of the algorithms. The NPSF fault model is recognized

as a high quality fault model for memory arrays, the excessive

test algorithm time cost associated with it, compared to other

fault models, restricts its adoption for memory testing. These

faults are of different classes and types. More specifically,

active, passive and static faults for distance 1 and 2

neighborhoods, of types 1 and 2, are considered. This paper

presents a BIST implementation using cellular automata (CA)

for detection of static neighborhood pattern sensitive faults

(SNPSFs) in random access memories (RAMs).

1. INTRODUCTION
 Testing semiconductor RAMs has become of increasing im

portance lately. This is due to high density of current memory

chips and to the fact that older algorithms required test times

of the order n² or n*log2 n (where n is the number of bits in

chip). At the same time, due to miniaturization, the types of

faults became more complex and therefore more difficult to

find, where as the test time had to become of the order n in

order to economically acceptable.

Built-in self-test (BIST) methods for testing RAMs, based on

conventional March tests and their extensions, are becoming

popular. These tests are easy to implement, have a cycle count

complexity which is linear to the number of bits or words

addressed, and provide good fault coverage for functional

faults and some structural faults, covering the address

decoder, individual memory cells and a limited coupling

between them. Existing BIST implementations for memories

are, however, inadequate for some other fault models like

stronger and widespread coupling faults [3]. Hence to ensure

the desired defect coverage in a memory core, it is necessary

to consider these newer fault models and provide a matching

BIST implementation for effective test generation. It is also

important to make this implementation programmable for the

desired combination of fault coverage and test time so that

BIST can be efficiently used.

This paper describes a BIST technique for the detection of

neighborhoods pattern sensitive faults (NPSFs) in random

access memories. Although the NPSF model is not new, it is

now becoming important in deep-submicron processes,

especially for DRAMs. Traditional March tests are not

adequate for detection of such NPSFs. Here a test pattern of

Hamiltonian sequence from 3 bit Eulerian graph is generated

for static neighborhood pattern sensitive fault (SNPSF) test

and also implemented in BIST using 4-neighborhood Cellular

Automata (CA) to obtain shortest possible test.

.

2. PRILIMINARIES

2.1 Neighborhoods Pattern Sensitive Faults

A Pattern Sensitive Fault is a conditional coupling fault in

which the content of a memory cell, or the ability to change

its content, is influenced by a certain bit pattern in other cells

in the memory. Here the data retention and transition of the

victim cell are affected by a set of aggressor cells. A

neighborhood pattern sensitive Fault (NPSF) is a special case

of pattern sensitive faults, wherein the influencing (coupling)

cells are in the neighborhood of the influenced (coupled) cell

[1]. The coupled cell is called the base (or victim) cell and the

coupling cells are called the deleted neighborhood cells. The

neighborhood includes all the cells in the deleted

neighborhood as well as the base cell.

2.1.1 Classification of NPSFs
Different NPSFs can be grouped based on the nature of faults

in the base cell and on the neighborhood.

2.1.1.1 Active NPSF: The base cell changes its contents due to

changes in the deleted neighborhood pattern. To detect these

faults, each cell must be read in state 0 and in state1 for all

possible transitions in the deleted neighborhood pattern. There

are two different possible values for the base cell (0 and 1), k-

1 ways of choosing the deleted neighborhood cell which must

undergo one of two possible transitions (↑ or ↓), and 2 k-2

possibilities for the remaining neighborhood cell contents.

The total number of active neighborhood patterns (ANPs) is

2* (k-1)*2*2k-2 = (k-1)* 2k [2]. In Figure1. for type-1 active

NPSF 2- base cell; 0,1,3 and 4 are deleted neighborhood cells.

Notation: C i,j <d0, d1, d3, d4; b >

Examples: ANPSF: C i,j < 0, ↓, 1, 1; 0 >

 ANPSF: C i,j < 0, ↓, 1, 1; ↕ >

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

24

 Figure 1. Type-1 Active NPSF

2.1.1.2 Passive NPSF: The contents of the base cell cannot be

changed due to a certain neighborhood pattern. Each cell must

be written and read in state0 and in state1 for all permutations

of the deleted neighborhood pattern. For each of the 2k-1

deleted neighborhood patterns, the two possible transitions ↑

and ↓ must be verified. Therefore, the total number of

PNPSFs is 2*2k-1=2k. The total pattern count for APNPSFs is

therefore, (k-1)* 2k +2k =k*2k.

2.1.1.3 Static NPSF: The content of a base cell is forced to a

certain state due to a certain neighborhood pattern. To detect

these faults, apply the 2k combinations of 0s and 1s to the k-

cell neighborhood, and verify by reading each cell that each

pattern can be stored. It differs from ANPSF that it need not

have a transition to sensitize an SNPSF.

Example: C i,j < 0, 1, 0, 1; -/ 0 > means that base cell forced

to 0

 C i,j < 0, 1, 0, 1; -/ 1 > means that base cell forced

to 1

2.1.2 Existing test methods for NPSFs
There are several methods and algorithms to perform tests for

Neighborhood Pattern Sensitive Faults (NPSFs). A type 1

neighborhood contains five cells: The base cell and the four

cells physically adjacent to the base cell. Usually the type 1

neighborhood is used because the deleted neighborhood of the

type 1 neighborhood is most likely to influence the base cell

(since all neighborhood share a row or a column with the base

cell) and because of its simplicity and smaller test time.

2.1.2.1 Eulerian and Hamiltonian sequences:

For optimal write sequences, it is essential to minimize the

number of writes during NPSF testing. An Eulerian graph has

a node for each k-bit pattern of 0s and 1s and there is an arc

between two nodes, if and only if they differ by exactly one

bit [2]. When two nodes are connected, they are connected by

only two arcs; depicted in Figure 6. The arcs in the graph

correspond to ANPs, PNPs and APNPs of a k-bit

neighborhood. An Eulerian sequence traverses each arc in the

graph exactly once while a Hamiltonian sequence traverses

each node in the graph exactly once. ANPSFs, PNPSFs and

APNPSFs are tested with an Eulerian sequence. A

Hamiltonian sequence is used for writing during SNPSF tests.

Patterns in a k-bit Hamiltonian sequence differ by only 1 bit

from their preceding pattern as this minimizes the number of

writes needed to generate the patterns.

2.1.2.2 Tiling method:

The tiling method totally covers memory with non-

overlapping neighborhoods. Figure-2a and 2b depicts this for

a 5-element Type-1 neighborhood. Cell 2 is always the base

cell, and the deleted neighborhood cells are numbered shown.

When all static neighborhood patterns (SNPs) are applied

simultaneously to the neighborhoods of all base cells-2, they

are automatically applied to the neighborhoods of all base

cells in the memory [1]. This reduces the pattern length from

n*2k patterns to (n/k)* 2k patterns.

 Figure 2a. Type 1 tiling neighborhoods

 Figure 2b. Neighborhoods of base cells 0,1,2,3, and 4

2.1.2.3 Two-group method:

For the two-group method, a cell is simultaneously a base cell

in one group and a deleted neighborhood cell in the other

group, and vice versa [2]. With this duality property, cells are

divided into two groups, group-1 and group-2, in a

checkerboard pattern; depicted in Figure-3. Base cells of

group-1 are deleted neighborhood cells of group-2, and vice

versa. Each group has n/2 base cells b and n/2 deleted

neighborhood cells formed by 4 subgroups A, B, C and D.

This only works for Type-1 neighborhoods.

 Figure 3. Cell labels in two group method

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

25

2.1.2.4 NPSF fault detection and location

algorithm:

Step 1: write base cells with 0;

Step-2: loop

 Apply a pattern;

 {it could change the base cell from 0 to 1}

 Read base cell;

 Endloop;

Step 3: write base cells with 1;

Step 4: loop

 Apply a pattern;

 {it could change the base cell from 1 to 0}

 Read base cell;

 Endloop;

2.1.3 BIST for detection of NPSFs:

Built-in self-test (BIST) is a design technique in which parts

of a circuit are used to test the circuit itself. MBIST (Memory

BIST) is a technique specifically used for testing memories. It

typically consists of tests circuits that apply, read and compare

tests pattern design to expose defects in the memory device

[5]. One of the MBIST algorithms is March algorithm. The

advantage of such memory design modification is often offset

by the overheads that they introduce. The main goal of these

approaches is to reduce the memory testing time.

 Figure 4. Hardwired-based BIST

A memory BIST unit consists of a controller to control the

flow of test sequences and other components to generate the

necessary test control and data. A hardwired-based BIST

controller is a hardware realization of a selected memory test

algorithm, usually in the form of a Finite State Machine

(FSM) [4]. This type of memory BIST architecture has

optimum logic overhead; however, this results in re-design

and re-implementation of the hardwired-based memory BIST

for any minor changes for the selected memory test algorithm.

Although it is the oldest memory BIST scheme amongst the

BIST, hardwired-based BIST is still much in use and

techniques have been kept developing. The hardwired- based

BIST is shown in Figure 4.

For implementation of BIST, linear feedback shift register

(LFSR) is the shift register with feedback linearly related to

the nodes using xor gates and cellular automata (CA) is a

collection of nodes logically related to their neighbors using

xor gates. LFSRs are more compact and simple to design, but

CAs provides patterns with higher randomness. In

applications LFSR is used to reduce the area overhead but

CAs are implemented where high fault coverage is needed.

2.2 Cellular Automata (CA):
Cellular Automata (CA) is introduced to identify the memory

with the faulty cells, simultaneously satisfying the

requirements of reduced test time as well as the overhead of

test logic. Each cell stores a discrete variable at time t that

refers to the present state (PS) of the cell. The next state (NS)

of the cell at (t+1) is affected by its state and the states of its

neighbors at time t [5]. In 3-neighborhood CA (self, left and

right neighbors), where a CA cell is having two states 0 or 1

and the next state of ith CA cell is Si
t+1 = fi (Si-1

t, Si
t, Si+1

t)

Si-1
t, Si

t and Si+1
t are the present states of the left neighbor,

self and right neighbor of the ith cell at time t and fi is the next

state function. The next state function of the ith CA cell can be

expressed in the form of a truth table (Table 1). The decimal

equivalent of the 8 outputs is called Rule Ri. In a 2-state 3-

neighbourhood CA, there can be 28 (256) rules. Two such

rules 192 and 207 are illustrated in Table-1. The first row lists

the possible 23 (8) combinations of present states of (i-1)th, ith

and (i+1)th cells at t. The 3rd and 5th rows indicate the next

states of the ith cell at (t+1). The mathematical expression of

next state function can be obtained when the next state of a

rule is plotted in a Karnaugh Map in Figure 5.

Figure 5. Next state function for rule 192 and 207

 Table -1: RMTs of the CA<207,192>

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

26

3. PROPOSED WORK
A Hamiltonian sequence is used for writing during SNPSF

tests. The Hamiltonian sequence from the Eulerian graph is

following: [111 101 001 000 100 110 010 011 111]. We have

applied this Hamiltonian sequence or bit pattern using 4-

neighborhood CA to detect the SNPSFs.

Table 2. RMTs upto 7of the CA < 39321, 46064, 52464>

The next state function of the ith CA cell can be expressed in

the form of a truth table (Table 2 and 3). The decimal

equivalent of the 16 outputs is called Rule Ri . In a 2-state 4-

neighbourhood CA, there can be 216 (65536) rules. Three such

rules 39321, 46064 and 52464 those required to realize the

stated Hamiltonian sequence or bit pattern to detect the

SNPSFs [2], are illustrated in Table 2 and 3. The first row lists

the possible 24 (16) combination of present states of 4 cells at

t [5]. The 3rd 4th and 5th rows indicate the next states of the

ith cell at (t+1). The mathematical expression of next state

function is obtained when the next state of the rule is plotted

in a Karnaugh Map (Shown in Figure 7). A circuit diagram is

implemented by using those Boolean expressions and shown

in Figure 8. The simulation result and RTL schematic of

Hamiltonian sequence for SNPSF test is shown in Figure 9

and 10 respectively.

Table 3. RMTs from 7 to 15 of the CA < 39321, 46064,

52464 >

Figu

re 6. State transition diagram of the Hamiltonian

sequence

 Figure 7. Next state function for rule 39321

 Figure 8. Next state function for rule 46064

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

27

 Figure 9. Next state function for rule 52464

 Figure 10. Circuit diagram of Hamiltonian sequence

 Figure 11. Waveform of Hamiltonian sequence

 Figure 12. RTL schematic of Hamiltonian sequence

4. CONCLUTION AND FUTURE WORK
We have described the fault model of bit oriented memory

(BOM) and test algorithms for that in details. There are so

many test pattern generator (TPG) to design efficient Memory

Built-in self-test (MBIST). We have shown test patterns using

Cellular Automata (CA) to implement in Built-in self-test

(BIST). Here a Hamiltonian sequence is implemented in a

BIST circuit using 4-neighborhood CA for Static

neighborhood pattern sensitive fault (SNPSF) tests in bit

oriented memory (BOM). This is essential to minimize the

number of writes during NPSF testing, in order to obtain the

shortest possible tests. We have also done the verilog coding

to generate the test pattern in MBIST for SNPSF tests. The

waveform of the verilog coding and RTL schematic is also

shown. The future work in this direction includes the efficient

algorithm of CA based BIST design for neighborhood pattern

sensitive fault (NPSF) detection for word oriented memory

(WOM) and also the length of 24 optimal 3 bit Eulerian

sequence with the help of Cellular Automata (CA) to

implement in Memory Built-in Self-test (MBIST) for Active

and passive neighborhood pattern sensitive fault (APNPSF)

tests.

5. REFERENCES:
[1] A. J. VAN DE GOOR and C. A.VERRUIJT. “An

Overview of Deterministic Functional RAM Chip

Testing”. ACM Computing Surveys, Vol. 22, No.1,

March 1990.

[2] V. D. A. Michael Lee Bushnell, Vishwani D. Agrawal,

“Essentials of Electronic Testing for Digital, Memory,

and Mixed -Signal VLSI Circuits”. New York: Kluwer

Academic Publishers, 2nd ed., 2002

[3] Rajeshwar S. Sable, Ravindra P. Saraf, Rubin A.

Parekhji and Arun N. Chandorkar. “Built-in Self-test

Technique for Selective Detection of Neighbourhood

Pattern Sensitive Faults in Memories” Proceedings of the

17 th International Conference on VLSI Design (VLSID

04) 1063-9667/04 $ 20.00@2004 IEEE.

[4] Allen C. Cheng.”Comprehensive Study in Designing

Memory BIST Algorithms, Implementations and Trade

offs” EECS 579, Fall 2002 Digital System Testing.

International Journal of Computer Applications (0975 – 8887)

International Conference on Communication, Circuits and Systems “iC3S-2012”

28

[5] S.Wolfram, “Cellular Automata and Complexity,”

collected papers, pp. 1-25, 1994.

[6] M. A. Miron Abramovici, Melvin A. Breuer, Arthur D.

Friedman, “Digital Systems Testing and Testable

Design”Jaico Publishing House, 2002.

