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ABSTRACT 

The drain current model of symmetrical Underlap 

DGMOSFET is evaluated for subthreshold region. Model data 

is verified with simulation data for validation of the proposed 

model. For validation the drain current is evaluated with 

respect to gate to source potential. The drain current is 

calculated with variation of gate length, underlap length and 

silicon body thickness. As the gate length and underlap length 

increases, the drain current decreases and as silicon body 

thickness increases, increase of drain current is observed.  

General Terms 

Semiconductor Devices, MOSFET Modelling. 
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1. INTRODUCTION 
DOUBLE GATE (DG) MOSFET is a candidate which 

reduces short channel effects (SCEs) and gives better 

scalability and performances [1].The DG MOSFET has been 

made known very good electrostatic gate control over the 

channel, permitting gate length scaling down to 10 nm 

[2].Gate underlap of source/drain has a vital importance over 

lightly or undoped channel double-gate MOSFETs [3,4]. Gate 

underlap or non-overlap has more advantages over double-

gate MOSFETs in subthreshold region such as it reduces gate 

edge direct tunneling leakage, gate sidewall fringe capacitance 

and also reduces SCE due to increase in effective channel 

length, ensuring improved circuit performance. Gate underlap 

DGMOSFET can be used in subthreshold circuit for ultra-low 

power consumption with low to medium frequency [5]. 

The current modeling of gate underlap DGMOSFET is 

necessary to know the drive capability of the transistor. 

Asymmetrical gate underlap modeling was given by[6], still 

symmetrical current modeling is to be investigated for 

subthreshold regime. Underlap DG devices functioned at 

small current intensities are predominantly suitable for ULV 

analog/RF applications as gain and speed of devices can be 

considerably enriched [7]. 

2. THE SUBTHRESHOLD CURRENT 

MODEL 
For weak inversion region, the 2D Poisson’s equation of gate 

underlap DGMOSFET (as shown in Fig.1) for three regions 

(I, II and III) are given by  
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Where Ψi(x, y) is the potential variation in three regions (for 

i=I, II and III) along x and y direction, q is the electronic 

charge, Na is doping concentration along the channel and εSi is 

permittivity of silicon. Fig.1 interprets the separation of the 

three regions.  The potentials of three regions are considered 

as parabolic is given by [6, 8]
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1( )i x , 
2 ( )i x  and 

3( )i x  are the coefficients to be 

evaluated by proper boundary conditions. Since inner fringing 

field from the gate side wall affect the current conduction, to 

avoid tough mathematical burden we considered a minimum 

surface potential model i.e. virtual source. The surface 

potential model was derived [8] for three regions. We 

investigated the minimum surface potential occur at region-II 

(Gate overlap region).The surface potential of region –II is 

given by [8] 
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where Lun is underlap length, Vgs  is gate to source potential 

,ɸms is difference of work function between metal and 

semiconductor, the coefficient C and D can be calculated 

from[8] and natural length λ is given by 
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Where tsi and tox is thickness of body 

and oxide and єox  is oxide permittivity. The minimum surface 

potential point x can be calculated from 2 ( , )
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x
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Substituting the value of x in (3) we have minimum surface 

potential 
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(a)                                                                                                             (b) 

Fig1 (a): Schematic of an underlap DG MOSFET considered for model development. Regions I and III are underlap regions. 

Device body (regions I, II, and III) is undoped. (Lg= gate length, Lun= gate underlap, tox=gate-oxide thickness, tsi= silicon 

thickness, tg= gate thickness).  

Fig1 (b): Drain to source current versus Gate to source potential in subthreshold region for varying underlap length. The 

underlap length Lun is varied from 0 to 10nm in steps of 5nm. (Lg=18nm, tsi=7nm, tox=1.5nm, Vds= 50 mV). 

 

  

(a)                                                                                                             (b) 

Fig2 (a): Drain current versus Gate length in subthreshold region for varying underlap length. The underlap length Lun is 

varied from 0 to 10nm in steps of 5nm. ( tsi=7nm, tox=1.5nm,Vgs=0.2V, Vds= 50 mV). 

Fig2 (b): Drain current versus silicon body thickness in subthreshold region for varying underlap length. The underlap length 

Lun is varied from 0 to 10nm in steps of 5nm. (Lg=18nm, tox=1.5nm,Vgs=0.2V, Vds= 50 mV). 

 

The minimum body potential in symmetric Gate underlap 

DGMOSFET [8] is given by 
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The current conduction in Gate underlap DGMOSFET is 

diffusion dominated and the drain to source current is given 

by[6]  
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Where µeff is effective mobility, Le=Lg+2*Lun is effective 

channel length and Lg is gate length, vt=kT/q is thermal 

voltage, ni  is intrinsic carrier concentration and Vds is drain to 

source potential. 

3. RESULTS AND DISCUSSION 
Fig1 (b) shows plot of drain current verses gate to source 

potential of Gate underlap DGMOSFET for varying of 

underlap length from 0 to 10nm in subthreshold regime. This 

shows the validation of our model with sentaurus simulation 

results. The current decreases as underlap length increases, 

since increase in the parasitic resistances. 
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Fig2 (a) shows the drain current verses gate length with 

varying Lun. As the gate length increases the drain current 

decreases due to increase in effective channel. The effect of 

drain current shows in same plot by both varying gate length 

and underlap length. 

Fig2 (b) shows the drain current verses silicon body thickness 

with varying underlap length. If silicon body thickness 

increases then carrier concentration increases. Hence drain 

current increases with increasing silicon body thickness. This 

plot also shows the variation of drain current with both 

changing of silicon body thickness and underlap length. 

4. CONCLUSIONS 

The current model of Gate underlap DGMOSFET validated 

with the simulation by using sentaurus tool. We have 

investigated the variation of drain current with variation of 

thickness of silicon body, gate length and underlap length 

(non overlap gate length).When underlap length increases, 

effective channel length increases that increase the parasitic 

resistance , hence conduction of current decreases. Since the 

length is in Nano scale, current conduction takes place with 

very low value which may useful for switching circuit. 
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