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ABSTRACT 

A challenging problem in Cognitive radio is that the 

secondary users in cognitive radios must be able to detect 

primary users under low signal-to-noise ratio (SNR) and 

dispersive channel. Spectrum sensing based on auto-

correlation of the received signal samples being more prone to 

correlate under dispersive condition, has been investigated. 

Simplified theoretical expressions for probability of false 

alarm and probability of detection of the auto-correlation 

based algorithm are derived in the presence of multi-path 

fading channel. Spectrum of an unknown primary signal has 

been obtained through auto-regressive parametric signal 

modeling. By the proposed auto-correlation technique the 

detection probability near unity can be achieved at finite input 

samples and at a very low SNR for OFDM DVB-T signal and 

a wireless FM microphone signal in VHF band. It is found 

that dimension of auto-correlation matrix and signal sample 

duration is inversely proportional to achieve unity detection 

probability.  

Keywords 

Spectrum sensing, autoregressive analysis, OFDM, multi-path 

fading. 

1. INTRODUCTION 
Demand for free spectrum, a scare resource for wireless 

communication is increasing day by day. Cognitive radio 

(CR) opened the possibility of significant spectrum re-use [1, 

2, 3, 4, 5]. In a CR network the secondary users are allowed to 

utilize the frequency bands of primary users when these bands 

are not being utilized by the primary. Spectrum sensing is a 

key function for detecting the presence of primary signals [6]. 

Furthermore, in order to avoid interference with hidden 

primary receivers, secondary system must know the presence 

or absence of very weak primary signals [6, 7] at a low SNR 

below about -10 dB. Quite a few sensing methods have been 

proposed [8-11]. A drawback of the proposed sensing 

methods [8-11] is that the detection depends on the estimated 

noise power. It is noticed that powerful auto-correlation based 

sensing has not been explored to its full potential so far. It is 

important that a detector must have a threshold of detection 

independent of noise power and thus detector can avoid noise 

uncertainty problem. Secondly, implementation of the 

detector should be simple and efficient. However, higher 

computational complexity is difficult to get away at low SNR 

regime. But technology trends towards achieving inexpensive 

large memory together with fast computational devices, the 

problem of computation complexity will soon be overcome in 

future.  

     In this work, spectrum sensing algorithm is derived from 

auto-correlation of the received samples. It is shown that with 

proper choice of decision statistic [12], the threshold of 

detection can be made independent of the noise power. The 

proposed method is very effective in practical dispersive 

channel as signal samples are more correlated under this 

condition. Spectrum of an unknown primary signal is obtained 

by autoregressive (AR) analysis [13, 14]. Advantages of 

parametric spectrum estimation method over non-parametric 

method are manifold [13]. The proposed sensing method is 

able to detect closely spaced primary signals. From auto-

correlation of the received signal samples, an analytical 

expression of probability of detection for a given probability 

of false alarm is derived. Finally, the proposed algorithm is 

employed to detect a low snr VHF OFDM based DTV-T and 

FM microphone signal and their detection performance is 

analyzed. 

2. SPECTRUM SENSING 
 

 

Fig 1:   Auto-correlation detector 

A simple auto-correlation detector is shown in Fig.1. 
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an unknown signal of durationT and carrier frequency cf
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Using a threshold of detection on the sampled correlation 

matrix xxR
 the power spectrum of an unknown signal can be 

estimated. Spectrum estimation model [13] chosen here is an 

auto regressive all pole process of order p.   Let us consider a 

finite received signal samples 
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and the corresponding noise correlation matrix is wwR
. 

Notice that
)()()( nwnsnx 

, the sum of clean signal and 

noise. Dimension of xxR
 is M x M  where M  is the 

maximum value of lag l .  

2.1 Parametric spectral estimation of an 

input signal 
From the sample covariance matrix the power spectral density 

of the input signal can be obtained. Spectrum estimation 

model chosen here is an auto regressive all pole process of 

order p. An all pole system model can be described by 
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where 
sak '

are the coefficients to be estimated from the 

input data
)(nx

.Inverse Z-Transform of  Eq.(2) is given by                     
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Define 
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, the linear AR 

equations can be written in matrix form 
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The matrix containing elements of 
)(lrxx is denoted by xxR

. 

In the above equations it is assumed that 
10 a

. Using the 

time average auto correlations 
)(lrxx  from Eq. (1), estimated 

AR parameters 
sak '

 can be found out from Eq.(4). Once 

sak '
 is obtained power spectrum can be estimated from Eq. 

(5) by employing the following relationship. 
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2.2 Probability of detection from auto-

correlation matrix xxR  

 Let’s denote the sum of all the elements of a correlation 

matrix xxR
 by XT

. When the ratio of the sum of the absolute 

value of signal correlation matrix to the sum of the absolute 

value of noise correlation matrix elements wwR
 is greater 

than a threshold Th
 then the signal is present and otherwise 

signal is not present. Th
 is a threshold to be determined to 

meet the required probability of false alarm. The calculation 

of the mean and variance of the test metric WT
 for the noise 

can be found in [14]. In order to obtain probability of 

detection dP
 from auto correlation detection when signal is 

present, the two quantities 
)( xTE

and
)var( xT

 are required 

to be obtained. When 
)(nh

 is time dependent channel and 

amplitude fading ‘  ’ follows Rayleigh distribution with 

parameter 

2

h
 then it can be shown 
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correlation matrix,  
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3. COMPUTATIONAL COMP- LEXITY 

OF THE ESTIMATED SPECTRUM 
Total computational complexity for estimating power 

spectrum )(ˆ fPxx from Eq.(5) can be calculated from the 

following expression   

M
NM

MMMN 2

22 log
2

log       (10) 

The first term is attributed to calculation of sample auto-

correlation matrix, the second term contributes to matrix 

inversion and the third term contributes to frequency response 

of the parameters. For large samples N the complexity is 
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mainly dominated by the first term. So for 1000N , all 

practical purposes the order of computational complexity of 

the algorithm is
2MN . 

4. RESULTS AND DISCUSSION 

4.1 Detection of OFDM DVB-T signal in 

VHF band channel #6 
Performance of an auto-correlation detector is investigated by 

sensing OFDM based DTV-T signals. DVB-T standard signal 

is simulated [15] and shown in Fig.2 (a) (top). Following 

[13.14], power spectral density of OFDM based DVB-T 

signal is estimated at -20 dB SNR. Result is shown in Fig. 

2(a) (bottom). Rayleigh faded channel has been assumed. The 

probability of  

                                                             

                                    (a) 

 

                                  (b) 

Fig 2(a): (Top) Transmitted OFDM DVB-T spectrum in 

VHF band Ch #6 and (bottom) estimated PSD of an 

OFDM spectrum at -20 dB SNR.  2(b): Probability of 

detection versus probability of false alarm for various 

input samples and SNR -20 dB in a Rayleigh fading 

channel 

detection is calculated from Eq.(9) and the result is shown in 

Fig. 2(b) for different number of input samples N . 

Probability of detection is improved with increasing number 

of samples. At a low SNR -20 dB and N =25,000, the 

detection probability approaches near unity for probability of 

false alarm equal to 0.5.  Detection performance can be 

improved by setting higher probability of false alarm. 

4.2 Detection of wireless micro- phone 

signal in VHF band Ch#6  
Wireless microphone is regularly employed in TV studios and 

also for outside broadcast (OB). RF microphone operates on 

VHF TV channels. Following the documentation in [16] 

frequency modulated (FM) microphone signal is generated in 

the VHF band at channel 6. Information signal is a uniform 

random variable distributed between [-1, 1]. Rayleigh faded 

channel is assumed. Received signal to noise ratio is -20 dB. 

Spectrum of the transmitted signal is shown in Fig. 3 (top). 

Power spectral density of the detected signal is estimated by 

spectrum estimation methods described in section 2.1. and the 

result is shown in Fig 3 (bottom). Probability  

 

Fig 3: (Top) Transmitted spectrum of FM modulated 

microphone signal in VHF band channel 6, 82-88 MHz; 

(bottom) estimated spectrum at -20 dB SNR 

 

Fig 4: Probability of detection versus probability of false 

alarm for a microphone signal for various input samples 

lengths ( N ) at a SNR = -20 dB in a Rayleigh fading 

channel 

of detection is calculated following the method described in 

the section 2.2 and the result is shown in Fig. 4 for different 

number of input samples. Probability of detection is improved 

with increasing number of samples. For N =10,000 detection 

probability approaches near unity. The performances of 

detection can also be improved by setting higher probability 

of false alarm. 

4.3 Detection of two closely spaced 

spectrums 
Our aim is also to estimate power spectral density (PSD) of 

two closely spaced signals and for this purpose we have 

assumed two narrow band microphone spectrums [16] in the 

VHF band 90 MHz and 110 MHz in a low SNR regime. 

Incoming signals are kept at -10 dB SNR. In order to reduce 

the sensing time higher order M (=14) has been chosen. It 

has been found that 800 samples are required to attain unit 

probability of detection. Detected spectrum is shown in Fig.5. 

Two spectrums are clearly distinguishable. The choice of N  
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and M  is inversely proportional. This is useful for 

controlling the sensing time. Sensing time is the product of 

sample period times the input number  

 

Fig 5: Estimated spectrum of two narrow band signals at 

90 MHz and 110 MHz; SNR   -10 dB, sample duration 

N 800 and M =14 

of samples. For example, smoothing factor M  can be 

increased to reduce the sensing time. In this example to detect 

two closely spaced spectrums sensing time is 150 ms at a 

sampling frequency of 10 KHz. 

 

5. CONCLUSIONS 
Performance of auto-correlation detector for spectrum sensing 

of an unknown signal has been investigated. Analytical 

expression of the probability of false alarm and detection are 

obtained under flat fading channel. Spectrum of an unknown 

primary signal at a low SNR -20 dB is obtained through 

autoregressive analysis using parametric signal modeling. 

Detection probability of an OFDM DVB-T signal has been 

investigated. Detection probability approaches near to unity 

for N =25,000 samples at SNR=-20 dB. For narrow band 

FM microphone signal detection probability approaches near 

to unity for N =10,000 samples when channel fading is 

present It is found that auto-correlation technique can be a 

promising method to detect the presence of a low SNR signal 

without having any noise uncertainty.  
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