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ABSTRACT 

We have explored the possibility of generation and 

propagation of ultraslow bright optical temporal solitons in 

asymmetric three-coupled quantum well systems. These 

bright solitons owe their existence to Kerr and quintic 

nonlinearities which arise due to a probe pulse and two 

controlling laser beams. We also find numerically that these 

solitons are stable against weak perturbation.  
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1. INTRODUCTION 
In recent years, optical solitons have received tremendous 

attention due to their potential applications in communication, 

information processing and optical computing [1-2]. In 

particular, interest in the studies on sub- and superluminal 

optical soliton propagation due to quantum optical coherence 

and interference effects in semiconductor quantum wells 

(SQWs) [3-8] have increased. Due to small effective electron 

mass, SQWs possess large electric dipole moments of inter 

sub-band transitions and high nonlinear optical coefficients. 

Furthermore, their transition energies, dipole moments and 

symmetries can be engineered as desired by choosing the 

materials and structure dimensions in device design. In 

SQWs, optical solitons can be created at a very low power, of 

the order of a few mW. The formation of optical solitons in 

QWs is the manifestation of a delicate balance between group 

velocity dispersion (GVD) and self phase modulation due to 

optical nonlinearity induced by the probe pulse and control 

fields.  In this communication we show the existence of bright 

solitons based on inter subband transition (ISBT) in an 

asymmetric three-coupled quantum well (ATCQW) structure 

and investigate their dynamics when the system provides both 

Kerr and quintic nonlinearities. 

2. MATHEMATICAL MODEL 
We consider an ATCQW structures having four electronic 

energy levels that forms the well known cascade 

configuration. The TCQW sample consists of 40 coupled well 

periods.  Each well period consists of three GaInAs wells of 

thickness 4.2, 2.0 and 1.8 nm respectively and they are 

separated by 1.6 nm barriers made of AlInAs. The present 

structure has energy levels as 휀1 = 151mev, 휀2 = 270mev, 

휀3 = 386mev and 휀4 = 506mev. 𝜔21 , 𝜔32  and 𝜔43 

respectively represent the energy difference of |  2 → |  1 , 

|  3 → |  2  and |  4 → |  3  transitions. A weak probe optical 

pulse with angular frequency 𝜔𝑃 , wave vector𝑘𝑃 = 𝜔𝑃 𝑐 , 

polarization vector 𝑒 𝑃  and amplitude 𝐸𝑃  is assumed to 

propagate in 𝑧-direction inside the QW where it interacts with 

this four level system. The growth direction of the quantum 

well is along the y-axis and z-axis is parallel to the QW plane. 

The quantum well system also interacts with two continuous 

wave (CW) control laser fields 𝐸𝐶1 and 𝐸𝐶2. 

     

  
 

  
Figure 1: Conduction band energy level diagram for a 

single period of the three-coupled asymmetric quantum 

well structure. 

In the interaction picture, with the rotating wave 

approximation and electric dipole approximation, the 

interaction Hamiltonian can be written respectively as  

𝐻 0 = −∆1  2  2  − ∆2  3  3  − ∆3  4  4  −
 Ω𝑃  2  1  + Ω𝐶1  3  2  + Ω𝐶2  4  3  + ℎ. 𝑐.    

              (1) 

where Ω𝑃 , Ω𝐶1 and Ω𝐶2 are the half Rabi frequencies 

corresponding to the laser driven inter subband transitions 

|  1 ↔ |  2 , |  2 ↔ |  3  and |  3 ↔ |  4 respectively and the 

detuning ∆1, ∆2 and ∆3 are defined as ∆1= 𝜔𝑃 −
 휀2 − 휀1 ℏ , ∆2= 𝜔𝐶1 −  휀3 − 휀2 ℏ + ∆1 and 

∆3= 𝜔𝐶2 −  휀4 − 휀3 ℏ + ∆2. The state vector of the 

system is written as,   𝜓 = 𝑎1  1 + 𝑎2  2 + 𝑎3  3 +
𝑎4|  4  where 𝑎𝑗  is the time dependent probability amplitude 

of finding the electron in the subband |  𝑗 . Maxwell-
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Schrödinger equations for the subband amplitudes and probe 

field in the interaction picture are obtained as 

                𝑎1 = 𝑖Ω𝑃
∗ 𝑎2,               (2a)  

                𝑎2 = 𝑖∆1𝑎2 + 𝑖Ω𝑃𝑎1 + 𝑖Ω𝐶1
∗ 𝑎3 − 𝛾2𝑎2      (2b) 

                𝑎3 = 𝑖∆2𝑎3 + 𝑖Ω𝐶1𝑎2 + 𝑖Ω𝐶2
∗ 𝑎4 − 𝛾3𝑎3,   (2c) 

                𝑎4 = 𝑖∆3𝑎4 + 𝑖Ω𝐶2𝑎3 − 𝛾4𝑎4,             (2d) 

                
𝜕Ω𝑃

𝜕𝑧
+

1

𝑐

𝜕Ω𝑃

𝜕𝑡
= 𝑖𝜅𝑎2𝑎1

∗.              (2e) 

where 𝜅 = 𝑁 𝜇12 
2𝜔𝑃  2ℏ𝜖0𝑐  , 𝑁 being the electron 

density in the well and 𝜔𝑃  is the frequency of the probe field. 

Decay rates 𝛾𝑗  𝑗 = 2,3,4  have been added 

phenomenologically to describe the corresponding total decay 

rate of the subband |  𝑗 . We assume that 𝑎𝑗 =  𝑎𝑗
 𝐾 

,  𝑎𝑗
 𝐾 

𝐾  

is the 𝐾th order part of 𝑎𝑗  in terms of  Ω𝑃 . In adiabatic 

framework, 𝑎𝑗
 0 

= 𝛿𝑗1 and𝑎1
 1 

= 0, where 𝛿𝑗1is the 

Kronecker delta. Equations (2a) through (2e) are solved in the 

linear regime employing the Fourier transform technique to 

get the probe field propagation equation 

 
𝜕𝛬𝑃

𝜕𝑧
− 𝑖𝛽 𝜔 𝛬𝑃 = 0              (3) 

where 𝛬𝑃  is the Fourier transform of Ω𝑃 , 𝜔 is the Fourier 

transform variable, and 𝛽 𝜔  the dispersion function. 

𝛽 𝜔 = 𝜔 𝑐 − 𝜅 𝐷𝑃 𝜔 𝐷 𝜔   . 𝐷𝑃 𝜔 =
 𝜔 + ∆2 + 𝑖𝛾3  𝜔 + ∆3 + 𝑖𝛾4 −  Ω𝐶2 

2,  

𝐷 𝜔 =  𝜔 + ∆1 + 𝑖𝛾2  𝜔 + ∆2 + 𝑖𝛾3  𝜔 + ∆3 +
𝑖𝛾4−Ω𝐶22𝜔+∆1+𝑖𝛾2−Ω𝐶12𝜔+∆3+𝑖𝛾4The dispersion 

function 𝛽 𝜔  can be expanded in Taylor series around the 

central frequency of the probe field i. e. 𝜔 = 0.  

𝛽 𝜔 = 𝛽 0 + 𝜔𝛽′ 0 +
𝜔2

2
𝛽′′  0 + 0 𝜔3     (4)  

𝛽 0  describes the phase shift and linear absorption, 𝛽′ 0  is 

related to the group velocity 𝑣𝑔 =Re 1 𝛽′ 0    and 𝛽′′ 0  

represents group velocity dispersion of the probe field. To 

investigate nonlinear pulse propagation we need to 

incorporate the effect of optical nonlinear terms in the pulse 

dynamics. These nonlinear terms are responsible for self-

phase modulation which together with GVD leads to shape 

preserving solitary wave propagation. Including the nonlinear 

term, equation (2) reduces to  

                   
𝜕Ω𝑃

𝜕𝑧
+

1

𝑐

𝜕Ω𝑃

𝜕𝑡
=

𝑖𝜅𝑎2
 1 

+ 𝑁𝐿𝑇. 𝑎2
 1 

,         (5) where  

𝑁𝐿𝑇 = −𝑖𝜅   𝑎2
 1 

 
2

+  𝑎3
 1 

 
2

+  𝑎4
 1 

 
2
−   𝑎2

 1 
 

2
+

𝑎312+𝑎4122 Following the method developed by Wu and 

Deng [9] we obtain the modified cubic quintic nonlinear 

Schrödinger (MCQNLS) equation in the retarded frame 

defined by 𝜉 = 𝑧 and 𝜂 = 𝑡 − 𝑧𝛽′ 0 ,    

   
 

 

𝑖
𝜕Ω 𝑃

𝜕𝜉
−

1

2
𝛽′′ 0 

𝜕2Ω 𝑃

𝜕𝜂2
+ 𝑊𝑒−𝛼𝑧  Ω 𝑃 

2
Ω 𝑃 −

𝑀𝑒−2𝛼𝑧  Ω 𝑃 
4
Ω 𝑃 = 0  

                                          (6) 

where 𝑊 and 𝑀 represent the cubic and quintic parts of the 

nonlinearity provided by the quantum well to the 

probe field. 

  𝑊 = 𝜅
𝐷𝑃  0 

𝐷 0 
 
 𝐷𝑃  0  2+ Ω𝐶1 2  ∆3+𝑖𝛾4 2+ Ω𝐶2 2 

 𝐷 0  2
  ,   𝑀 =

𝜅
𝐷𝑃  0 

𝐷 0 
 
 𝐷𝑃  0  2+ Ω𝐶1 2  ∆3+𝑖𝛾4 2+ Ω𝐶2 2 

 𝐷 0  2
 

2

and 𝛼 =

2Im 𝛽 0   
When the absorption co-efficient 𝛼 is small, in terms of the 

normalized co- ordinates 𝑍 and 𝜏, given by 𝑍 = |𝑊𝑟 |𝜉 and 

𝜏 =  |𝑊𝑟 | 𝛽′′ 0  , the MCQNLS becomes 

   𝑖
𝜕Ω 𝑃

𝜕𝑍
−

1

2

𝜕2Ω 𝑃

𝜕𝜏2 −  Ω 𝑃 
2
Ω 𝑃 + 𝛿 Ω 𝑃 

4
Ω 𝑃 = 0         (7) 

where 𝛿 = |𝑀𝑟 | |𝑊𝑟 | , subscript 𝑟 signifies real part. In 

general, coefficients 𝑊 and 𝑀 are complex, for suitable set of 

system parameters, imaginary parts of these coefficients may be 

made very small in comparison to their real parts. The 

parameters taken in our study are as  follows: 𝑁 = 1016𝑐𝑚−3, 

µ12 = 13𝑒𝐴0, 𝜔𝑃 = 18.08 × 1013𝑠−1 thus 𝜅 = 1.4 ×
1011𝜇𝑚−1𝑠−1, decay rates 𝛾2 = 4.8 × 106𝑠−1, 𝛾3 = 3.8 ×
106𝑠−1, 𝛾4 = 4.2 × 1011𝑠−1, Rabi frequencies Ω𝐶1 =
4.0 × 1011𝑠−1, Ω𝐶2 = 4.0 × 1011𝑠−1detunings ∆1=
−1.0 × 1011𝑠−1, ∆2= −2.0 × 1012𝑠−1, ∆3= −4.0 ×
1012𝑠−1. Under such situations, it is possible to obtain shape 

preserving soliton solution which propagates over long distance 

with subluminal group velocity 𝑣𝑔 = 7.72 × 10−6𝑐. The 

robust soliton of equation (5) can be obtained for any arbitrary 

value of 𝛿 which may be written as [9]: 

                                        

 Ω 𝑃 𝑍, 𝜏  =
21 2 𝛬 𝑒𝑥𝑝  −𝑖𝛬2𝑍 2  

 1+ 1−
8

3
𝛿𝛬2 

1 2 
𝑐𝑜𝑠ℎ 2𝛬𝜏  

1 2 , (8) 

The parameter 𝛬 is related to soliton amplitude and width and 

thus it determines soliton energy. The expression for soliton 

energy Q can be obtained using  Ω 𝑃 𝑍, 𝜏  
2
𝑑𝜏+∞

−∞
, which 

comes out to be  

𝑄 = − 
6

𝛿
 

1 2 

𝑡𝑎𝑛ℎ−1  
61 2  −3 +  9 − 24𝛿𝛬2

 
1 2 

 

12𝛬𝛿
1 2 

  

To ensure that 𝑄 is always positive, we must have  

𝛿𝛬2 < 3 8 . 
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  Figure 2: Stable soliton shape of the probe pulse  Ω 𝑷 𝒁, 𝝉   as a function of Z and  .   

3.  CONCLUSION 
We have shown the possibility of generation of ultraslow 

bright optical solitons due to Kerr and quintic nonlinearities in 

asymmetric three-coupled quantum well systems. These 

bright solitons arise due to nonlinearities generated by a probe 

pulse and two controlling laser beams. With the help of 

numerical simulation of nonlinear Schrödinger equation, we 

have demonstrated that these solitons are stable during their 

propagation. 
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