
International Journal of Computer Applications (0975 – 8887)

International Conference on Computing and information Technology (IC2IT-2013)

16

Bit Mask Search Algorithm for Trajectory Database

Mining

P.Geetha

Research Scholar
Alagappa University

Karaikudi

E.Ramaraj, Ph.D
Professor

Dept. of Computer Science & Engineering
Alagappa University

Karaikudi

ABSTRACT

Mining great service entities in trajectory database indicates to

the exposure of entities with huge service like acquisition. The

extensive number of contender entities degrades the mining

achievement in terms of execution time and space stipulation.

The position may become worse when the database consists

of endless lengthy transactions or lengthy huge utility entity

sets. In this paper, we use two algorithms, namely Utility

Pattern Growth (UP –Growth) for mining huge utility entities

with a set of adequate approaches for pruning contender

entities. The previous algorithms do not contribute any

compaction or compression mechanism the density in bit

vector regions. To raise the density in bit-vector sector the Bit

search Mask Search (BM Search) starts with an array list.

From root node, a BM Search representation for each frequent

pattern is designed which gives an acceptable compression

and compaction in bit search measure than UP Growth

algorithm. This paper compared two algorithms such as UP

Growth and BM Search. In the analysis of two algorithms BM

Search produces best result compared than the other

algorithms. An experimental result shows the comparison of

two algorithms.

Keywords

Utility Pattern Growth, Bit Mask Search, Trajectory

databases, Frequent Entity set.

1. INTRODUCTION
DATA MINING is the mechanism of extracting nontrivial,

already unknown and probably convenient information from

huge databases. Observing appropriate entities invisible in a

database plays a central role in considerable data mining

tasks, such as frequent pattern mining. Frequent pattern

mining is a significant research topic that has been enforced to

various kinds of databases, such as trajectory databases,

transactional databases, streaming databases, and time series

databases.

Data mining system should award users to enumerate hints to

model the search for compelling entities. In this paper we

proof experimentally that Bit Search Mask Search (BM

Search) algorithm gives better result than UP Growth

algorithm. It holds less time, less space and produces huge

accurate results with diminished number of frequent trajectory

transactions. BM Search contributes any compaction or

compression mechanism to raise the density in bit vector

sectors. In this structure, weights of entities, such as unit

benefits of entities in trajectory databases, are treated. With

this approach, even if some entities arrive occasionally, they

might still be found if they have huge benefit. However, in

this scheme, the portions of entities are not treated yet. In

view of this, utility mining appears as an essential case in data

mining field. Mining huge utility entities from databases

indicates to discovering the entities with huge benefits.

Here, the definition of entity utility is pleasingness,

consequence, or desirability of an entity to users and

trajectory device as Radio Frequency Identification (RFID).

Utility of entity in a trajectory database consists of two

conditions: 1. the essence of specific entities, which is labeled

as extraneous utility, and 2. the essence of entities in

transactions, which is termed as constitutional utility. Benefit

of an entity is characterized as the product of its extraneous

utility and its constitutional utility is no less than a user

specified minimum utility threshold; otherwise it is called a

low utility entity. Mining huge utility entities from databases

in an essential effort has an extensive scope of applications for

UP-Growth. An entity is termed frequent if its base is not less

than a given absolute nominal support threshold value which

is user defined one. Bit Stream Mask is a different approach in

which the input fie is first transferred into numerical data.

After this the transaction file is wrapped into an array for

further processing. This approach raises the global

competency of the apriori algorithm in terms of time and

space complexity.

The remaining part of the paper is organized as follows:

Section II involves the works related to UP-Growth and BM

Search. Section III involves a brief description of the existing

methods –Utility Pattern Growth (UP Growth) and the

problems involved in them. Section IV involves the

description of the proposed method – Bit Mask Search (BM

Search). Section V involves the performance evaluation and

comparison of BM Search and existing techniques based on

UP-Growth. The paper is concluded in Section VI.

2. RELATED WORK
This section deals with an efficient algorithm for mining great

utility entities from trajectory databases. Tseng, et al proposed

a paper based on trajectory databases[1]. The achievement of

Utility Pattern (UP) Growth is correlated with the state of the

art algorithms on frequent types of both real and synthetic

data sets. Boaddh, et al proposed a paper of Bit Mask(BM).

Search for mining frequent entities [2]. This paper proves

experimentally that Bit Mask (BM) Search algorithms gives

better result compare than UP Growth algorithm. Bit Mask

(BM) Search begins with an array list. A BM search

representation for individual entity is established which gives

a sufficient compression and compaction in Bit Search Mask

Search by using this approach. Tseng, et al proposed an

efficient algorithm for high utility itemset mining [3]. In this

paper, they proposed an efficient algorithm, namely UP-

Growth (Utility Pattern Growth), for mining high utility

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing and information Technology (IC2IT-2013)

17

entities with a set of techniques for pruning candidate entities.

The information of high utility entities is preserved in a

special data structure named UP-tree (Utility Pattern Tree)

such that the candidate entities can be developed efficiently

with only two scans of the database. Abaya proposed an

association rule mining based on Apriori algorithm in

minimizing candidate generation[4]. Wang, et al proposed a

model based approach based on accelerating probabilistic

frequent itemset mining[5]. Hong, et al suggested a paper for

effective utility mining with the measure of average utility [6].

Frequent entities mining only examines the frequency of

occurrence of the entities but does not reflect any other

aspects, such as benefit. Dr.E.Ramaraj proposed an general

survey on multi-dimensional and quantitative association rule

mining algorithms[7]. Discovery of hidden patterns and

relationships often goes unexplained. State of the art data

mining techniques can help to overcome this situation. Ahme,

et al proposed an efficient candidate pruning technique to

mine high utility patterns[8]. Conventional frequent pattern

mining methods consider an equal benefit for all items and

only binary occurrences of the items in transactions.

Yildiz, Ergenc suggested the comparison of two association

rule mining algorithms without candidate generation[9]. In

this paper, they compare matrix apriori and FP-Growt0h

algorithms. Data mining defined as finding hidden

information from huge data sources has become a popular

way to discover strategic knowledge. Fan zhang, et al

proposed a paper for accelerating frequent itemset mining on

graphics processing units[10]. The goal of Frequent Itemset

Mining (FIM) is to catch frequently appearing subsets within

a database of sets. The objective of FIM is to consider a

database of itemsets and classify all item subsets that appear

more frequently than a given, user specified threshold.

Schlege, et al proposed a paper for Memory Efficient

Frequent Itemset Mining[11]. Efficient discovery of frequent

itemsets in extensive datasets is a key fundamental of many

data mining functions. Ustundag, et al proposed a paper for

Fuzz rule based system for the economic analysis of RFID

investments[12]. Radio Frequency Identification is a

mechanism that incorporates the use of electromagnetic or

electrostatic coupling in the Radio Frequency (RF) portion of

the electromagnetic spectrum uniquely identifies an object.

Kim, et al suggested a paper for Mining frequent itemsets

with normalized weight in continuous data streams[13]. The

problem of frequent itemsets. mining is finding the complete

set of itemsets satisfying a minimum support in the

transaction database. Roh, et al proposed a paper pattern

matching queries over trajectories on road networks[14]. This

paper subjects pattern scale trajectory data, say, from gripping

vehicles. In this paper, they proposed to represent a trajectory

as a sequence of road segments in road network. Liu, et al

suggested a paper for mining frequent trajectory patterns for

activity monitoring using radio frequency tag arrays[15]. The

RFID technology provides an economically attractive solution

due to the low cost of RF tags and readers.

3. EXISTING METHODS
Two existing methods for trajectory databases are considered.

One is Utility Pattern (UP) Growth.

3.1 Utility Pattern Growth (UP Growth)
In view of this, utility mining appears as an extensive case in

data mining field. Mining huge utility entities from datasets

indicates to discovering the entities with huge benefits. Here,

the meaning of entity utility is attractiveness, effectiveness, or

advisability of an item to users. Utility of entities in a

trajectory database consists of two aspects.

 The concern of specific entities, which is termed as

extraneous utility.

 The concern of entities in transactions, which is

termed as constitutional utility. Utility of an entity is

defined as the product of its extraneous utility and

its constitutional utility.

= (1)

Where, - Utility Threshold

Umax Maximum Utility Count

Umin Maximum Utility Count

An entity is labeled as a high utility entity set if its utility is no

less than a user-specified minimum utility threshold;

otherwise, it is termed as a low-utility entity set. Mining high

utility entity sets from databases is an important function has a

wide range of applications. ALGORITHM I is for Trajectory

UP Growth. The following equation (1) is used to calculate

the utility threshold value.

3.1.1 Description for ALGORITHM

In the first algorithm first we initialize all the values like

uList, uc = 0, du = 0. Where, uList – userList, ucList – utility

count List, uc – Utility Count, dc- distinct user Count. And,

get all the distinct users. After getting the distinct users assign

a utility count for each user. Subsequently, set threshold using

the equation (1). Transactions less than threshold are

considered as Low Utility Count (LUT). Afterwards, remove

the Low Utility Count. Apply steps from 1 to 5 for RTT and

return FTTI

ALGORITHM I – Trajectory UP –Growth

Input: Trajectory Transactions (TT)
Output: Frequent Trajectory Transactions (FTT)
Begin
1. Initialize the values
2. For all Transactions //Getting distinct users

a. If(uList.contains(user))
i. doNothing();

b. else
i. uList.add(user);

ii. dc++;
3. End For

4. For all Transactions //utility count for each user
a. For each user in uList

i. uc++;

b. End For

c. ucList.add(uc);
d. uc = 0;

5. End For

6. Set Threshold using the equation(1)
7. Transactions less than threshold are considered as

Low Utility Transactions (LUT)
8. Remove LUT
9. TT – LUT = Reorganized Trajectory Transactions

(RTT)

10. Apply steps 1 to 5 for RTT
11. Return FTT

End

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing and information Technology (IC2IT-2013)

18

4. BIT MASK SEARCH
Mask is an input that is used for bitwise operation. Using

mask, multiple bits in a byte can be set either on, off or

invented from on to off in a single bitwise operation, this is

called as bit masking. An entity set is labeled persistent if its

support is not less than a given absolute minimal support

threshold value which is user defined one.

Bit Stream Mask is a different approach in which the input

file is first transformed into numerical data. After this the

transaction file is compressed into an array for further

processing. This approach increases the overall performance

of the apriori or Bit Mask Search (BM Search) algorithm in

terms of time and space complexity

Captions should be Times New Roman 9-point bold. They

should be numbered (e.g., “Table 1” or “Figure 2”), please

note that the word for Table and Figure are spelled out.

Figure’s captions should be centered beneath the image or

picture, and Table captions should be centered above the table

body.

Apriori is a seminal algorithm for mining frequent entity sets

for Boolean association rules. The name of the algorithm is

based on the fact that the algorithm uses prior learning of

frequent entity set properties.

Afterwards, identify distinct object in the overall database.

Subsequently, converting strings to numbers and assigning the

numeric value for each data. Then return the mask list.

Finally, update TT with masked data.

The Radio Frequency Identification (RFID) technology is

used to provide an inexpensive and relatively accurate

approach to activity monitoring. The trajectory data mining

technique is used to detect and analyze frequent trajectory

patterns. A BM Search representation for each frequent entity

is created which gives a sufficient compression and

compaction in bit search.

4.1 Description for ALGORITHM II
Algorithm II is Bit Masking Algorithm to assign unique

numeric values to all field values in the trajectory database.

First, initialize the values for dFRList, dFRcountList,

dFRcount = 0, maskList, temp = 0. Where, nof – number of

fields, dFRList – distinctFieldRecordList. Afterwards, identify

distinct object in the overall database. Subsequently,

converting strings to numbers and assigning the numeric value

for each data. Then return the mask list. Finally, update TT

with masked data

Input: Trajectory Transactions (TT), nof

Output: Masked TT
Begin
1. Initialize dFRList, dFRcountList, dFRcount = 0,

maskList, temp = 0
2. For each Transaction

a. For each field
i. If(dFRList.contains(object))

1. doNothing();

ii. Else

1. dFRList.add(object);
2. dFRcount++;

iii. dFRcountList.add(dFRcount);

iv. dFRcount = 0;

b. End For
3. End For
4. For each object in dFRList

a. Temp ++;

b. maskList.add(temp);
5. End For

6. Return maskList

7. Update TT with masked data
End

4.2 Description for ALGORITHM III
Algorithm III is for BM Search to identify frequent utility of

trajectory devices using the masking data. First, we initialize

the values for tdCount = 0, userTdCount = 0. Where, td-

Trajectory Device, tdCount – total td count, utdCountList –

user Td count list, pList – pattern List, pCount – patternCount,

ivp – invalid pattern

For example in Access pattern – denied access patterns are

invalid patterns. Later, get all distinct td and get all distinct

patterns. After that, delete TT from MaskedTT and assign

FTT to MaskedTT. Finally, return the FTT value

ALGORITHM III – BM Search
Input: MaskedTT
Output: FTT
Begin

1. Initialize tdCount = 0, userTdCount = 0;
2. For all MaskedTT // Getting distinct td

a. If(tdList.contains(td))
i. doNothing();

b. Else
i. tdList.add(td)
ii. tdCount++;

3. End For
4. For each user

a. For all userTransactions
i. If(userTdList.contains(td))

1. doNothing();
ii. Else

1. userTdList(user).add(td);
2. userTdCount++;

iii. utdCountList.add(userTdCount);
iv. userTdCount = 0;

b. End For
5. End For
6. For each utdCountList

a. If(utdCountList(td) == tdCount)

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing and information Technology (IC2IT-2013)

19

i. doNothing();
b. Else

i. Delete TT from MaskedTT
7. End For
8. For all MaskedTT // Getting distinct pattern

a. If(pList.contains(pattern))
i. doNothing();

b. Else
i. pList.add(pattern);
ii. pCount++;

9. End For
10. For each user

a. For all userTransactions
i. If(TT.contains(ivp))

1. Delete TT from Masked TT
b. End For

11. End For
12. After Deletion, MaskedTT = FTT
13. Return FTT

End

5. PERFORMANCE ANALYSIS

5.1 Time Consumption
The Time consumption for UP-Growth and BM Search is

analyzed and compared in Fig.1.

Time consumption for BM Search is lower compared than the

UP-Growth algorithm. Here, the x-axis represents time in

milliseconds and the y-axis the algorithms.

5.2 Processing Memory Consumption
The Memory Consumption for UP-Growth and BM Search

algorithms are compared and analyzed in Fig.2

Memory consumption for BM Search is diminished compare

than the UP-Growth algorithm. Here, the x-axis represents an

algorithm and y-axis represents the memory in bytes.

5.3 CPU Usage
The usage of CPU for UP-Growth and BM Search algorithms

are compared and analyzed in Fig.3. The CPU usage is

decreased measured than the UP-Growth algorithm.

Decisively, BM Search algorithm is outstanding. Here, the x-

axis represents the algorithm and y-axis represents the CPU

usage in percentage

5.4 Accuracy Evaluation
The efficiency assessment of UP-Growth and BM Search

algorithms are analyzed and measured in Fig.4.

The accuracy of BM Search algorithm is exceptional. The

accuracy evaluation of BM Search is superior compared than

the UP-Growth algorithm. The accuracy evaluation of BM

Search algorithm is improved correlated than the UP-

Growthalgorithm. Here, the x-axis represents the algorithms

and y-axis represents the accuracy in percentage

Fig.1 (a) Time Consumption for UP-Growth and BM

Search algorithms

5.5 Data Reduction
The devaluation of data for UP-Growth and BM Search

algorithms are compared and analyzed in Fig.5. The data

reduction for BM Search is high compared than the UP-

Growth algorithms. Data reduction for BM Search algorithm

is exceptional compared than the UP-Growth algorithm. Here,

the x-axis represents the algorithms and y-axis represents the

data reduction in percentage. Completely, the BM Search

algorithm is leading.

Fig.2 (a) Memory consumption for UP-Growth and BM

Search algorithms

Fig.3(a) CPU Usage for UP-Growth and BM Search

algorithms

International Journal of Computer Applications (0975 – 8887)

International Conference on Computing and information Technology (IC2IT-2013)

20

Fig.4 (a) Accuracy Evaluation of UP-Growth and BM

Search Algorithms

Fig.5(a) Data Reduction for UP-Growth and BM

Search Algorithms

6. CONCLUSION
In this paper, the two algorithms were proposed namely, UP-

Growth (Utility Pattern Growth) and BM Search (Bit Mask

Search). The BM Search algorithm is more appropriate and

best in terms of Time consumption, Memory consumption,

CPU usage, Accuracy Evaluation, and Data reduction. The

BM Search algorithm provides better results compared with

the UP-Growth algorithm. An experimental results shows the

performance of UP-Growth and BM Search algorithms. After

the overall performance of the two algorithms, the BM Search

algorithm is preferred. A new Bit Search Mask Search (BM

Search) algorithm is to mine frequent entity sets. Quantitative

proof that BM Search is superior to UP-Growth algorithm,

because it diminishes the memory space for finding the

frequent entity sets, it increments the overall efficiency of the

bit search in terms of time complexity. BM Search gives

better result especially when transactions are large.

7. REFERENCES
[1] Tseng, V, et al., Efficient Algorithms for Mining High

Utility Itemsets from Transactional Databases,IEEE

TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, 2013, vol. 25, pp. 1 - 15.

[2] Boaddh J, et al., Empirical Evaluation of Bit Mask

Search for Mining Frequent Item Sets, International

Journal of Engineering and Innovative Technology

(IJEIT), 2012, vol. 2, no. 6, pp. 1-15.

[3] Tseng VS, et al., "UP-Growth: an efficient algorithm for

high utility itemset mining," in Proceedings of the 16th

ACM SIGKDD international conference on Knowledge

discovery and data mining, 2010, pp. 253-262.

[4] Abaya SA, Association Rule Mining based on Apriori

Algorithm in Minimizing Candidate Generation,

International Journal of Scientific & Engineering

Research Volume, 2012, vol. 3, pp. 1-4.

[5] Wang L, et al., Accelerating probabilistic frequent

itemset mining: a model-based approach, in Proceedings

of the 19th ACM international conference on

Information and knowledge management, 2010, pp. 429-

438.

[6] Hong TP, et al., Effective utility mining with the measure

of average utility, Expert Systems with Applications,

2011, vol. 38, no. 7, pp. 8259-8265.

[7] Dr. Ramaraj E, A General Survey on Multidimensional

And Quantitative Association Rule Mining Algorithms,

International Journal of Engineering Research and

Applications, 2013, vol. 3, no. 4, pp. 1442-1448.

[8] Ahmed CF, et al., HUC-Prune: an efficient candidate

pruning technique to mine high utility patterns, Applied

Intelligence, 2011, vol. 34, no. 2, pp. 181-198.

[9] Yıldız B and Ergenç B, Comparison of two association

rule mining algorithms without candidate generation, in

Proceedings 10th IASTED international conference on

artificial intelligence and applications, AIA, 2010, pp.

450-457.

[10] Zhang F, et al., Accelerating frequent itemset mining on

graphics processing units, The Journal of

Supercomputing, 2013, pp. 1-24.

[11] Schlegel B, et al., Memory-efficient frequent-itemset

mining, in Proceedings of the 14th International

Conference on Extending Database Technology, 2011,

pp. 461-472.

[12] Ustundag A, et al., Fuzzy rule-based system for the

economic analysis of RFID investments, Expert Systems

with Applications, 2010, vol. 37, no. 7, pp. 5300-5306.

[13] Kim Y, et al., Mining Frequent Itemsets with Normalized

Weight in Continuous Data Streams, JIPS, 2010, vol. 6,

no. 1, pp. 79-90.

[14] Roh GP, et al., Supporting pattern-matching queries over

trajectories on road networks, Knowledge and Data

Engineering, IEEE Transactions on, 2011, vol. 23, no.

11, pp. 1753-1758.

[15] Liu Y, et al., Mining frequent trajectory patterns for

activity monitoring using radio frequency tag arrays,

IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEMS, 2012, vol. 23, pp. 1-12.

