Applications of Fuzzy Logic in Decision Making Theory

P.Bharathi
Asst.Prof of Mathematics
Sri Sarada Niketan College For Women
Amaravathipudur, Sivagangai district.

Abstract

Most important decisions in organizations are finalized by group of experts. Human judgments including preferences are often vague and cannot be estimated in exact numerical values. This paper proposes a user-friendly fuzzy approach under the linguistic frame work to obtain optimal solution for Multi Criteria Decision Making problems. To accomplish this, an aggregate-deviation method based on fuzzy numbers is proposed. A fuzzy decision matrix plays an important role in our research problem. The purpose of this method is to enhance group agreement on the group decision making outcomes.

GENERAL TERMS

Multi Criteria Decision Making, Fuzzy numbers, Linguistic variables.

KEYWORDS

Fuzzy decision matrix, Aggregate- deviation method

1. INTRODUCTION

1.1 Decision Making

Decision making can be defined as a process of specifying a problem, identifying and evaluating criteria or alternatives and selecting a preferred alternative among possible ones (Chen, 2005).

1.2 Multi-criteria Decision Making (MCDM

Multi-criteria decision making (MCDM) method) is a technique where alternatives or options are assessed based on a set of criteria and it is one of the most widely used methods in decision making (Hwang \& Yoon, 1981). MCDM methods have been employed in many areas such as engineering, agricultural, banking, energy, forestry, health services and education. General form of MCDM problem with m alternatives and n criteria can be illustrated in matrix format as follows:

Alternatives/Criteria	$C 1$	$\ldots . . . C n$
A1	-	-
\cdot	\cdot	.
\cdot	-	-
Am	-	-

1.3 Fuzzy MCDM

In real life, decision makers often make evaluation based on a set of criteria which are normally vague and imprecise. Due to this, fuzzy set was introduced particularly in representing the vague information or criteria. Fuzzy set theory was first utilized in solving decision making problem by Bellman and Zadeh in 1970. The key concept of fuzzy set theory is that its elements have a varying grade of membership, ranging from 0
to 1 . The boundaries of these fuzzy sets are not sharp or imprecise. The individual membership in a fuzzy set is represented by the degree of compatibility (Klir et.al, 1997) and fuzzy sets are used to describe linguistic values for example "very good," "good," "fair," "poor," and "very poor". Instead of using exact numbers as input values, fuzzy numbers were utilized in representing these linguistic terms.
The introduction of fuzzy set theory also motivates many researchers in integrating the theory with some of the classical MCDM methods. Pioneer work in incorporating fuzzy element into decision making was done (Baas and Kwakernaak, 1977) by introducing an algorithm for rating and ranking multiple aspects of alternatives using fuzzy sets. Decision makers' opinions can be expressed in terms of linguistic variables.

2 . PRELIMINARIES

2.1 Fuzzy set:

A fuzzy set X is a function $\mathrm{f}: \mathrm{X} \rightarrow[0,1]$.

2.2 Fuzzy number:

Fuzzy numbers are uncertain numbers for which, in addition to knowing a range of
possible values. A fuzzy number A_{f} is a normalized and convex fuzzy set.

Examples

Triangular fuzzy numbers, e.g., $[1,2,3]$
Trapezoidal fuzzy numbers, e.g., [1,2,3,4]

2.3 Linguistic Variable:

A linguistic variable is a variable whose values are words or sentences in a natural or artificial language. These linguistic variables can be expressed in positive triangular fuzzy numbers.

3. PROPOSED METHOD

- Collect the evaluation of alternatives by expert decision makers with respect to all criteria in terms of linguistic variables and we can form a decision matrix.
- Replace each linguistic variable by corresponding fuzzy number.
- Aggregate the fuzzy numbers in column wise based on criteria $\mathrm{C}_{1}, \mathrm{C}_{2}$,
- Aggregate the fuzzy numbers column wise based on decision makers $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$.
- Find the deviation in triangular fuzzy number.
- The fuzzy number with minimum deviation comes first in ranking order [ascending].

4. FIGURE

5. COMPUTATIONAL ASPECTS

Suppose group of expert decision makers want to select a most suitable candidate from several alternatives based on some criteria.

STEP 1

Evaluation of alternatives by expert decision makers with respect to all criteria in terms of linguistic variables.

Linguistic frame work [1].

Very Poor	VP	$(0,0,1)$
Poor	P	$(0,1,3)$
Medium Poor	MP	$(1,3,5)$
Fair	F	$(3,5,7)$
Medium Good	MG	$(5,7,9)$
Good	G	$(7,9,10)$
Very Good	VG	$(9,10,10)$

Evaluation table

		C_{1}			C_{2}					$\ldots \mathrm{C}_{\mathrm{m}}$		
$\begin{aligned} & \mathbf{P} \\ & 1 \end{aligned}$	A 1	$\begin{aligned} & \mathbf{L} \\ & \mathbf{1} \end{aligned}$	$\begin{aligned} & \mathbf{L} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathbf{L} \\ & 3 \end{aligned}$	\cdots	-	...	-	\cdot	-	$\stackrel{.}{ } \cdot$	\cdot	-
	-												
	A \mathbf{n}												
$\begin{aligned} & \mathbf{P} \\ & 2 \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & 1 \end{aligned}$												\cdot
-													
$\begin{aligned} & \mathbf{P} \\ & \mathrm{k} \end{aligned}$	$\begin{aligned} & \mathbf{A} \\ & \mathbf{n} \end{aligned}$												

Here C_{1}, C_{2}, \ldots are the criteria. $A_{1}, A_{2}, A_{3} \ldots$ are the alternatives. $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots$ are the decision makers. $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots$ are the linguistic variables.

STEP 2

To construct a fuzzy decision matrix replace each linguistic variable by corresponding fuzzy number.

STEP 3

Aggregate the fuzzy numbers in column wise based on criteria $C_{1}, C_{2}, \ldots \ldots$. by using the formula $F_{a g}=\left(L_{a g}, M_{a g}, U_{a g}\right)$
where $\mathrm{L}_{\mathrm{ag}}=\frac{1}{n} \sum_{1}^{n} l_{i} \quad, \quad \mathrm{M}_{\mathrm{ag}}=\frac{1}{n} \sum_{1}^{n} m_{i} \quad \& \mathrm{U}_{\mathrm{ag}}=$ $\frac{1}{n} \sum_{1}^{n} u_{i}$ for all fuzzy numbers $\left(\mathrm{l}_{\mathrm{i}}, \mathrm{m}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}}\right)$.

We get,

	P_{1}	$\mathrm{P}_{2} \ldots \ldots \ldots \ldots$	$\ldots \ldots \mathrm{P}_{\mathrm{k}}$
A_{1}	$\mathrm{~F}_{\mathrm{ag} 1}$	$\mathrm{~F}_{\mathrm{ag} 2} \ldots \ldots \ldots$.	
.	\cdot		
.	\cdot		$\ldots \ldots \ldots$
.	\cdot		
A_{m}	$\ldots \ldots \ldots$		

Where $\mathrm{F}_{\text {ag } 1,} \mathrm{~F}_{\text {ag } 2} \ldots \ldots \ldots$ are fuzzy numbers.

STEP 4

Aggregate fuzzy numbers column wise using the same formula based on decision makers P1, P2,.....

We get

A_{1}	$\mathrm{~F}_{\text {ag } 1}$
$\mathrm{~A}_{2}$	$\mathrm{~F}_{\text {ag } 2}$
\cdot	\cdot
$\mathrm{~A}_{\mathrm{m}}$	$\mathrm{F}_{\text {ag m }}$

STEP 5

Find the deviation in triangular fuzzy number by using the formula. $\mathrm{D}_{\mathrm{f}}=(u-l)+\frac{m-l}{3+l}$ where $(1, \mathrm{~m}, \mathrm{u})$ is triangular fuzzy number.

STEP 6 [CONCLUSION]

The fuzzy number with minimum deviation $\left(\mathrm{D}_{\mathrm{f}}\right)$ comes first in ranking order [ascending].

6. NUMERICAL EXAMPLE

Suppose 3 expert decision makers want to select a most suitable candidate from 3 alternatives based on 3 criteria which are attitude, communication skills, hardworking .

STEP 1

Collect the evaluation of alternatives by expert decision makers with respect to all criteria in terms of linguistic variables and we can form a decision matrix.

	C1			C2			C3			C4			C5		
	$\begin{aligned} & \hline \mathbf{A} \\ & 1 \end{aligned}$	$\begin{array}{\|l\|} \hline \mathbf{A} \\ 2 \end{array}$	A 3	$\overline{\mathrm{A}}$	A 2	$\begin{array}{\|l\|l} \hline \mathbf{A} \\ 3 \end{array}$	A 1	A 2	$\overline{\mathbf{A}}$	A 1	$\begin{aligned} & \hline \mathbf{A} \\ & 2 \end{aligned}$	\mathbf{A}	A 1	A 2	A 3
P	$\begin{array}{\|l\|} \hline \mathrm{M} \\ \mathrm{G} \end{array}$	G	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	G	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{M} \\ \mathrm{G} \end{array}$	F	$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{G} \end{array}$	G	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	F	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	G
P 2	G	G	G	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{G} \end{aligned}$	$\begin{array}{l\|} \hline \mathrm{V} \\ \mathrm{G} \end{array}$	G	G	$\begin{array}{\|c\|} \hline \mathrm{V} \\ \mathrm{G} \end{array}$	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{G} \end{aligned}$	G	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{G} \end{aligned}$	F	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{G} \end{aligned}$	G
P	$\begin{array}{\|l\|} \hline \mathrm{M} \\ \mathrm{G} \end{array}$	$\begin{aligned} & \hline \mathrm{M} \\ & \mathrm{G} \end{aligned}$	F	F	$\begin{gathered} \mathrm{V} \\ \mathrm{G} \end{gathered}$	$\begin{array}{\|l} \hline \mathrm{V} \\ \mathrm{G} \end{array}$	G	G	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	V	$\begin{aligned} & \mathrm{V} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \mathrm{M} \\ & \mathrm{G} \end{aligned}$	F	G	M G

STEP 2

Replace each linguistic variable by corresponding fuzzy number.

FUZZY DECISION MATRIX						
		C1	C1	C3	C4	C5
	A_{1}	$(5,7,9)$	$(7,9,10)$	(3,5,7)	$(9,10,10)$	$(3,5,7)$
	A_{2}	$\begin{aligned} & (7,9,10 \\ &)^{2} \end{aligned}$	$\begin{aligned} & (9,10,10 \\ & { }^{(10} \end{aligned}$	$\begin{aligned} & \text { (9,10,10 } \\ & \hline \end{aligned}$	$(9,10,10)$	$\begin{aligned} & (9,10,1 \\ & 0) \end{aligned}$
	A_{3}	9,10,10	(5,7,9)	(7,9,10)	(7,9,10)	$\begin{aligned} & (7,9,10 \\ &)^{2} \end{aligned}$
$\begin{array}{\|l\|} \hline \mathbf{P} \\ \hline \end{array}$	A_{1}	$\begin{aligned} & \text { (7,9,10 } \\ &)^{2} \end{aligned}$	(5,7,9)	(7,9,10)	(7,9,10)	$(3,5,7)$
	A_{2}	$(7,9,10$	$\begin{aligned} & (9,10,10 \\ & \left.{ }^{(}\right) \end{aligned}$	$\begin{aligned} & (9,10,10 \\ &) \end{aligned}$	$(9,10,10)$	$(5,7,9)$
	A_{3}	$\begin{gathered} (7,9,10 \\) \end{gathered}$	$(7,9,10)$	(5,7,9)	(9,10,10)	$\begin{aligned} & (7,9,10 \\ &)^{2} \end{aligned}$
P	A_{1}	$(5,7,9)$	(3,5,7)	(7,9,10)	$(9,10,10)$	$(3,5,7)$
	A_{2}	$(5,7,9)$	$\begin{aligned} & (9,10,10 \\ &) \end{aligned}$	$(7,9,10)$	$(9,10,10)$	$\begin{aligned} & (7,9,10 \\ &)^{2} \end{aligned}$
	A_{3}	(3,5,7)	$\begin{aligned} & (9,10,10 \\ & \hline \end{aligned}$	$\begin{aligned} & (9,10,10 \\ &) \end{aligned}$	(5,7,9)	$(5,7,9)$

STEP 3

Aggregate the fuzzy numbers in column wise based on criteria $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots \ldots \ldots$

		C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	Aggregation
P_{1}	A_{1}	(5,7,9)	$(7,9,10)$	$(3,5,7)$	$(9,10,10)$	(3,5,7)	(5.4,7.2,8.6)
	A_{2}	(7,9,10)	(9,10,10)	(9,10,10)	(9,10,10)	(9,10,10)	(8.6, 9.8, 10)
	A_{3}	9,10,10	(5,7,9)	$(7,9,10)$	$(7,9,10)$	(7,9,10)	(7,8.8,9.8)
P_{2}	A_{1}	(7,9,10)	(5,7,9)	$(7,9,10)$	$(7,9,10)$	$(3,5,7)$	(5.8,7.8,9.2)
	A_{2}	(7,9,10)	(9,10,10)	(9,10,10)	(9,10,10)	(5,7,9)	(7.8,9.2,9.8)
	A_{3}	(7,9,10)	$(7,9,10)$	$(5,7,9)$	(9,10,10)	(7,9,10)	(7,8.8,9.8)
P3	A_{1}	(5,7,9)	$(3,5,7)$	$(7,9,10)$	(9,10,10)	$(3,5,7)$	(5.4,7.2,8.6)
	A_{2}	(5,7,9)	(9,10,10)	$(7,9,10)$	(9,10,10)	(7,9,10)	(7.4,9,9.8)
	A_{3}	(3,5,7)	$(\mathbf{9 , 1 0 , 1 0})$	$(9,10,10)$	(5,7,9)	$(5,7,9)$	(6.2,7.8,9)

We get

	$\mathbf{P}_{\mathbf{1}}$	$\mathbf{P}_{\mathbf{2}}$	$\mathbf{P}_{\mathbf{3}}$
$\mathbf{A}_{\mathbf{1}}$	$(5.4,7.2,8.6)$	$(5.8,7.8,9.2)$	$(5.4,7.2,8.6)$
$\mathbf{A}_{\mathbf{2}}$	$(8.6,9.8,10)$	$(7.8,9.2,9.8)$	$(7.4,9,9.8)$
$\mathbf{A}_{\mathbf{3}}$	$(7,8.8,9.8)$	$(7,8.8,9.8)$	$(6.2,7.8,9)$

STEP 4

Aggregate the fuzzy numbers column wise based on decision makers $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots \ldots$

	Total evaluation
$\mathbf{A}_{\mathbf{1}}$	$(5.53,7.4,8.8)$
$\mathbf{A}_{\mathbf{2}}$	$(7.93,9.33,9.86)$
$\mathbf{A}_{\mathbf{3}}$	$(6.73,8.46,9.53)$

STEP 5

Find the deviation in triangular fuzzy number by using D_{f} $=(u-l)+\frac{m-l}{3+l}$.

For $\mathrm{A}_{1} \quad(\mathrm{l}=5.53, \mathrm{~m}=7.4, \mathrm{u}=8.8) \mathbf{D}_{\mathbf{f}}=\mathbf{3 . 4 8 9}$
For $\mathrm{A}_{2} \quad(\mathrm{l}=7.93, \mathrm{~m}=9.33, \mathrm{u}=9.86) \mathbf{D}_{\mathrm{f}}=\mathbf{2 . 0 5 8}$
For $\mathrm{A}_{3}(\mathrm{l}=6.73, \mathrm{~m}=8.46, \mathrm{u}=9,53) \quad \mathrm{D}_{\mathrm{f}}=\mathbf{2 . 9 7 7}$
STEP 6
The fuzzy number A_{2} with minimum deviation $\mathbf{D}_{\mathrm{f}}=\mathbf{2 . 0 5 8}$ comes first in ranking order [ascending]. The final ranking order is $\mathrm{A}_{2}, \mathrm{~A}_{3}, \mathrm{~A}_{1}$.

7. REFERENCES

[1] R. Bellman and L.A. Zadeh, Decision-making in a fuzzy environment, Management Science, 17B(1970) 141-164.
[2] Chen SJ, Chen SM (2005) Aggregating fuzzy opinions in the heterogeneous group decision making environment, Cybernetics And systems: Ann. Int . J., 36: 309-338
[3] Hwang CL, Yoon KP (1981) Multiple Attribute decision making methods and applications, Newyork : SpringerVerlag
[3] G.J.Klir and T.A.Folger, Fuzzy Sets, Uncertainty and Information (Prentice-Hall, Englewood Cliffs, 1988).
[4] Madavi 1 ,Madhavi-Amiri N, Heidarzade A, Nourifar R (2008) Designing a model of fuzzy TOPSIS in multiple Criteria Decision Making, Appl.Math.Comput.
[5] Mohammad Anisseh and Rosnah bt Mohd Yusuff(Feb 2011), A fuzzy group decision making model for multiple criteria based on Borda Count , International Journal of the PhysicalSciences

ACKNOWLEDGMENT

This research work is supported by UGC minor research (project no: 32 MRP - 4072/12 .MRP UGC SERO)

