
Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

15

s

s

 Saurabh Doshi
Student

flat no. 3 Aster Avenue near
Dilli Dairy Marketyard,Pune.

Ashwini Padale
Student

Shri datta aprts,ft No:3
Katraj Pune 46.

ABSTRACT
Internet is a very crucial part of today‟s life. And when

we discuss about internet , Web Applications come into

focus. Now a days many Web Applications use RDBMS

& Web Applications allows its valid users to deal with

data stored in RDBMS.

Traditionally mostly programmers have been trained in

terms of writing code to implement the intended

functionality but they are not aware of security aspect in

many ways. The Web Applications are vulnerable to

different types of attacks. One of the most dangerous

attack is SQL Injection attack.SQL injection is an attack

method used by hackers to

retrieve, manipulate, or delete information in

organizations‟ relational databases through web

applications. Our technique is implemented in tool

named SQL Injection Detector and Preventer(SIDP)

which secures Web Applications from different attacks.

A great comparative study is made between SIDP and

other similar tools and a conclusion is drawn that SIDP

is the most efficient tool of all others.

Keywords
SQL – Structure Query Language, SQLIA –SQL

injection attack, Positive Tainting, Taint Propagation,

Syntax Aware Evaluation, Hard-coded strings,Implicity

Created Strings, False Positives, Negative Tainting.

1. INTRODUCTION
Web application is pillar for the Internet & Internet is

need of today‟s world.web applications are popular due

to their convenience , flexibility &availability.

Everything is vulnerable to attacks. Similarly Web

Application requires security from internet

thieves/thefts.

Database are fundamentals of Web Applications.

Database enable Web Application to store data,

preferences and content element using SQL, Web

 Chaitali Parekh

Student
Parekh Food Products
At post birwadi Mahad

 Devata Anekar

Asst Professor
Sinhgad Academy of Engg

Kondhwa Pune.

Applications interact with databases to dynamically

build customized data views for each user. Here in this

tool we use SQL(Structured Query Language) for our

database design. Database is crucial part of any Web

Application and security is the need of it .

There are variant types of attack to which Web

Applications are vulnerable some of them are:-

1. Remote code execution

2. Format string vulnerabilities

3. Cross Site Scripting (XSS)

4. Username enumeration

5. SQL injection

1.1 Remote code execution
As the name suggests, this vulnerability allows an

attacker to run arbitrary, system level code on the

vulnerable server and retrieve any desired information

contained therein. Improper coding errors lead to this

vulnerability.

1.2 Format String Vulnerabilities
 This vulnerability results from the use of unfiltered user

input as the format string parameter in certain Perl or C

functions that perform formatting, such as C's printf().

1.3 Cross Site Scripting
The success of this attack requires the victim to execute

a malicious URL which may be crafted in such a manner

to appear to be legitimate at first look. When visiting

such a crafted URL, an attacker can effectively execute

something malicious in the victim's browser. Some

malicious Javascript, for example, will be run in the

context of the web site which possesses the XSS bug.

1.4 Username enumeration

Username enumeration is a type of attack where the

backend validation script tells the attacker if the supplied

username is correct or not. Exploiting this vulnerability

helps the attacker to experiment with different

usernames and determine valid ones with the help of

these different error messages.

In this paper we mainly focus on SQL injection attack as

it is increasingly frequent and pose very serious security

risks because they can give attackers, unrestricted access

to database that underlie Web Applications.SQL

Injection is technique used to take advantage of non-

SIDP-SQL Injection Detector and
Preventer

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

16

validated input vulnerabilities to pass SQL a Web

Application for execution by a backend database instead

of attacking instances such as Web Servers or Operating

Systems. The purpose of SQL injection is to attack

RDBMS, running as back-end systems to Web Servers,

through Web Applications.

2. SQL INJECTION ATTACKS
In general SQL Injection Attack are a class of code

injection attacks that take advantage of the lack of

validation of user input. There are four main categories

of SQL Injection attacks against databases

2.1 SQL Manipulation:

 manipulation is process of modifying the SQL

statements by using various operations such as UNION

.Another way for implementing SQL Injection using

SQL Manipulation method is by changing the where

clause of the SQL statement to get different results.

2.2 Code Injection:

Code injection is process of inserting new SQL

statements or database commands into the vulnerable

SQL statement. One of the code injection attacks is to

append a SQL Server EXECUTE command to the

vulnerable SQL statement. This type of attack is only

possible when multiple SQL statements per database

request are supported.

2.3 Function Call Injection:

Function call injection is process of inserting various

database function calls into a vulnerable SQL statement.

These function calls could be making operating system

calls or manipulate data in the database.

2.4 Buffer Overflows:

Buffer overflow is caused by using function call

injection. For most of the commercial and open source

databases, patches are available. This type of attack is

possible when the server is un-patched

3. DETECTION OF SQL INJECTION

VULNERABILITY
Detection of SQL injection is tough because it may be

present in any of the many interfaces application exposes

to the user and it may not be readily detectable.

Therefore identifying and fixing this vulnerability

effectively warrants checking each and every input that

application accepts from the user.

How to find if the application is vulnerable or not As

mentioned before web applications commonly use

RDBMS to store the information. The information in

RDBMS is stored/retrieved with the help of SQL

statements. Common mistake made by developers is to

use, user supplied information in the „Where‟ clause of

the SQL statement while retrieving the information.

Thus by modifying the „Where‟ clause by additional

conditions to the „Where‟ clause; entire SQL statement

can be modified. The successful attempt to achieve this

can be verified by looking at the output generated by the

DB server. Following Example of „Where‟ clause

modification would explain this further.

If the URL of a web page is:

http://www.prey.com/sample.jsp?param1=9 The SQL

statement the web application would use to retrieve the

information from the database may look like this:

SELECT column1, column2 FROM Table1 WHERE

param1 = 9 After executing this query the database

would return data in columns1 and column2 for the rows

which satisfy the condition param1 = 9. This data is

processed by the server side code like servlets etc and an

HTML document is generated to display the

information.

To test the vulnerability of the web application, the

attacker may modify the „Where‟ clause by modifying

the user inputs in the URL as follows.

http://www.prey.com/sample.jsp?param1=9 AND 1=1

And if the database server executes the following query:

SELECT coulmn1, column2 FROM Table1 WHERE

param1 = 9 AND 1=1 . If this query also returns the

same information as before, then the application is

susceptible to SQL injection.

In reality , there is a wide variety of complex and

sophisticated SQL exploits available to attackers. We

next discuss the main types of such attacks.

4. MAIN TYPES OF SQL

INJECTION ATTACKS
The main variants of SQL Injection are described in this

section and the intent of these attack is also described.

The different types of attack are generally not performed

in combination; many of them are used together or

sequentially depending on the goal of attacker.

4.1 Tautologies:
The main goal of a tautology-based attack is to inject

code in conditional statements so that they always

evaluate to true. Although the results of this type of

attack are application specific, the

most common uses are bypassing authentication pages

and extracting data. Here Attacker exploits a vulnerable

input field that is used in the query‟s WHERE Clause.

This attack type has three main goals:

1. bypass authentication

2. identify injectable parameters

3. extract data

An example of this attack is as follows:

SELECT 1234 accounts FROM1234 users WHERE

1234 login=’ ’ OR 1=1 - - AND1234 pass=’’ AND

1234 pin= ;

The execution of Query is carried out when output the

given condition is true. In this example, an attacker has

injected a conditional (OR 1=1) that transforms the

entire WHERE clause into a tautology and so every row
in the users table will be returned.

4.2 Union Queries:
Tautology is not so power full attack hence attack with

help Union Queries came into focus. For example,

assume there is another table named creditcards in the

same schema as the users table. In that case, an attacker

could construct a query like:

SELECT accounts FROM users WHERE login =’ ’

UNION

SELECT cardno FROM creditcards WHERE

accountno=5050 - - AND pass =’ ‘ AND pin=;

The first Query returns NULL result and followed Query

returns data from “creditcards” table if the given

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

17

“account no.” exists. The outcome of this attack is that

database returns a dataset that is union of results of

original query with the results of injected query.

4.3 Piggy Backed Queries:
This attack is same as Union Query just here the

keyword Union is replaced by a delimiter. The goals of

this attack type are:

1. extract data

2. add or modify data

3. perform denial of service

4. execute remote commands

The example is as follows:

SELECT products FROM customers WHERE

login=’chaitali’ AND pass = ‘ ‘; DROP TABLE

customers ; - - ‘ AND pin = 1991;

The database treats this query string as two queries

separated by the query delimiter (“;”) and executes both.

The second malicious query causes the database to drop

the customers table in the database, which would have

the catastrophic consequence of deleting all customer

information. The above attack has the DROP TABLE
statement piggy-backed onto the original query.

5. OUR APPROACH
Till today most of the tools developed for protecting

Web Application from SQL Injection attack

use/followed Traditional Dynamic Tainting.Traditional

Dynamic Tainting identifed untrusted String as tainted

,track the flow of tainted data at runtime,and prevent this

data from being used in potentially disaster ways.To

make changes in previous approach and develop a new

improved tool which followed Dyanamic Tainting.

Unlike existing dynamic tainting techniques, our

approach is based on the novel concept of positive

tainting, that is, the identification and marking of trusted,

instead of untrusted, data. Second, our approach

performs accurate and efficient taint propagation by

precisely tracking trust markings at the character level.

Third, it performs syntax-aware evaluation of query

strings before they are sent to the database and blocks all

queries whose non literal parts (that is, SQL keywords

and operators) contain one or more characters without

trust markings.

5.1 Positive Tainting
 Positive Tainting is based on identification of the

trusted data rather than untrusted data.Traditional

Tainting (negative tainting)follows the identification of

untrusted data and here positive and negative tainting

differ. This conceptual difference has significant

implications for the effectiveness of our approach, in that

it helps address problems caused by incompleteness in

the identification of relevant data to be marked. In the

case of negative tainting, incompleteness leads to

trusting data that should not be trusted and, ultimately, to

false negatives. Incompleteness leaves the Web

Application vulnerable to SQL injection attacks . In

negative tainting detection of attacks is very difficult .

Hence we use positive tainting in our approach.

Identifying trusted data in Web Application is often

straight forward and always less error prone.

5.2 Accurate and Efficent Taint

Propogation
Taint Propogation is carried at runtime.It consists of

identifying taint markings assosiated with data,while the

data is used and manipulated by users at runtime. Taint

Propogation need to be carried out accurately otherwise

it would cause the daa to be misused. Our approach

consists of:

1)identifying taint markings at correct level of

granularity

2)precisely accounting for the affect of functions that

operate on the tainted data.

The data consists of charcters.Hence to achive accuracy

tainting at charactter level is carried in our approach.

Here Strings are constantly broken into substrings for

building SQL quries.

Tainting can be carried out even at bit level using

bitwise operators.Bit level tainting is more secured but

complex to implement and deploy.

5.3 Syntax Aware Evaluation
Postive tainting helps us to create taint markings during

execution but for achieveing more security we must be

able to use the taint markings to distinguish legitimate

from malicious queries.

The key feature of Syntax aware evaluation is that it

considers the context in which trusted and untrusted data

is to make sure that all parts of query other than string or

numerical ,literals consists only of trusted charaters

.Before the String is sent to the database for execution

syntax aware evaluation of a query string is

performed.We use SQL parser for creating tokens of the

String.The tokens correspond to keywords,operators &

literals.The technique that iterates through the tokens &

checks whether the tokens other than literals contain

only trusted data. If all tokens are identified aas trusted

the query is identified as safe and passed further,if an

attack is detected a developer sepecfied action can be

invoked.

The developers provide with the external data sources

which sholud be trusted and our technique would mark

and treat data coming from this sources accordingly.

6.OUR PROPOSED ARCHITECTURE

To evaluate our approach we developed a prototype tool

called SIDP that is written in Java `based Web

applications. As java is most

commonly used languagage for web application

development. Figure above shows high leve architecture

for SIDP.It shows a tool developer that developes tool

and a web appliaction developer .The developer provides

trusted policies and trusted sources which conisits of

keyword operators and literals.Our tool SIDP has three

main modules which are named as TOKEN

CHECKER,STRING LIBRARY and STRING

DETECTOR. When the user requests fro a web

application a query is fromed which is then passed to our

tool. If

the query is identifed as trusted the data is retrived from

database else developer specified action is carried out.

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

18

Fig.1 Architecture of SIDP Tool.

6.1 String Library
String is our library of classes that mimic and extend the

behaviour of java‟s standard string classes . The library

takes advantage of the object oriented features of java

language to provide complete mediation of string

operations that could affect string values and their

associated trust markings.

7.ANALYSIS AND DESIGN

Fig 2. Context Level Use Case Diagram .

This diagram is Use Case Diagram for tool SIDP.A Use

Case model represents the Use Case view of the system.

This view is important, as it effects all other views of

the system. Both the logical and physical architecture

are influenced by the use cases. The above diagram

consists of 2 actors and SIDP system consisting of

different use cases. The actors are the Developer and the

Web Application which are the inputs to the system. The

Web Application invokes a token checker, String

Detector and access the Meta String library. Similarly

Developer Sets the Trust policies and marks trusted

String.

The next figure represents the Sequence diagram for tool

SIDP. The Sequence diagram is used primarily to show

the interactions between objects in the sequential order

that those interactions occur. Sequence diagram are

useful in documenting how a future system behave. The

user communicates with the database through Web

Application ,controller and the library table.

Fig.3.Sequence Diagram for SIDP Tool.

8. CONCLUSION
This tool presented a novel highly automated approach

for protecting Web applications from SQLIAs. Our

approach consists of 1) identifying trusted data sources

and marking data coming from these sources as trusted,

2) using dynamic tainting to track trusted data at

runtime, and 3) allowing only trusted data to form the

semantically relevant parts of queries such as SQL

keywords and operators.

Our approach also provides practical advantages over the

many existing techniques whose application requires

customized and complex runtime environments: It is

defined at the application level, requires no modification

of the runtime system, and imposes a low execution

overhead.

We have evaluated our approach by developing a

prototype tool, SIDP, and using the tool to protect many

applications when subjected to a large and varied set of

attacks and legitimate accesses. SIDP successfully and

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

19

efficiently stopped over 12,000 attacks without

generating any false positives

9. ACKNOWLEDGMENTS
I would like to express my gratitude to all those who

gave me the possibility to complete this paper. I want to

thank Halfond , W.G.J, A.Orso for their guidance

through their papers related to SQL injection.

10. REFERENCES
[1] Halfond, W. G. J. and A. Orso (2005). Combining

Static Analysis and Runtime Monitoring to Counter

SQL-Injection Attacks. Workshop on Dynamic

Analysis (WODA 2005). St. Louis, MO,USA,

ACM: pp. 1 - 7.

[2] Shaukat Ali, Azhar Rauf, Huma Javed:SQLIPA: An

Authentication Mechanism Against SQL Injection.

[3] Top ten most critical web application vulnerabilities,

2005.

http://www.owasp.org/documentation/topten.html

[4]William G.J. Halfond, Alessandro Orso, and

Panagiotis Manolios: Using Positive Tainting and

Syntax Aware Evaluation to Counter SQL Injection

Attacks.

[5]W.G. Halfond and A. Orso(2005) „AMNESIA:

Analysis and Monitoring for NEutralizing

SQLInjection Attacks‟, In the Proceedings of 20th

IEEE and ACM International Conference

onAutomated Software Engineering, pp. 174-183.

http://www.owasp.org/documentation/topten.html

