
Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

24

Achieving Code Quality using Code Review System

Snehal Bhosale

1st author's affiliation
SVPM College of engineering,

Malegaon(Bk)

Shraddha Bhosale

2nd author's affiliation
SVPM College of engineering,

Malegaon(Bk)

 Varsha Bhalerao Ketan Bhagwat

 3rd author's affiliation 4
th
 author's affiliation

SVPM College of engineering, SVPM College of engineering,
 Malegaon(Bk) Malegaon(Bk)

ABSTRACT

The purposes for code review are as diverse as the

environments in which they are conducted. However, almost

all code reviews have these goals in common: 1. Defect-free,

well-documented software. 2. Software that complies with

enterprise coding standards. 3. Teaching and sharing

knowledge between developers. Other objectives often

include: maintainability, security, and consistent end-user

documentation, adequate comments in code, complete unit

tests, and scalability.

General Terms

Your general terms must be any term which can be used for

general classification of the submitted material such as Pattern

Recognition, Security, Algorithms et. al.

Keywords

Keywords are your own designated keywords which can be

used for easy location of the manuscript using any search

engines.

1. INTRODUCTION
Code review is the single greatest way of noticing and killing

bugs, increasing overall understanding, fixing design

problems and learning from one another. A code review

involves one or more developers examining source code they

didn't write and providing feedback to the authors, both

negative and positive. Ideally the reviewers are completely

disengaged from the project they are reviewing as this

maximizes objectivity and ensures the code is readable and

maintainable even by those not already well-versed in that

project. Typically the reviewers will have a standard checklist

as a guide for finding common mistakes and to validate the

code against the company's coding standards. As IEEE

Transaction On software engineers states that, ‗Inspection of a

20000 line program at IBM saved more than 85% of

programmer effort by detecting major defects through code

review instead of testing‘[1].

 Maintainability is generally achieved by code organization

and adequate comments. A reviewer can provide the

ignorance and objectivity necessary to ensure these goals.

Code review can facilitate the communication of institutional
knowledge as it relates to code written by the newbie.
Experienced team members have the opportunity to impart

their wisdom and advice. Code reviews are just one part of a

more broad-reaching inspection program. As defined by the

IEEE Standard Glossary of Software Engineering

Terminology, an inspection is a formal evaluation technique

in which software requirements, design, or code are examined

in detail by a person or group other than the author to detect

faults, violations of development standards, and other

problems[5].

2. HISTORY
Historically the process for conducting code review was pretty

―anti-agile‖. Originally software inspection technique

introduced by Michael Fagan in 1976 [2] [3]. In that code

inspection was heavyweight code review process that led to

an entire generation of software developers who believed

meeting were necessary in order to review code. Highest

misconception is that meetings are stated by Fagan, but

Lawrence Votta of AT&T Bell Labs [2] was not convinced.

His study showed that if developers read the code before the

meeting in order to find defects, actually having a meeting

will only increase the total defects found by 4%. Now a

day‘s code review tools with agile process model is used

everywhere such as peer code review tool.

2.1 Code Review Techniques
There are many techniques to review the code of software.

One technique is ICR (Iterative Code Review). As we know

that code review is considered on efficient method for

detecting faults in software. The number of faults not detected

by the review should be the small. Current methods for

estimating this number assume reviews with several

inspectors, but there are many cases where it is practical to

employ only two inspectors. Sufficiently accurate estimates

may be obtained by two inspectors employing an iterative

code review (ICR) process [3]. So these processes may be

stopped when a satisfactory result is estimated. More

experiments are needed in order to fully evaluate the

approach.

Another one method is peer code review method [2]. Peer

code review method is one of the most effective ways to

improve software quality, because this is an agile process.

Research has consistently shown that peer code review

produces software with the emphasis on working software.

Agile processes promote sustainable development. The

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

25

sponsors, developers, and users should be able to maintain a

constant pace indefinitely. There are several methods to

process code review using agile:

2.1.1 Over the shoulder:[2] This is the easiest technique

of all: when it is time for a code review, find a developer and

sit down with him or her in front of the code. Face to face

communication is an easy, high-bandwidth medium for the

author‘s explanation of the code. An obvious drawback is that

not all teams have all members in one location. An additional

issue is that the reviewer is being interrupted – after the

review it will take time for that developer to get back to the

same level of productivity.

2.1.2 Email pass-around:[2] When the code is ready,

send it out over email. One of the advantages of this approach

is that reviewers and authors can be in different locations.

Another advantage is that the reviewers can do the review at

their convenience. One obvious downside is that as the review

proceeds and the emails get nested in multiple replies, it

becomes more difficult to follow the conversation.

2.1.3 Pair programming: [2] One of the Extreme

Programming world‘s key contributions has been pair

programming, which in some ways is a continuous code

review. The advantages are that no workflow or tools or

interruptions get in the way. Further, the review is at a deep

level since the developer who is reviewing has the same level

of experience with the code.

2.1.4 Tool-assisted review: [2] Code review tools exist

to help overcome the shortcomings of the approaches listed

above. They can package up source files, send notifications to

reviewers, facilitate communication, ensure defects are fixed,

and more. The obvious downside is that they require at the

very least time for installation and configuration, and in the

case of commercial products, money for license purchases [2].

Code reviews (including peer reviews, inspections and

walkthroughs) are consistently recognized as an effective

method of finding many types of software bugs early – yet

many software teams struggle to get good value[4] (or

consistent results) from their code reviews. Furthermore, code

reviews are mostly considered an activity tackled by

developers, and not an activity that typically falls within the

realm of the test team. Code reviews, however, are an activity

that questions software code; and many testers who conduct

code reviews question the software code differently than their

peers in development [4].

2.2 Bugnizer system
 Finding and fixing bugs is 50% of the total efforts in

Software industries. Bugnizer is static analysis tools for

software defects detection is widely becoming in practice. If

some code defect has occurred during programming,

developer creates a bug and that can be assigned to another

developer for reviewing. Some of tools are being used in

industrial area, in which Google‘s Findbugs [7] tool is

popular. Findbugs is an open source analytic tool that

analyzes Java class files looking for programming defects [7].

3. PROPOSED SYSTEM

Fig 1: Proposed System

In this Product, we will be providing the features of adding

multiple companies into this product. The product will be

providing facility for communication between users in

company using Mail API.

 It will be providing facilities to find and fix the bug. Also

this product manages project details and project task.The

system defined in Planet systems are:

3.1 Bugnizer (Project Management

System)
3.1.1 Add Company: Super user has an authority to add

multiple companies. The company has added that can use the

product and use the services. Super user also provides the

specific id to that company and manages their accounts and

maintains security and privacy of company.

3.1.2 Add Project Details: In project management one

administrator who have the authority to manage the all project

tasks and manage the all employee‘s accounts. Administrator

first adds the project details. Then next tasks to assign the

manager for the project. Manager has a role of managing the

team of the project and also assigns the team leaders and S/W

engineer to project. All the S/W developers have task that

they should update their project tasks/work daily.

3.1.3 User Profile: In Planet system every user in the

system has to maintain their profile. Also features provided

in the profile are maintained by considering their role. Means

administrator have all authority to change the tasks of project

management. He also monitors others work. The manager

profile has features to add leader and software engineer in

project and also he can see the details report of all members

related to project. Software developer profile has only feature

to add task details and view bugs related to work.

3.2 Code Review System.
In this, System will be providing feature to find and fix the

bugs related to project. First after completing one project

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

26

module, Developer sends that module for review. In code
review system we get the versioning of two files with SVN

Repository. Reviewer reviews that code; if he/she satisfies

then gives the comment LGTM else he gives the suggestion

and report the risk. If developer got the LGTM then it

approved those changes.

3.2.1 Fixing A Bug: Next work is fixing a bug. This work

is done with the help of code review tool. After getting any

defects developer changes the code module. After changing

that module the new code file without bug and old code file

with bug is merged into a file with the help of code review

tool and that file is send for reviewing. As Code Review tool

get the old version of files from SVN Repository. Reviewer

reviews the changed code gives the suggestion if really

required else reviewer gives LGTM (Look Good To Me). If

developer got the LGTM comment, developer approves the

code file. He finalizes the code and replaced old file in

repository. Repository gives the two separate file, old files

and new files. If code contains some risks, then reviewer can

reports the risks like p1, p2, p3… issues. P1 has higher

priority risks issues and p2 has middle and p3 has lower level

risks. If P1 issues are detected then there will be possibility to

failure of project. Hence such if issues are detected then total

module is redeveloped and pass it to for reviewing again. This

process is continued until at least one LGTM comment is

given by reviewer.

3.3 HelpDesk System.
This ―HelpDesk‖ is intended to provide the tool to everyone

in the organizations to book a ticket for any IT service

required. This tool will also helpful to track the progress of

the ticket for completion. It consists of user friendly GUI for

data entry, reports, application generated E-mails for ticket

transactions. Most enhancing feature is that any novice person

can handle it easily and comfortably. HelpDesk provides

different reports to different authorities to track each and

every aspects of their business. Hence allows taking useful

and quick decisions which helps an organization to make

foothold in the market.

4. RELEVANT MATHEMATICS

ASSOCIATED WITH PROJECT
The mathematical model is composed of three steps. [8]

4.1 The first step : choose a suitable sample project to

approximately measure each bug pattern in correctness

category.

4.2 The second step: calculate the defect likelihood for

bug patterns and bug kinds in correctness category. We denote

C as bug category, K as bug kind and P as bug pattern. For

each bug category C, it contains bug kinds K1, K2, K3, . . .

,Km. And for any bug kind Ki, it contains bug patterns Pi1,

Pi2, . . . , Pin. It is clear that for any bug pattern Pijin Ki, j = 1

. . . n, we have Pij= Pij:F+Pij:S, where Pij:F is the number of

false error reports for bug pattern Pij, and Pij:S is the number

of true error reports. We can easily calculate the defect

likelihood of each bug pattern D(Pij) in the following

equation and use D(Pij) to rank the error reports roughly.

 Pij:S

D(Pij) = (1)

 Pij:F+ Pij:S

In order to avoid the inequity of calculating defect likelihood

(due to different population size of bug patterns), we consider

the variance V (Pij) as an additional indicator for bug pattern

Pij.[8]

 D(Pij)* (1 - D(Pij))

V (Pij) = (2)

 n

Suppose that two bug patterns have the same defect

likelihood, the one with larger population will have smaller

value of variance, which means the change degree of this bug

pattern population is lower and the corresponding error

reports should be examined first. Once we have the defect

likelihood of each bug pattern D(Pij), we can continue to

Calculate the defect likelihood for each bug kind D(Ki).

 Pi1 *D(Pi1) +. . .+ Pin * D(Pin)

D(Ki) = (3)

 Pi1 +. . . + Pin

In Equation (3), we ignore the population size of error reports

in bug kind. For example, suppose that there are two bug

kinds K1 and K2, which both contain two bug patterns. In K1,

each bug pattern has 50 false positives and 50 true error

reports so that the defect likelihood for K1 is 50%. In K2, one

bug pattern has 100 true error reports and 0 false positive,

while the other bug pattern has 0 true error report and 100

false positives. As a result, the defect likelihood for K2 is also

50%, and these two bug kinds have the same defect

likelihood. However, considering the discrete degree, it is

better to examine the bug kind K1 first because of its

centralized distribution. The following equation is used to

calculate the degree of discretization for bug kind:

 1

S2= Σ(D(Pij) -D(Ki))2 (4)

 (n –1)

4.3 The final step: assign the value of defect likelihood

and variance to bug patterns and bug kinds in correctness

category. If error reports are sorted by defect likelihood of

bug patterns in Code Review System, we can get a best

ranking output. On the other hand, with the sacrifice of

precision, it is easier for users to inspect error reports sorted

by defect likelihood of bug kinds, because bug patterns in one

bug kind focus on one type of defects, which are similar to

each other. This statistical observation can also verify the

correctness of the code. And also to measure the performance

of S/W developer

5. CONCLUSION
The purpose of a code review is for someone other than the

programmer to critically go through the code of a module to

ensure that it meets the functional and design specifications, is

well-written and robust. An incidental benefit is that the

reviewer may learn some new programming techniques, and

more people in the team become familiar with the module [6].

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

27

6. ACKNOWLEDGMENTS
 Apart from the efforts of me, the success of any project

depends largely on the encouragement and guidelines of many

others. I take this opportunity to express my gratitude to the

people who have been instrumental in the successful

completion of this project.

 I would like to show my greatest appreciation to Prof.

Kumbhar H.R. I can‘t say thank you enough for his

tremendous support and help. I feel motivated and encouraged

every time I attend his meeting. Without his encouragement

and guidance this project would not have materialized.

 The guidance and support received from all the members

who contributed and who are contributing to this project, was

vital for the success of the project. I am grateful for their

constant support and help.

7. REFERENCES
[1] White Paper ‗Why review code?‘ by Jason Cohen,

Smart Beer Software, inc.

[2] White paper on ‗Peer code review: an agile process‘ This

paper was originally published by Smart Bear Software

in the proceedings of the Agile Development Practices

conference in November 2009.

[3] A. Harel: ‗Estimating the Number of Faults Remaining

in Software Code Documents Inspected with Iterative

Code Reviews‘ in Computer Science Dep. Technion.

[4] Alan Page: ‗Peering Into the White Box: A Testers

Approach to Code Reviews‘ in Microsoft Corp.

[5] A Borland White Paper By Richard C. Gronback:

‗Software Remodeling: Improving Design and

Implementation Quality‘ in January 2003.

[6] T.A. Gonsalves & Hema A. Murthy: ‗Code Review

Guidelines‘ TeNeT Group, IIT-Madras. In 7/11/2001.

[7] Nathaniel Ayewah, WilliamPugh: ‗Using FindBugs On

Production Software‘ University of Maryland

[8] ayewah,pugh@cs.umd.edu and J. David Morgenthaler,

John Penix, YuQian Zhou Google, Inc.

jdm,jpenix,zhou@google.com.

[9] EFindbugs: Effective Error Ranking for Findbugs.

Haihao Sheny_, Jianhong Fangz, and Jianjun Zhaoy

ySchool of Software

Shanghai Jiao Tong University, 800 Dongchuan Road,

Shanghai 200240, China

[10] Identifying Changed Source Code Lines from Version

RepositoriesGerardo Canfora, Luigi Cerulo,

Massimiliano Di Penta

RCOST — Research Centre on Software Technology

