
Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

9

MMeettrriiccs for measuring the quality of object oriented

software modularization

Priya Walde
Student

M.I.T. College of Engineering,
Aurangabad

S.V.Kulkarni
Asst. Professor

M.I.T. College of Engineering,
Aurangabad

ABSTRACT

Our ongoing effort, from which we draw the work reported

here, is focused on the case of reorganization of legacy

software, consisting of millions of line of non-object oriented

code, that was never modularized or poorly modularized to

begin with. We can think of the problem as reorganization of

millions of lines of code residing in thousands of files in

hundreds of directories into modules, where each module is

formed by grouping a set of entities such as files, functions,

data structures and variables into a logically cohesive unit.

Furthermore, each module makes itself available to the other

modules (and to the rest of the world) through a published

API.

Keywords- Application Programming Interface(API),

Modularization,Function Call Traffic, Non API,Metrics.

1. INTRODUCTION
1.1 Objective:

 The main objective of this paper is to measure the quality of

modularization of object-oriented projects by Coupling-based

Structural metrics.

 Goal is to analyses or measure how the code is framed for the

particular software and Applying Software metrics to show

the result[1].

1.2. Methodology:
Much work has been done during the last several years on

automatic approaches for code reorganization. Fundamental to

any attempt at code reorganization is the division of the

software into modules, publication of the API (Application

Programming Interface) for the modules, and then requiring

that the modules access each other’s resources only through

the published interfaces[2,3].

 Our ongoing effort, from which we draw the work

reported here, is focused on the case of reorganization of

legacy software, consisting of millions of line of non-object

oriented code, that was never modularized or poorly

modularized to begin with. We can think of the problem as

reorganization of millions of lines of code residing in

thousands of files in hundreds of directories into modules,

where each module is formed by grouping a set of entities

such as files, functions, data structures and variables into a

logically cohesive unit. Furthermore, each module makes

itself available to the other modules (and to the rest of the

world) through a published API[1,2]. The work we report here

addresses the fundamental issue of how to measure the quality

of a given modularization of the software.

1.3. Modularization:
In this context "module" is considered to be a

responsibility assignment rather than a subprogram. The

modularizations include the design decisions which must be

made before the work on independent modules can begin.

Quite different decisions are included for each alternative, but

in all cases the intention is to describe all "system level"

decisions (i.e. decisions which affect more than one module).

2. SYSTEM ANALYSIS
 2.1 Analysis of Existing System:

In the existing system large number of coding are divided into

only two modules, so each module contains large number of

coding. So in the existing system performance analysis takes

more time as well as not more accurate.

Some of the earliest contributions to software metrics deal

with the measurement of code complexity and maintainability

. From the standpoint of code modularization, some of the

earliest software metrics are based on the notions of coupling

and cohesion . Low intermodule coupling, high intramodule

cohesion, and low complexity have always been deemed to be

important attributes of any modularized software. The above-

mentioned early developments in software metrics naturally

led several researchers to question their theoretical validity.

Theoretical validation implies conformance to a set of agreed-

upon principles and these principles are usually stated in the

form of a theoretical framework.

2.2 Process of Proposed System:

Modern software engineering dictates that a large body of

software be organized into a set of modules. A module

captures a set of design decisions

which are hidden from other modules and the interaction

among the modules should primarily be through module

interfaces. In software engineering parlance, a module groups

a set of functions or subprograms and data structures and

often implements one or more business concepts. This

grouping may take place on the basis of similarity of purpose

or on the basis of commonality of goal.

In the Proposed system we considered the leaf nodes of the

directory hierarchy of the original source code to be the most

fine-grained functional modules. All the files (and functions

within) inside a leaf level directory were considered to belong

to a single module. In this manner, all leaf level directories

formed the module set for the software.

After that we apply Coupling-based Structural Metrics as

follows

2.2.1. Coupling-Based Structural Metrics

Starting with this section, we will now present a new set of

metrics that cater to the principles. We will begin with

coupling-based structural metrics that provide various

measures of the function-call traffic through the API’s of the

modules in relation to the overall function-call traffic. For that

we have find the following four factors.[4,5]

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

10

1. Module interaction index

2. Non-API Function Closed ness Index

3. API Function Usage Index

 4. Implicit Dependency Index

2.2.2 Plagiarism Detection:

Plagiarism detection is the process of locating instances

of plagiarism[9] within a work or document. due to this

technique, if any user wants to cut&paste the source code

from the website that website is immediately identified by

using plagiarism detection technique.For this technique we

use axmedis framework[7,8].

3. IMPLEMENTATION
The implementation stage involves careful planning,

investigation of the existing system and it’s constraints on

implementation, designing of methods to achieve changeover

and evaluation of changeover methods.

Implementation is the process of converting a new system

design into operation. It is the phase that focuses on user

training, site preparation and file conversion for installing a

candidate system

3.1 Modular Description:

List of Modules

1. Getting input.

2. Code Parsing.

3. Finding Application metadata.

4. Storing into Database.

5. Applying Metrics.

6. Graphical Representation.

 Fig 1. Data Flow Diagram

3.2 Mathematical Hypothesis:

3.2.1 IFAC (Index factor for API function calls):

This metric calculates how effectively a Module’s API

functions are used by the other Modules in the system.

Suppose module has n API functions and let’s say that nj

numbers of API functions are called by another module mj.

Also assume that there are z numbers of modules from

module1 to module z that calls one or more API functions of

module[1,4].

IFAC (module) = (n1+n2+…nz) / (n * z)

 = 0, if n i. e. number of API function is zero.

If we assume that module api is the total number of modules

having more than zero API functions. Then

IFAC (system) = SUM [IFAC (module)i] / module api,

Where i = 1 to module

api……………………………….……..…..(1)

The maximum value of this metric IFAC (system) will be 1,

depending on the focus and nature of the modules with similar

purpose.

2. IFNC (Index factor for non API function calls):

Let us represent API function as function api and non API

functions as function napi for given module.

Then total function will be function = function api+ function

napi

Total number of modules is M.

IFNC (module) = function napi/ (function - function api)

 = 0, if the non API functions are zero.

IFNC (system) = SUM [IFNC (module)i] / M,

 Where i =1 to M……………………… (2)

In good modularized object oriented software, functions will

be either API or non API type of functions. And non API

functions are not used outside the module.

Then function - function api will be equal to functionnapi. So

that IFNC (module) = 1.

Here sometimes the value of the IFNC (module) can be

between 0 and 1.

3.2.2 IFMC (Index factor for non API function calls):

This metric calculates the index factor for module

communication and how well API functions of modules are

used by the other modules in the system for communication.

Assume that a module has n functions from 1 to n, of which

the n1 API functions are given by the subset {f1 api ……. F

n1 api}. Cext is used to denote the total number of external

calls coming from the other modules. It is a java file as

module. Also assume that system has m1 to mi

modules. Total number of modules is M. Index Factor for

module communication (IFMC) for a given module and for

the entire software system by[1,2]

Emerging Trends in Computer Science and Information Technology -2012(ETCSIT2012)

Proceedings published in International Journal of Computer Applications® (IJCA)

11

IFMC (module) = {SUM [Cext (fapi)]} / Cext

(module),

Where fapi is in range from f1 api to fn1 api

= 0, when there are No external calls made to the

particular module

IFMC (system) = {SUM [IFMC (module)i]} / M,

Where i is in range from 1 to M……………………….. (3)

3.2.3 IFID (Index factor for Implied Dependency):

When function in one module is writing to a global variable

that is in use by another module then there is indirect

dependency. There can be many events where this kind of

dependency occurs in program. Generally in large enterprise

application made in object oriented language may have

complex source for the hidden dependency between the

modules.Let us say that dependency is denoted by Dglobal

(modulea, moduleb) where a≠b. In which dependency will be

there when module a tries to write in to global entity (e.g.

files, variables etc) at the same time moduleb is also trying to

work on the same entity.

Let us say that D function (module a, module b) where a≠b. In

which the calls are made by the functions in module a to

functions in module b. Then the Index factor for the implied

dependency for module will be given by[2],

IFID (module) = SUM [Dfunction (modulea, moduleb)] /

SUM [Dfunction (modulea, moduleb) + D global

(modulea,moduleb)],for all implied dependencies

 = 1, when D global (modulea, moduleb) = 0

IFID (system) = IFID (module) / M,

Where M is total number of module from 1 to M……….(4)

From this metric we can say that there should be very less or

none implied dependencies in the system.

Generally the value of IFID (system) is equal to 3.

4. CONCLUSION
We reported on two types of experiments to validate the

metrics. In one type, we applied the metrics to two different

versions of the same software system. Our experiments

confirmed that our metrics were able to detect the

improvement in modularization in keeping with the opinions

expressed in the literature as to which version is considered to

be better. The other type of experimental validation consisted

of randomizing a well-modularized body of software and

seeing how the value of the metrics changed. This

randomization very roughly simulated what sometimes can

happen to a large industrial software system as new features

are added to it and as it evolves to meet the changing

hardware requirements. For these experiments, we chose

open-source software systems. For these systems, we took for

modularization the directory structures created by the

developers of the software. It was interesting to see how the

changes in the values of the metrics confirmed this process of

code disorganization.

5. ACKNOWLEDGEMENT
 I take this opportunity to thank a number of individuals

whose guidance and encouragement were of enormous help

to us while working on this paper. First and foremost i would

like to thank our project guide and mentor Prof S.V.Kulkarni

for her valuable advice, guidance and help in searching the

topic and innovative suggestions for the improvement of the

same. I also highly thankful to our Head of Department Prof

K.V.Bhosale and our Principal Dr.R.G.Tated for their

constant support and encouragement

6. REFERENCES

[1] S. Sarkar, A.C. Kak, and N.S. Nagaraja, “Metrics for

Analyzing Module Interactions in Large Software

Systems,” Proc. 12th Asia- Pacific Software Eng. Conf.

(APSEC ’05), pp. 264-271, 2005.

[2] Java 2: The Complete Reference, Fifth Edition by

HerbertSchildt

[3] Sarkar S., Kak A. C. and Rama G. M, “API-Based and

Information-Theoretic Metrics for measuring the Quality

of SoftwareModularization” IEEE Trans. Software Eng.,

vol. 33, no. 1, pp.14-30.

[4] Chidamber S. R. and Kemerer C. F.,“A Metrics Suite for

Object Oriented Design,” IEEE Trans. Software Eng.,

vol. 20, no. 6, pp.476-493, June 1994.

[5] Pfleeger S. and Fenton N., Software Metrics: A Rigorous

and Practical Approach. Int’l Thomson Computer Press,

1997.

[6] Pressman R. S., Software Engineering: A Practitioners

Approach, 6/e, TATA McGRAW HILL, 2005, pp 461-

670.

 [7] Stein, Benno; Koppel, Moshe; Stamatatos, Efstathios

 "Plagiarism Analysis, Authorship Identification, and

Near-Duplicate Detection PAN’07"

[8] Potthast, Martin; Stein, Benno; Eiselt, Andreas; Barrón-

Cedeño, Alberto; Rosso, Paolo (2009), "Overview of the

1st International Competition on Plagiarism Detection"

[9] Stein, Benno; Meyer zu Eissen, Sven; Potthast, Martin

(2007), "Strategies for Retrieving Plagiarized

Documents", Proceedings 30th Annual International

ACM SIGIR Conference

http://www.uni-weimar.de/medien/webis/publications/papers/stein_2007o.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2007o.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-09/pan09-papers-final/potthast09-overview-first-international-competition-plagiarism-detection.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-09/pan09-papers-final/potthast09-overview-first-international-competition-plagiarism-detection.pdf
http://www.uni-weimar.de/medien/webis/research/events/pan-09/pan09-papers-final/potthast09-overview-first-international-competition-plagiarism-detection.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2007f.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2007f.pdf
http://www.uni-weimar.de/medien/webis/publications/papers/stein_2007f.pdf

