
International Journal of Computer Applications (0975 – 8887)

Emerging Trends in Computing2016

15

Subgraph Matching Algorithm for Graph Database

Maninder Rajput
PG student,

 Dept. of Computer engg.,
K.K.W.I.E.E.R.,

Savitribai Phule Pune University,
Nashik(MH), India

Snehal Kamalapur, PhD
Associate Professor,

 Dept. of Computer engg.,
K.K.W.I.E.E.R.,

Savitribai Phule Pune University,
Nashik(MH), India

ABSTRACT

A graph is a symbolic representation of data and its

relationships. It is used in many domains like bioinformatics,

semantic web and chemical structures applications. Subgraph

matching is a technique to retrieve set of subgraphs from

dataset which are similar to query/input graph. Subgraph

matching is a NP-hard. Graph S(VS, ES) is subgraph of graph

G(VG ,EG) if VS ⊆ VG and ES ⊆ EG. Work here aims to fetch

all subgraphs S(VS, ES) from graph G(VG ,EG) which are

similar to query graph Q(VQ, EQ) using subgraph matching

algorithm. Work carried out in two phases, offline phase and

online phase. Offline phase grnertaes index over data graph G.

Online phase retrieves set of subgraphs from data graph G

which are similar to query graph Q. A cost function is

introduced for checking similarity of query node with data

graph node which efficiently reduces intermediate results by

converting vertices into vector points and extracts similar

subgraphs by calculating nearest distance of these vector

points.

General Terms

Data mining, Graph mining.

Keywords

Graph database, Offline phase, Online phase, Subgraph

matching..

1. INTRODUCTION
The graph is an attractive tool to represent and model a data

since it allows simple and flexible representation of complex

objects. Day by day increasing data in graphs requires new

techniques to extract results for graph queries in shorter time.

Real world graphs are very large in size that is having

millions number of nodes and edges. Web graphs,

Bioinformatics, protein interaction, social networks are some

examples. Subgraph matching is a technique to retrieve

subgraphs which are similar to query/input graph. Subgraph

matching is also called subgraph isomorphism.

1.1 Subgraph
A graph[1] H = (v,e) here v is a set of vertices and e is a set of

edges, then H is said to be a subgraph of graph G = (V,E) if v

⊆ V and e ⊆ E, and each edge in graph H should have same

ending vertices in graph G also.

1.2 Isomorphism
Two graphs[1] G and H are isomorphic (G ≈ H) if and only if

there exist a bijective function f, for vertex set of G and H

such that,

Fig.1 A graph and its subgraph.

f : V (G) → V (H).

This is a mapping function which will map vertices of

query/input graph to the vertices of dataset. If u and v are two

vertices of G and H respectively, then G and H are isomorphic

iff (u, v) ϵ E(H). Any two vertices

u and v of G are adjacent in G if and only if they are adjacent

in H.

Fig.2 Graph Isomorphism

In fig.2 vertex (a) of graph G has matching vertex (1) in graph

H, represented by f(a) = 1 and vertex (b) has matching vertex

(6) in graph H, represented by f(b) = 6, similarly rest of the

matching’s are shown in figure 2.

For a query/input graph Q and a data graph G, subgraph

matching algorithm will extract all those subgraphs from G,

which are isomorphic to Q. Subgraph matching approaches

are generally classified into two categories: Exact and

approximate subgraph matching approaches. Subgraph

matching approaches aim to find out an exact mapping or

matching between the vertices and the edges of the query

graphs and data graphs. Approximate subgraph matching

approaches aim to compute a distance between vertices of

graphs by converting vertices into points in vector space using

embedding techniques. Approximate subgraph matching

approaches converts pattern match queries into distance based

https://en.wikipedia.org/wiki/Adjacent_(graph_theory)
https://en.wikipedia.org/wiki/If_and_only_if

International Journal of Computer Applications (0975 – 8887)

Emerging Trends in Computing2016

16

queries. Approximate matching is useful for rank based

applications where the distance between the objects to be

compared is needed. Several subgraph matching approaches

have been proposed in the literature. The aim of this paper is

to provide a survey of recent and current subgraph matching

approaches on large graphs.

Work describe in detail the existing approaches and can

categorize them into two classes i.e., exact and approximate

subgraph matching approaches. The advantages,

disadvantages and the differences between these approaches

are also highlighted here.

2. LITERATURE SURVEY
Many subgraph matching algorithms have been introduced in

recent years. These subgraph matching algorithms can be

classified into two classes i.e. exact subgraph matching and

approximate subgraph matching.

Fig. 3 Subgraph matching algorithms classification

Ullmann algorithm[2] is a backtracking algorithm. It detects

subgraph isomorphism using brute force tree search and

enumeration procedure. Enumeration algorithm was designed

to generate an adjacency matrix of query graph H and large

graph G and then using this adjacency matrix, isomorphism

was detected. Its refinement phase was used to prune

undesired matches from adjacency matrix of possible future

matched node pairs. The memory requirement for Ullmann

algorithm is O (N3) for N number of nodes, which is very

high. This memory requirement has been reduced to O (N) in

VF2 algorithm.

L. P. Cordella et al. [3] proposed a matching algorithm for

both graph isomorphism and subgraph isomorphism. It was a

deterministic matching algorithm. It started with first vertex,

selects sequential vertices, search for a subgraph match, and

backtracks if not. It has used state space representation for the

matching process. A set of feasibility rules were introduced to

insure consistency of partial solutions and for pruning a

search tree. Here are some limitations for the above proposed

algorithm, search with this method is not based on an index,

so it is costly as compared to the new methods. It was

designed for graphs with thousands of nodes only. Haichuan

Shang Ying Zhang Xuemin Lin et al. [4] Introduced an

efficient algorithm for subgraph isomorphism. It computed the

triple frequencies of labels of vertices of data graph in

advance that is before the search procedure started. B+ tree

was used for storing frequencies of all vertex labels. Weight

of each query vertex was computed and assigned using pre-

computed edge label frequencies and a minimum spanning

tree was formed using modified Prim’s algorithm.

Yuanyuan Tian et al. [5] Proposed a tool [TALE] for

approximate matching in large graphs. It is based on the

assumption that approximate matching could generate more

and nearby results to the input query as compared to exact

matching. It distinguishes nodes on the basis of their relative

importance (importance here was decided on the basis of

degree centrality of node in the database) in the structure of

the graph. Firstly, it matches only important nodes of input

graph and then these nodes lead the remaining matching

procedure by considering adjacent nodes of previously

matched nodes in a second step. It has better effectiveness as

compared to Gramelin . Its index size scales linearly to dataset

size and index construction time grows steadily.

Shijie Zhang et al. [6] Put forward a technique which relied on

Neighboring Discriminating Structure distance. It first selects

a query vertex appeared first in input graph and then performs

DFS (Depth First Search) to find next query vertex for

comparison. To refine a candidate set for query vertices,

vertices of data graph were pruned on the basis of NDS.

Binary search was used to locate distances between any given

pair of vertices. But it works efficiently only for biological

networks. Lei Zou et al. [7] proposed a pattern match query in

the large graph database based on distance and joins. Firstly

vertices were transformed into points in vector space using

LLR embedding because it is cheap to calculate distance

between two vertices then to find nearest vertex of any

existing vertex. A cost model was also proposed to guide a

join order selection that is this model generated a cheap input

query from the query entered by a user. It has used costly join

operations.

Peixiang Zhao et al. [8] introduced a new graph indexing

technique. Graph matching was performed in a manner,

searching for a query path rather than searching for a query

vertex. It was a first method to search in this fashion. Its main

aim was to reduce N, where N is the number of vertices of

query graph. An algorithm GraphQL [9] was introduced

earlier to SPath algorithm and SPath has better performance

as compared to GraphQL. Both perform neighborhood’s

signature based pruning before starting actual subgraph

matching procedure. There is a difference in indexing

technique of these two algorithms i.e. GraphQL indexes nodes

of data graph while SPath indexes nodes of datagraph using

their neighbour information. SPath has better performance but

its average cost for recursive calls is more than GraphQL.

Liang Hong et al. [10] proposed a subgraph matching

algorithm in large graph database. It efficiently extracts

subgraphs from the large data graph which are isomorphic to

query graph. It works in two steps; firstly it builds a lattice

based index over data graph, and a data signatures and

signature buckets for neighbourhood information about

vertices. In the second step, for a query graph Q entered by

the user a cost efficient dominating set was generated for it.

3. MOTIVATION
Due to emergence of too much graph data in areas like social

networks, information network, technological networks and so

on, it is necessary to speed up the search procedure. Graph

database is being widely used as an important tool to model

and ask questions and to generate answers for it from graph

International Journal of Computer Applications (0975 – 8887)

Emerging Trends in Computing2016

17

data. Subgraph matching is a technique to find out the set of

subgraphs from a large graph database which are isomorphic

to query graph. Some methods use index to fasten the search

procedure whiles some not.

 It is very important to reduce the search space, as a search

space directly affects performance of any subgraph matching

method. It’s been observed during a literature survey that

pruning plays important role in reducing search space, as it

reduces the number of comparisons. Pruning is a technique to

eliminate or evict unwanted vertices of large graph from being

getting compared to that of query graph. Along with pruning,

if one can reduce the number of vertices from a query graph,

then it will greatly improve performance of existing subgraph

matching methods.

3.1 Existing system
Liang Hong et al. [10] proposed a subgraph matching

algorithm in large graph database. It efficiently extracts

subgraphs from large data graph which are isomorphic to

query graph.

It works in two steps; firstly it builds a lattice based index

over data graph, and a data signatures and signature buckets

for neighborhood information about vertices. In the second

step, for a query graph Q entered by the user a cost efficient

dominating set was generated for it. Two types of pruning

strategies have been introduced, set similarity and structure

based pruning. These pruning techniques greatly reduce the

size of intermediate results.

Two algorithms have been proposed to find final solution,

input for the first algorithm is the dominating query graph and

mapping between dominating query graph and subgraph of

the data graph will be found out here, and for second

algorithm input is query graph, dominating query graph and

this will find mapping between query graph and subgraph of

the data graph.

3.2 Goal

The goal of this paper is to design an efficient algorithm for

subgraph matching which will improve performance of

existing system.

3.3 Problem Definition
To design and implement a subgraph matching algorithm

along a graph similarity cost function and compare

performance with existing system.

4. PROPOSED ARCHITECTURE

4.1 Proposed Methodology
Iterative subgraph matching algorithm is used to find out

similar subgraphs from large data graph. Whole process of

proposed method will be carried out in two phases’ offline

and online phase.

4.2 Offline Processing
In offline phase an inverted index will be build over data

graph and another index that is neighbourhood index will be

constructed to store neighbourhood information of each vertex

of data graph. Neighbourhood information of each vertex is

stored in form of vector points. Vertices first converted to

multidimensional vector using standard formula

 
 


h

i ivud

i uLlIlvA
1),(

))((),(

Where for a node v ∈ Data graph and u ∈ Query graph A(v,l)

represents strength of element weight at vertex v in data

graph, α is constant whose value lies between (0,1),

I(l ∈ L(u)) is indicator function such that:

𝐼 𝑙 ∈ 𝐿 𝑢 =
1 𝑖𝑓 𝑙 𝑖𝑠 𝑖𝑛 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑒𝑡 𝑜𝑓 𝑢
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

d(u,v) is distance between u and v.

Fig.4 Block Diagram of Proposed system

4.3 Online Phase
In online phase, user enters a query graph and using inverted

index similarity pruning will be performed over data graph,

here jaccard similarity is used. Further pruning will be done

by graph similarity cost function using neighbourhood

information index.

For the following data and query graphs:

International Journal of Computer Applications (0975 – 8887)

Emerging Trends in Computing2016

18

Fig. 5 Data graph Query Graph

Distance between nodes is calculated for both query and data

graph. One node distance is notated as 0.5 and two node

distance is notated as 0.25.

For query graph Distance (Dq) from node a to b is 0.5, and

Distance (Dq) from node b to a is 0.5. denoted as follow:

 Dq (a,b) = 0.5

 Dq (b,a) = 0.5

For data graph Distance (Dm1) that is for mapping m1, is

denoted as follow:

 Dm1(a,b) = 0.5

 Dm1(b,a) = 0.5

 Dm2(a,b) = 0.25

 Dm2(b,a) = 0.25

Cost of matching (CF) is calculated between query graph and

two mappings (m1, m2) of data graph as follow:

CFm1 = [Dq(a-b) - Dm1(a-b)] + [Dq(b-a) - Dm1(b-a)]

 = [0.5 - 0.5] + [0.5 - 0.5]

 = [0] + [0]

 = 0

CFm2 = [Dq(a-b) – Dm2(a-b)] + [Dq(b-a) – Dm2(b-a)]

 = [0.5 - 0.25] + [0.5 - 0.25]

 = [0.25] + [0.25]

 = 0.5
So, cost of matching is least for mapping one and hence

mapping m1 of final solution for query graph.

4.4 Subgraph Matching Algorithm
Finally a set of subgraphs similar to query graph will be

generated using subgraph matching algorithm. Subgraph

Matching Algorithm is:

1. Select a node from query graph and match it with

some node of data graph which satisfies cost

function.

2. Discard element set of unmatched nodes.

3. Recalculate neighborhood vectors for nodes that

have match with query node. Repeat step 1 until it

converges.

5. DATASETS
We used two real datasets Freebase and Dbpedia. The datasets

are described below:

1. Freebase is a collection of large knowledge base of

structured data. Graphs are in form of entity

(vertices) relationship (edges). Weight of features

represents its significance that is normalized to

range [0, 1]. Freebase dataset is used for efficiency,

durability and effectiveness examination.

2. DBpedia collaboration graph dataset is collection

of names of authors their publications, co authors

and citations.

Fig. 6 Dataset Snapshot

6. RESULT AND DISCUSSION
In this section experimental results are presented to

demonstrate the efficiency and effectiveness of proposed

subgraph matching algorithm. Performance measures for

subgraph matching are: Index construction time

• Space cost

• Pruning time

• Number of candidates generated

• Query response time

Complexity in terms of time and space is O(n), where n is

number of vertices in data graph.

Table 1: Results

Performance mearsures Time (sec.)

Inverted Index Construction Time 1213

Neighborhood Index Construction

Time

2772

Elements Weight Calculation Time 10

Pruning time 0.49

No. of candidates generated after

similarity pruning

6377(12754)

7. SUMMARY AND CONCLUSION
The subgraph matching algorithm extracts all similar

subgraphs to query graph from the data graph. Various

approaches have been discussed in literature survey which

aims to minimize query processing time and intermediate

results space. Work here aims to reduce intermediate results

space by pruning unwanted vertices of the data graph. A

graph similarity cost function is introduced which prune

unwanted vertices using neighborhood information vertex

very efficiently. This will improve performance of existing

system.

a

b c

b

a

b

0

1 2

3

0

1

International Journal of Computer Applications (0975 – 8887)

Emerging Trends in Computing2016

19

8. ACKNOWLEDGMENTS
With immense pleasure, I am presenting this Project Report

on “Subgraph Matching Algorithm for Graph Database” as a

part of the curriculum of M.E. Computer Engineering at

K.K.W.I.E.E.R., Nashik It gives me proud privilege to

complete this Project Dissertation Stage-I Work under the

valuable guidance of Prof. Dr. S. M. Kamalapur. I am also

extremely grateful to Prof. Dr. S. S. Sane (HOD of Computer

Department) and Prof. Dr. K. N. Nadurkar Principal for

providing all facilities and help for smooth progress of Project

Work. I would also like to thank my friends and my family

members who have directly or indirectly guided and helped

me for completion of this work.

9. REFERENCES
[1] Nar Singh Deo, “Graph theory with applications to

engineering and computer science”.

[2] J. R. Ullmann, “An algorithm for subgraph

isomorphism,” J. ACM, vol. 23, no. 1, pp. 31–42, 1976.

[3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A

(sub)graph isomorphism algorithm for matching large

graphs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26,

no. 10, pp. 1367–1372, Oct. 2004.

[4] H. Shang, Y. Zhang, X. Lin, and J. X. Yu, “Taming

verification hardness: An efficient algorithm for testing

subgraph isomorphism,” Proc. VLDB Endowment, vol.

1, no. 1, pp. 364–375, 2008.

[5] Y. Tian and J. M. Patel, “Tale: A tool for approximate

large graph matching,” in Proc. 24th Int. Conf. Data

Eng., 2008, pp. 963–972.

[6] S. Zhang, S. Li, and J. Yang, “Gaddi: Distance index

based subgraph matching in biological networks,” in

Proc. 12th Int. Conf. Extending Database Technol.: Adv.

Database Technol., 2009, pp. 192–203.

[7] L. Zou, L. Chen, and M. T. Ozsu, “Distance-join: Pattern

match query in a large graph database,” Proc. VLDB

Endowment, vol. 2, no. 1, pp. 886–897, 2009.

[8] P. Zhao and J. Han, “On graph query optimization in

large networks,” Proc. VLDB Endowment, vol. 3, nos.

1/2, pp. 340–351, 2010.

[9] H. He and A. K. Singh, “Graphs-at-a-time: Query

language and access methods for graph databases,” in

Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008, pp.

405–418.

[10] Liang Hong, Lei Zou, Xiang Lian and Philip S. Yu,

“Subgraph Matching with Set Similarity in a Large

Graph Database,” in Proc. IEEE VOL. 27, NO. 9, pp,

2507–2521,2015.

IJCATM : www.ijcaonline.org

