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ABSTRACT 
Hypergraph is an abstraction of graph in which edges are non-

empty subset of vertex set. Hypergraph has edges that connect 

set of two or more vertices. Hypergraph are more suitable to 

represent complex relational objects in many real-world 

problems. There is need to make the partitions of the hypergraph 

to analyze the whole hypergraph. Multilevel partitioning 

techniques are used to obtain subgraph. Sometimes they are 

inadequate to follow global objective function. Here hypergraph 

partitioning is making partitions of vertex set into the subset of 

vertices which are distributed smoothly to form subgraphs and 

having minimum intersections between this subgraphs. The 

hypergraph partitioning problem is used in many scientific 

computing, social network analysis than the similar graph 

problem. 
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1. INTRODUCTION 
Graphs are used to explain pairwise relationship shared by 

objects. However, graph are not sufficient for effective 

representation of set of complex relational objects. Using graph, 

information loss may occur that is why hypergraph are more 

suitable to represent complex relational objects in many real-

world problems. Hypergraph is an abstraction of graph in which 

edges are non-empty subset of vertex set. Hypergraph has edges 

that connect set of two or more vertices. Hypergraph develop the 

concept of edge by granting more than two vertices to be 

connected by a hyperedge.[1] We can say that Hyperedge is a 

set of subsets of vertices. A hypergrph is define by two sets : a 

set of vertices and a set of hyperedges. [2] 

Let’s take an example of a collection of songs. We have only 

information that who sang the song. Lets observe the difficulty 

in organizing collection of songs in various categories. Consider 

vertices represents songs and connected by an edge only if there 

is at least one common singers of their corresponding songs. 

Singer set is denoted byS contains three singers. Song set is 

denoted by V contain seven songs. Table 1 illustrates the 

available information about songs and corresponding singers. A 

Singer set S = {s1,s2,s3} and a song set V = { v1,v2,...v7} 

Using information provided in table 1, an undirected graph 

shown in figure 1 is constructed, in which two vertices are 

joined together by an edge if there is at least one common 

singers of their corresponding songs. Method discussed above is 

quite natural, graph representation may miss out details such as 

a singer joined singing three or more songs or not. 

This kind of information loss is unwanted because the songs by 

the same person likely belong to the same category. This kind of 

information is useful in forming relevant clusters. 

Table 1. Relationship Of Singer Set And Song Set 

 s1 s2 s3 
v1 0 0 1 
v

2 0 0 1 
v3 0 1 0 
v4 0 1 1 
v5 0 1 0 
v6 1 0 0 
v7 1 0 1 

 

Fig.1 An undirected graph in which two songs are joined 

together by an edge if there is at least one singer in 

common. 

Figure 2, shows hypergraph for the example of clustering few 

songs stated before. It is quite easy to develops a hypergraph 

with vertices representing the songs and the edges as singers. 

Each hyperedge contains all songs sung by its corresponding 

singers. We can also put positive weights on the edges to 

program our prior knowledge on singers’ work if we have. 

For instance, for a person working on a broad range of fields, 

we may consign a comparatively small value to his 

subsequent edge. Now we can wholly represent the 

multifaceted relationships among objects by using 

hypergraphs. Simple graph is a hypergraph with each edge 

containing two vertices only. Hypergraphs can capture a 

relationship between a group of objects, whereas graphs can 

only capture binary relationship between objects.[3] Data is 

increasing day by day exponentially. Hence handling and 

resolving large data for practical applications is always 

needed. Different approaches are always required to reduce 

data. 

Hypergraphs are better option to model complex unstructured 

relationships such as parallelization of complex and irregular 

applications from a range of domains including parallel 

scientific computing , sparse matrix reordering , 

socialnetwork analysis, clustering and recommendation, and 

database design. Other examples are Publishing data like co-

authorship and co-citation, Collaborations in committee 

membership, movies etc, and chemical processes, social 

interactions and many more[13]. 
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Fig.2 A hypergraph constructed for singer and song 

relationship 

Hypergraph partitioning have applications in different discipline 

like, VLSI design, large database storage, task scheduling in 

multiprocessors, communities detection on web, image 

segmentation, query optimization, fixing cache locality in 

shared-memory systems. To reduce processing time, 

hypergraphs are used in representation of big data. While 

designing VLSI layout, it is essential to find optimum 

decomposition of hypergraph into k disjoint subsets. 

Organization of this paper is as follows: Section I gives a brief 

introduction of proposed system. Section II focus on literature 

review, section III convey motivation behind proposed system. 

Section IV explains and contains block diagram and 

mathematical model of the proposed architecture. Section V 

elaborates data sets and results for the proposed method and 

section VI concludes the paper. 

2. LITERATURE SURVEY 
This section covers works done for hypergraph partitioning and 
summarizing their analysis. The existing hypergraph partition 
methods can be classified into three categories. 

2.1 Iterative Partitioning 
Conventional approaches for hypergraph partitioning are 

Kernighan-Lin algorithm (KL)[8] and Fiduccia Mattheyses 

(FM) [14] algorithms. KL algorithm tries to create cut between 

two balanced subgraph kept minimized. FM algorithm which 

partitions into unequal parts so that cut will be minimum. Both 

algorithms work in passes and lock vertices after moved. 

Actually, only move those vertices up to the maximum partial 

sum of gain. Difference between FM over KL is that is does not 

exchang pair of vertices, rather move only one vertex at each 

time. KL and FM are older algorithms but it is frequently found 

in use combined with other methods. 

2.2 Spectral Partitioning 
Spectral clustering techniques are also generalized to be used for 
hypergraphs. To represent relationship between vertices 
laplacian matrix[6] and modularity matrix[7] are constructed 

from hypergraph. Eigen vectors are formed of matrix 
representation of hypergraph. Zhou et al.[1] presented 
spectraltechnique applied to hypergraphs, Biological network 

and social network are analyzed using this developed algorithm. 
Rodriguez et al.[6] presented method in which hypergraphs are 
modeled using the generalization of the Laplacian matrix. 

Spectral Bisection is used when entire graph partitioning is to be 
performed. This method uses Adjacency matrix and diagonal 
Matrix. The disadvantage is high dimensional space required. 

The computational cost of partition increases rapidly as the size 
of a hypergraph. 

 

2.3 Multi-level Partitioning 
Computational burden and partition quality both are balanced 

using multilevel partitioning methods. First original graph is 

simplified, then initial partitioning is done. Final partition is 

achieved using refinement. Karypis et al. [8] presents 

multilevel hypergraph partitioning algorithm hMETIS [9] . 

METIS works directly on graph. Free download from website 

is made available for hMETIS. 

Phase 1 : Coarsening phase : The graph G is first grained to a 

few hundred vertices. To find a good partition successive 

coarse graphs made. Lesser is memory required if coarsening 

done faster. 

Phase 2 : Initial Partitioning : This is the easiest of the three 

phases. Random+FM, spectral, region growing, etc.algorithm 

can be used at this phase. Time required in this phase is very 

little. 

Phase 3: Refinement: Also called as uncoarsening phase. 

Local refinement is done. Using partitioning done in phase 2, 

partition of larger graph is obtained. It reduces the cut and 

improves partitioning quality. Vertex swapping algorithms 

like KL, FM can be used. Efficiency of refinement algorithm 

is highly depends on coarsening. 

hMETIS algorithm is used to divide large hypergraph into a 

predefined fixed number of subgraphs. Multiple iteration of 

algorithm improves the quality of partitioning. Lotfifar et 

al.[10] presented a multi-level sequential hypergraph 

partitioning algorithm. Feature Extraction Hypergraph 

Partitioning (FEHG) algorithm is used Coarsening, initial 

partitioning and uncoarsening are the three distinct phase used 

in this algorithm. Karypis et al. [11] Present a k-way 

partitioning algorithm. It also work under multilevel 

partitioning. Global optimize objective cannot be enforced on 

recursive bisection algorithm. The key problem is this 

algorithm trapped in local minima. 

H Liu et al. [12] presented dense subgraph partition (DSP) of 

positive hypergraphs. The partitioning DSP naturally, 

correctly and quickly partitions positive hypergraph into 

dense subgraphs. DSP works in two layers of partitions. In 

first partition conditional core graphs are obtained. In second 

partition pseudo-disjoint subgraphs are obtained by using 

disjoint partition. Number of subgraph is determined 

automatically in DSP. List of dense subgraphs with 

decreasing densities is generated as a output of DSP. The 

result contains clusters and outliers also, inside that original 

hypergraph. DSP can be said as finds meaningful strong 

connections between vertices at multiple scales. DSP is 

inadequate to follow global objective function. Hence difficult 

to represent overall hypergraph picture. Besides, DSP is not 

able to partition a hypergraph into a defined number of 

subgraphs. In DSP, connection between different subgraphs 

are not necessarily weak. That means cost is not guaranteed to 

be minimum. 

3. MOTIVATION 
In DSP, connection between different subgraphs are not 

necessarily weak. That means cost is not guaranteed to be 

minimum. 

In many hypergraph partitioning applications, input size is 

growing every year, to cope up with this high performance is 

necessary. Let’s take the example of VLSI design. Total 

transistors needed in a classic VLSI design raised 

exponentially. Hence those algorithms working on scale of 

millions of vertices (as transistors), should be able to work 
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with hundreds of millions in future. This scenario forces any 

partitioning algorithm must have almost linear worse case 

complexity. To improve the performance of existing dense 

subgraph partition of positive hypergraph, it is very important to 

find effective hypergraph partition technique. It finds clusters 

and outliers from local point of view. Global view in hypergraph 

partitioning at minimum cut cost is not addressed. Hence 

proposed work gives importance to global view at minimum cut 

cost while finding dense subgraphs. 

4. PROPOSED ARCHITECTURE 
This section includes details of proposed system i.e. 

mathematical model and block diagram of proposed system 

shown in figure 3. 

4.1 Mathematical Model 
Let S be a hypergraph partitioning system using which 
subgraphs of a hypergraph are constructed. The Proposed 
system S is defined as follows, 

The mathematical model for the proposed system is as follows: 

The proposed system S is defined as, 

S= {V, E, O1, O2, O3, O4, O5, F} 

F is set of functions of the proposed system 

F= {F1, F2, F3, F4, F5} 

V is the set of vertices in the dataset 

V= {v1, v2, v3, ….., vn} 

E is the set of edges in the dataset 

E= {e1, e2, e3, ….., em} 

O1 is the set of the preprocessed inputs 

O1= {D1, D2, D3, …., Dn} 

O2 is the set of hyperedges forming hypergraph representing 

dataset 

O2= {h1, h2, h3, …., hn } 

O3 is the set of reward vector of vertices 

O3 = {r1, r2, r3, ….., rn } 

O4 is the set of histogram constructed for vertices 

O4= {g1, g2, g3, …., gn } 

O5 is the set of partitions generated 

O5= {p1, p2, p3, …., pj } 

System functionality can be seen as first construct hypergraph 

and then partition hypergraph. Subgraphs are represented in the 

form of set of vertices. 

Following rules used to define system functions and Table 2 

elaborates functional dependency matrix 

F1 – It is a function used to perform data preprocessing 

F1 (V,E) → O1 

F2 – It is a function used to perform hypergraph form input 

dataset 

F2 (O1) → O2 

F3 –It is a function used to calculate reward vector for vertices 

F3 (O2) → O3 

F4 –It is a function used to construct histogram for vertices 

F4 (O3) → O4 

F5 –It is a function used to construct partitions in the form of 

set of vertices 

F5 (O4) → O5 

Table 2. Functional Dependency Matrix 

 F1 F2 F3 F4 F5 
      

F1 1 0 0 0 0 
      

F2 1 1 0 0 0 
      

F3 1 1 1 0 0 
      

F4 1 1 1 1 0 
      

F5 1 1 1 1 1 
      

 

Fig.3 Block Diagram og Proposed system 

The proposed hypergraph partitioning system consists of 

following steps 

1. Read input dataset D  

2. Construct hypergraph such that hyperedge for each 

vertex from input dataset by calculating set of adjacent 

vertices of each vertex.  

3. Calculate reward rp(v) for each vertex v in partition p is 

equal to addition of weights W of all vertices in that 

edge.  

re 
(v)

     wv 

v e 

4. Reward vector is formed by knowing reward of each 

vertex. 

5. Calculate integral histogram Y from reward vector for 

partition P contains vertices a1,a2,...a m such that 

{ yi | i  1,..., n} 

where, 

y1    r p 
(
a1

)
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yi     yi 1   r p 
(
ai

)
 
for i=2,...m

 

6. Calculate α density of vi using histogram Y. Density αi of 

vi is initialized to reward vector of vi. For all vj in hi 

density calculated as 

y
 j 

j i  1  

7. Depending upon density partitions generated. If density is 

increasing then keep adding new vertex to older partition 

making a subgraph. Whenever density decreases from that 

vertex new subgraph is created. Subgraph will be created .  

8. All partitions are generated in the form of subsets of 

vertices.  

5. EXPERIMENTAL SETUP 
Our Experimentation uses Intel processor and 6 GB RAM. The 

operating system is windows 8.1(64 bit) with C++. The 

proposed system works on the graph datasets, in the format of a 

text file and provides the output in the text file. 

5.1 Dataset 
In this section we discuss about dataset used. Proposed system 

uses Email-Enron dataset from Stanford Large Network 

Dataset Collection is used. Communication network provided 

in email-Enron consists of email communication. Vertices will 

be persons identified by email addresses. Communication 

between person i and j is denoted by an undirected edge 

between i and j. 

5.2 Results and Analysis 
Following table shows the results of proposed hypergraph 

partitioning technique on Email-enron dataset. 

Table 3. Result Table 

   Previous Proposed 
   System System 
    

Time complexity  O(ne
3
) O(nep) 

    

Number of  subgraphs 1374 1178 
obtained     

     

Time required for 2.078 1.561 
partitions (s)    

     

Where ne=number of hyperedge, p= number of partitions 

6. CONCLUSION 
The existing graph partitioning methods can not follow global 

view due to multi level recursive coarsening. Also minimum cut 

cost is not guaranteed. Proposed work focus on global view. It 

takes care of minimum cost of cutting at the time of 

partitioning. Combination of global view and minimum cut 

cost will produce better quality partitions. 
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