
Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

7

Optimization of Fitness Function through Evolutionary
Game Learning

Sanjay M Shah
Faculty of Engineering

Suresh Gyan Vihar University
Jaipur, India

Dharm Singh
College of Technology and

Engineering, MPUAT,
Udaipur, India

Chirag S Thaker

Faculty of Engineering
Suresh Gyan Vihar University

Jaipur, India

ABSTRACT

Game playing has been one of the main areas of application of

Artificial intelligence and programs are often described as being

a combination of search and knowledge. The Board Games are

very popular due to their nature provide dynamic environments

that make them ideal area of computational intelligence theories,

architectures, and algorithms. For almost all the board games

building a quality evaluation function is usually a challenging

work and requires lot of manual hard work and luck. The quality

of the evaluation function is determined by its accuracy,

relevance, cost and outcome. Good evaluation function must

address all these parameters and then the weighed results are

added to an evaluation function experimentally.

Almost all board games have very large state space. Due to this

nature of board games, evolutionary algorithms such as Genetic

algorithm are applied to the game playing. In natural evolution,

the fitness of an individual is defined with respect to its

competitors and collaborators, as well as to the environment.

Evolutionary algorithms follow the same path to evolve game

playing programs. Go-moku (Five-in-Line), the board game, is a

variant of a Game of GO. This paper mainly highlights

application of genetic algorithm to Go-moku and using genetic

operators tries to find out fitness values through linear

evaluation function applying genetic operators through linear

evaluation function.

General Terms

Deterministic Games, Board games, Go-Moku, Genetic

Parameters, Chromosome, Fitness function et. al.

Keywords

Open four, split three , game learning

1. INTRODUCTION

Game playing is one of the oldest and most extensively studied

areas of artificial intelligence. Sophisticated intelligence is

required in a well-defined problem where success is easily

measured. Games have therefore proven to be important

domains for studying problem solving techniques. Most of the

research in game playing has centered on creating efficient

deeper searches through the possible game scenarios. Games are

one of the means to measure efficiency of AI algorithm in terms

of capability to acquire intelligence without putting human lives

or property at risk. The old techniques of artificial intelligence

work well with games, and to a large extent, such techniques

were developed, tested and improvised for such games [1][2].

This paper presents an approach to game playing by evolving

artificial game-playing by taking genetic approach.

In 21st century, the easy and affordable availability of very fast

hardware and software tools has changed the field of

programming drastically. This has made it possible to simulate

complex physical learning environments, resulting in an

exploration of artificially improved soft cognitive moves by

computer programs in all sorts of board games. Game playing

programs have become a facet of many people’s routine lives

[4].

Due to very high state complexity of almost all traditional board

games, it has become AI research area of state space search for

making a next move. These games provide challenges in the

form of guiding the evolution with the use of human knowledge

and achieving successful and intelligent game playing behavior

[5][6].

Section II briefly explains the history of Go-moku. Section III

explains the rules of the game and various structures of the game

and threat they provide to the opponent. Section IV provides

brief introduction to genetic algorithm and fitness function

evaluation. Section V onwards show how genetic algorithm is

applied to Go-moku and fitness function evaluation with

conclusion.

2. HISTORY OF GO-MOKU

Go-moku is an ancient Japanese strategic two-player board

game. Go-moku (Five-in-line) is a specific form of a general

game connect-X, where X=5.

Go-moku is a two-person, zero-sum, deterministic finite board

game with perfect information. Two-person zero-sum games are

characterized by the fact only one player wins, or it results in a

draw.

In deterministic games, there is no blind move. It is not

dependent on luck such as the roll of a dice. In addition to that

Go-moku is a finite game, because there are a finite number of

moves. As the board is visible to both players, it is also known

as perfect information [7].

3. RULES OF THE GAME

The game is played on various sizes of boards such as 15*15,

17*17, 19*19 as is the case with game of GO. It is having very

simple rules but is a highly complex game. The players alternate

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

8

their moves. The players have unlimited number of pieces. One

player plays with black colour pieces, and the other player with

white colour pieces. Each move consists of putting a piece in the

crossing points of horizontal and vertical line. The move can be

made in any free position on the board. The player with black

piece starts the game. The game is over when one of the player

has got five pieces in one line either horizontally, vertically, or

diagonally-major or minor.

The black normally plays the first move in the center of the

board. Japanese professional Go-Moku players have stated for

many decades that the player to move first i.e black normally

wins, because the game provides advantage to first player [19].

To reduce that advantage, in a variant of the game, the next

move of black is restricted in 5 * 5 square area of first move.

In Go-moku (Five-in-line), there are some structures which

indicate a threat to the opponent, and the opponent needs to take

some preventive or forced move to avoid loss. Following are

some important structures [3].

3.1 Open four

It is some area on the board, where one of the players has

already placed 4 pieces in a row, and wins if he places the next

piece in line with existing 4 pieces. In this situation, the player

can put a piece in any of the two positions, while the opponent

can block only one position.

3.2 Four

This structure is very similar to open four except that; four

pieces are open only on one side, while the other side is blocked

by the opponent piece. The opponent has to make the next move

in that position to avoid a loss and continue the game.

3.3 Three

In this structure, 3 pieces are in a row. If the three is open, then

the player may convert it into open four. So, the player must

take appropriate action.

3.4 Split three

In this type of structure, three pieces are in a row, but there is an

empty place in between. Here, the player has a chance to make it

into four. The opponent must prevent it by putting a piece in the

middle or on any one side.

3.5 Game Complexity

State-space complexity of any board game represents the

number of possible board states in the game. For example, in the

game of Go-moku, there are 361 board locations where each

location can take one of three values, giving approximately 3361

total state space.

4. GENETIC ALGORITHMS

There are many evolutionary algorithms. Genetic algorithm is

the subset of evolutionary algorithms. It provides an algorithm

and natural framework for exploiting all board game scenarios

through natural evolution processes like selection, cross-over

and mutation. So, it is a natural choice for game playing and

learning problems. It is iterative in nature. In stead of using

exhaustive search or conventional optimization techniques, it

uses randomized searching. In practice, Genetic algorithms have

been applied to a broad range of learning and optimization

problems through a set of Genetic Parameters shown in the

outline of genetic algorithm.

The program acquires a novel set of evaluation function

parameters as generations of the genetic algorithms are executed

through a series of experiments.

1. [Start] Generate random population of n

chromosomes (suitable solutions for the problem)

2. [Fitness] Evaluate the fitness f(x) of each chromosome

x in the population

3. [New population] Create a new population by

repeating following steps until the new population is

complete

4. [Selection] Select two parent chromosomes from a

population according to their fitness (the better fitness,

the bigger chance to be selected) The idea is to choose

the better parents.

5. [Crossover] With a crossover probability cross over

the parents to form a new offspring (children). If no

crossover was performed, offspring is an exact copy of

parents.

6. [Mutation] With a mutation probability mutate new

offspring at each locus (position in chromosome).

7. [Accepting] Place new offspring in a new population

8. [Replace] Use new generated population for a further

run of algorithm

9. [Test] If the end condition is satisfied, stop, and return

the best solution in current population

10. [Loop] Go to step 2

Outline of Genetic Algorithm

To begin the process of evolution, it starts with a random set of

candidate solutions also called as chromosomes. These set of

candidate solutions is known as population. Using a cross over

process and mutation operators, it evolves the population

towards an optimal set of solutions. The genetic algorithm does

not give guarantee of optimal solution, so the main challenge is

to design a “genetic” process that maximizes the likelihood of

generating such an optimized solution [12].

In each generation, the fitness value of each candidate solution

is evaluated, based on the fitness values, fittest candidate

solutions act as parents of the next generation of candidate

solutions. After being selected for reproduction process, parents

are recombined or mated through a crossover operator and then

mutated using a mutation operator to generate offspring. The

fittest parents and their new offspring form a new population,

from which the process is repeated to create new populations in

the coming generations.

The design of evaluation function in genetic algorithm is domain

specific. Selection, recombination, and mutation are generic

operations in any genetic algorithm. The operations of

evaluation, selection, recombination and mutation are usually

performed repetitively for each of the iteration. So in a genetic

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

9

algorithm, a major challenge is the design of the fitness function

and the structure of chromosomes which reflects the problem

domain. The value returned by the fitness function is called as

fitness value. Other important parameters in Genetic algorithms

are the size of the population, the portion of the population

taking part in recombination, and the mutation rate. The

mutation rate defines the probability with which a bit is changed

in a chromosome that is produced by a crossover [13].

4.1 Fitness Function

Designing an efficient fitness function is the real challenge in

genetic algorithm. The fitness function defines the fitness of

each chromosome where the values of genetic parameters are

adapted as the genetic evolution progresses. At every generation,

fitness value of each chromosome is calculated using fitness

function. In order to avoid the problem of local minima or local

maxima, If fitness of two chromosomes is equal, then the

mutation rate is increased. Once there is an improvement in the

overall fitness, the original mutation rate is restored to continue

evolution as normal. If the evolution stabilizes, but the fitness

does not seem to be improving for several generations and the

search does not find any error, new set of initial population is

generated using the initial default parameter values and a new

randomly generated seed [14].

This paper uses genetic algorithms in game of Go-moku by

constructing a static evaluation function based on the features

and strategies of the game.

5. APPLYING GENETIC ALGORITHM

TO GO-MOKU

Go-moku was chosen because the rules of the game are easy to

implement, the game provides reasonable complexity and the

game is guaranteed to finish. So, Go-moku ia a perfect game for

optimizing using genetic algorithm.

The initial population is randomly generated and a random

evaluation function serves the purpose of finding fitness value.

The board is represented as two dimensional array of 19 * 19

size. The computer plays using GA. Each element can take one

of the following 4 values: -1= Free position in neighboring

zone, 0 =Free position, 1= Computer player (using GA) piece,

2= Human player piece [3].

The neighboring zone of considered board position is the set of

all occupied positions i.e. positions with value 1 or 2. We use a

representation for a move which is represented by 3 integers,

namely x, y and fitness value, where x and y are horizontal and

vertical positions of the board. The fitness value is derived using

fitness function for a move to position (x, y) on the board. The

chromosome represents a sequence of alternate plays by

computer algorithm and player.

Figure 1 shows the structure of chromosome. The chromosomes

cannot contain equal genes and the genes must be placed in the

free position of the board.

x1 y1 f1 x2 y2 f2 x3 y3 z3

Fig 1: structure of chromosome

The fitness function uses a table of weights to calculate the

fitness value for a considered board position. The fitness value

of a gene is calculated as the sum of weights of all sequences of

pieces surrounding the gene under consideration. The static

weights used are as mentioned in the Table1.

Table 1.The static weights

Number of

pieces

1 2 Three

structure

Four

structure

Computer

Play (GA)

4 16 96 4800

Human

Player

2 10 80 2900

For the figure 2, the fitness value according the Table- 1 will be

calculated as per the neighboring pieces of the considered cross

(X) mark and it will be 16 + 10 =26.

Computer Player pieces

Human Player piece

Fig2: fitness value

So the most important question here is the "weight" of

evaluation function. In this case, finding out correct weights is

the key. Genetic algorithms learn the good weights as the

program proceeds. The way to do this is to start with a random

set of weights in the program, and use them to test the program.

If the program does well, we keep the weights, and use those

(making small changes) in the next version of the program. If

they do badly, they are discarded, and start again with a new set

[3]. To produce feasible chromosomes, crossover operation can

use heuristics also. After crossover operation, the genes are

sorted according to their fitness values. So, the first gene in the

chromosome has the highest fitness value and the second gene in

the chromosome represents the move by the opponent. The next

move by computer is calculated depending upon the prediction

value.

The algorithm calculates the sum total of first genes which occur

as per the prediction value selected. If the prediction value is 3,

then sum total of first 3 genes take place. This value is used to

decide the next actual move suggested by the first gene of

selected chromosome. The fitness value guides the search for the

next move, but is not the only criteria. In some situations, where

defense is important to avoid loss of game, the move should be

selected which gives more preference to defense and not to

attack.

Depending on the problem, we may be interested in minimizing

or maximizing the value of fitness value. For the Go-Moku

problem, we want to maximize the value of fitness.

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

10

6. GAME PROGRAM IMPLEMENTA-

TION

The chromosome is represented as a structure with three

variables x, y and fitness value for that position. The weights for

the various structures like open four, four, three and split three

etc. are calculated as per the structures and position of the pieces

on the board. The fitness value of the considered board position

is calculated as the sum total of the weight values of the

surrounding genes in the neighborhood. According to the fitness

values found for all considered board positions, the move having

the maximum fitness values is selected as the next move by

computer. Whenever required the program gives more

preference to defense than attack in order to extend the game

and delay or avoid loss [3].

7. EXPERIMENTS AND RESULTS

In the experiment, following parameters were taken for the

genetic algorithm. The default values set are shown in Table- 2.

Most important feature is number of genes in the chromosome

and also the size of population. The Prediction parameter, which

shows how many steps forward look ahead affects the

computing time of genetic algorithm.

Table 2.Parameters for GA

Name of Parameter Default

value

Number of genes per

chromosome

25

Population size 25

Prediction 3
Rate of crossover 0.5

Number of iterations

(generations)

15

The used weights influence the quality of the moves of the

program. To test the performance of the algorithm, one set of 15

consecutive human-computers moves were taken.

As shown in figure 3, With genes per chromosome=20 and

population size =20, on average the GA had 3.27 and 3.33 times

blocked the sequences of 3 and 4 pieces of opponent

respectively.

The results showed that on average the GA attacked more than

defended in the game. If we interchange first and second row of

the table, the GA would use the strategy of defense instead of

strategy of attack. Using these parameters, the GA won 68% of

the time as against 60% of the time as compared to [3].

The execution time for each move is below hundredth of a

second for the default parameters set using a Pentium III

processor with, 2 GB RAM, under Windows XP. The paper

shows how we could implement a board-game without using the

search tree or game-tree.

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.27

3.33

3 piece 4 piece

Population size 20 and
genes per chromosome 20

Population size 25 and
genes per chromosome 25

Fig. 3: Average the GA

8. CONCLUSION

The simplicity of fitness function is heavily based on the feature

characteristics of the game. The analysis and construction of

features is the main driving force to solve the game in terms of

creating fitness function. This function when passes through the

genetic cycle of selection-crossover-mutation with weight tuning

through iterative process of generations it exposes a possibility

of improvement and some rearrangement of weights to produce

brilliant moves for attack and defense strategies.

This implementation, which takes moderate number of Genetic

Algorithm constituents like Number of Genes in Chromosome,

Population size, Number of Generations, not only improves the

working cycle of better game moves, but also show very

promising side of Genetic move optimization.

As the number of genes in a chromosome and population size

increases, the GA plays in a better way and blocks the opponents

3 and 4 piece sequences efficiently as compared to as shown in

[3].

9. REFERENCES

[1]. Hong, J.-H. and Cho, S.-B. (2004). Evolution of emergent

behaviors for shooting game characters in robocode. In

Evolutionary Computation, 2004. CEC2004. Congress on

Evolutionary Computation, volume 1, pages 634–638,

Piscataway, NJ. IEEE.

[2]. J. Clune. Heuristic evaluation functions for general game

playing. In Proc. of AAAI, 1134–1139, 2007.

[3]. Shah Sanjay M , Singh Dharm, Thaker Chirag S.

Multimedia Based Fitness Function Optimization Through

Evolutionary Game Learning

[4]. J¨org Denzinger, Kevin Loose, Darryl Gates, and John

Buchanan. Dealing with parameterized actions in behavior

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

11

testing of commercial computer games. In Proceedings of

the IEEE 2005 Symposium on Computational Intelligence

and Games (CIG), pages 37–43, 2005.

[5]. Matt Gilgenbach. Fun game AI design for beginners. In

Steve Rabin, editor, AI Game Programming Wisdom 3,

2006.

[6]. S. Schiffel and M. Thielscher. A multiagent semantics for

the game description language. In Proc. of the Int.’l Conf.

on Agents and Artificial Intelligence, Porto 2009. Springer

LNCS.

[7]. T. Srinivasan, P.J.S. Srikanth, K. Praveen and L. Harish

Subramaniam, “AI Game Playing Approach for Fast

Processor Allocation in Hypercube Systems using Veitch

diagram (AIPA)”, IADIS International Conference on

Applied Computing 2005, vol. 1, Feb. 2005, pp. 65-72.

[8]. Thomas P. Runarsson and Simon M. Lucas. Co-evolution

versus self-play temporal difference learning for acquiring

position evaluation in small-board go. IEEE Transactions

on Evolutionary Computation, 9:628 – 640, 2005.

[9]. Yannakakis, G., Levine, J., and Hallam, J. (2004). An

evolutionary approach for interactive computer games. In

Evolutionary Computation, 2004. CEC2004. Congress on

Evolutionary Computation, volume 1, pages 986–993,

Piscataway, NJ. IEEE.

[10]. A. Hauptman and M. Sipper. Evolution of an efficient

search algorithm for the Mate-in-N problem in chess. In

Proceedings of the 2007 European Conference on Genetic

Programming, pages 78–89. Springer, Valencia, Spain,

2007.

[11]. P. Aksenov. Genetic algorithms for optimising chess

position scoring. Master’s Thesis, University of Joensuu,

Finland, 2004. Y. Bjornsson and T.A. Marsland. Multi-cut

alpha-beta-pruning in game-tree search. Theoretical

Computer Science, 252(1-2):177–196, 2001.

[12]. O. David-Tabibi, A. Felner, and N.S. Netanyahu. Blockage

detection in pawn endings. Computers and Games CG

2004, eds. H.J. van den Herik, Y. Bjornsson, and N.S.

Netanyahu, pages 187–201. Springer-Verlag, 2006.

[13]. A. Hauptman and M. Sipper. Using genetic programming

to evolve chess endgame players. In Proceedings of the

2005 European Conference onGenetic Programming, pages

120–131. Springer, Lausanne, Switzerland, 2005.

[14]. G. Kendall and G. Whitwell. An evolutionary approach for

the tuning of a chess evaluation function using population

dynamics. In Proceedings of the 2001 Congress on

Evolutionary Computation, pages 995–1002. IEEE Press,

World Trade Center, Seoul, Korea, 2001.

[15]. Holland, J. H. (1975). Adaptation in Natural and Artificial

Systems: An Introductory Analysis with Applications to

Biology, Control and Artificial Intelligence. Ann Arbor,

MI: University of Michigan Press.

[16]. Goldberg, D. E. (1989). Genetic Algorithms in

Search,Optimization and and Machine Learning. Reading,

MA: Addison-Wesley.

[17]. Buckles Bill P. and Petry, Frederick E. Genetic Algorithms.

Los Alamitos, CA: The IEEE Computer Society Press.

1992.

[18]. Haupt, Randy L, and Haupt, Sue Ellen. (1998). Practical

Genetic Algorithms. New York: John wiley & Sons

[19]. L.V. Allis,H.J. van den Herik ,M.P.H. Huntjens. Go-Moku

and Threat Space Search.

[20]. Sanjay Shah, Dharm Singh, Chirag S. Thaker, Multimedia

Based Fitness Function Optimization Through

Evolutionary Game Learning., 2011 ETNCC, pp 164-168,

IEEE Catalog Number CFP1196N-CDR , ISBN 978-1-

4577-0238-9 and IEEE Catalog Number CFP1196N-ART ,

ISBN 978-1-4577-0240-2.

