
Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

26

Building Fitness Value Improvement using
Evolutionary Process through Genetic Machine

Learning Approach

Dharm Singh

College of Technology and
Engineering, MPUAT,

Udaipur, India

Chirag S Thaker

Faculty of Engineering
Suresh Gyan Vihar University

Jaipur, India

Sanjay M Shah

Faculty of Engineering
Suresh Gyan Vihar University

Jaipur, India

ABSTRACT

Since decades developing programs for board games has been

part of AI research and this field has attracted computer

developers and researchers world-wide. Board games have a

novel feature of simple, precise, easily formalized rules which

makes them perfect launch vehicle to make computer game

playing in a suitable development environment. The paper

focuses on the two players, full knowledge, alternate move,

deterministic, zero-sum game of Checkers. Genetic algorithmic

approach is been applied in evolving computer player for the

game of Checkers.

The notion of this paper is to incorporate systematic game

playing approach by analyzing game of checkers. Expert game

players reveal three major playing strategies to make game

winning moves. The game moves are divided into three stages

opening game, middle stage and endgame. An evolutionary

program plays game of checkers with an intention to build

resilient middle stage and a set of predefined rules are

incorporated to make calculated moves in an endgame.

General Terms

Evolutionary checkers ,game programming, et. al.

Keywords

Open four, split three , game learning Board Game, Genetic

Algorithm, Checkers, Game Configuration, Fitness Function.

1. INTRODUCTION

Evolution by natural selection is first and foremost nature’s truth

very well explained with scientific methodology by Darwinian

principles. The process of evolution is a very major and

effective source for ideas [1]. Though it is by no guarantee that

an idea that works in the natural world will work in our artificial

programming environment, but it can be seen as an sign that it

might work. Researchers are mindful of evolutionary theory,

particularly when it is connect to the genetic-centered view of

evolution [2].

As the computer age has arrived, developers started feeling the

need to create an intelligent game program which can be made

capable of defeating their counterpart human experts. Many

different approaches have been used for different games

including neural networks for backgammon, special-purpose

hardware called Deep Blue for chess and the application of

expert knowledge with relatively small computational power for

Othello [3][4]. Many of the mentioned techniques exploited

expert knowledge domain as much as possible by exploring

various dimensions like proper learning algorithm for training

the evaluation function, its relevance factors for the evaluation,

the weights analysis and mapping to include betterment of the

evaluation factors, opening knowledge, middle game and an

endgame strategies of the board game. Building such knowledge

base requires the expert help and advice of game professionals

simultaneously it also demands good amount of computational

power for processing the knowledge extracted and method to

find the best game-suitable approach [5][6].

Age old traditional methods divide board games into three

winning –move making strategies like opening, middle and

endgame stages. Each stage requires different philosophies. For

example, in an opening game making a very appropriate choice

is very difficult to make where an opening book from experts

proves to be very constructive [7]. Likewise in the middle stage,

a visionary mind set look for a specific characteristics game tree

with a reasonably limited depth which constructs the platform to

have high-end mobility. This game phase also believes in

evaluating functional features with their significance of each

board square and disc of that square by applying to estimate the

relevance of each move. End game always aims at maximizing

the number of pieces or minimizing mobility of opponent’s or

moves which gives deterministic calculation of the final move(s)

[8].

2. INTRODUCTION TO CHECKERS

Checkers (also known as “draughts”) is played on an eight-by-

eight board with squares of alternating colors. There are

numerous variants (more than 150 worldwide) of the game

played around the world. There are two players who take sides

denoted by “red” or “white” (or “black” and “white”). Each side

has 12 pieces which are also called checkers that begin in the 12

alternating squares of the same color that are closest to that

player’s side, with the rightmost square on the closest row to the

player remaining open (Figure 1) [9].

It is noteworthy that Checkers are allowed to move forward

diagonally one square at a time only. In the case that a jump

condition is satisfied, one can jump diagonally over an opposing

checker and the opposing checker is removed. Jumps are

mandatory. When a checker advances to the last row of the

board, it becomes a king which is capable of moving diagonally

one square at a time in any direction. The game reached an end

when a player has no more available moves (that player without

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

27

moves is the loser) and the game can also end when one side

offers a draw and the other accepts. Checkers has a relatively

smaller search space than chess. It is such small enough that one

can consider solving the problem.

Fig. 1 Checkers Board – Initial Configuration

Checkers move one square at a time forward diagonally or,

when possible, may jump over an opposing checker into an

empty square. This jump moves are forced, although if more

than one possible jump is available, the player may choose

which jump to execute. When any checker advances to the last

row of the board it advances to become a king and now may

move forward or backward diagonally. The game ends when any

one side cannot make a legal move, which is most commonly

brought about by removing that player’s final piece. The player

who cannot move loses and the other player wins. Alternatively,

a draw may be declared upon mutual agreement of the players,

or in tournament play at the discretion of a third party under

certain circumstances. In some tournament play, a time

restriction (60 minutes for the first 30 moves) is also introduced

which if violated results in a loss. This paper is restricted to the

8X8 variant, but many of the ideas presented here also apply to

the 10 X 10 game[10][11].

For the game of checkers, the approach is to search a game

position state to find an optimal move at each play. This simple

viewpoint faces many challenges in the opening, middle, and

endgame stages. Sometimes it is observed that a computer

checkers program fails to defeat a human player because it

makes a mistake which is not common for human players

because of cognitive side of their brain. The root cause of fault

is found that tree-search made by the computer program was not

sufficient and deeper search on other hand consumes a lot of

move finding time. Generally board game related opening

knowledge and endgame databases are not involved in the

evolutionary process because evolutionary approach aims to

explore all dimension centric possibility of pure evolution.

Though this can be very time consuming and as a result of that,

it might take a very long evolution time to create a world-level

champion program without a predefined knowledge base [12].

An another methodology is to incorporate a priori knowledge,

which is as an expert knowledge, metaheuristics, human

preferences and most importantly, domain knowledge revealed

during evolutionary search. Thus these evolutionary algorithms

(EAs) have gained increasing interest in recent years. It is found

by a common belief that the combination of diverse well playing

strategies can defeat the best one because they can complement

each other for higher performance. This is also very instrumental

component of evolutionary algorithms. This paper proposes a

systematic method to have into evolutionary checkers

framework at all the opening, middle, and endgame stages [13].

2.1 Game Complexity

The game of checkers has roughly 500 billion- billion possible

positions (5 × 1020). The task is very daunting to solve the game,

determining the finishing result in a game with no error made by

either of the player. Since last three decades, almost incessantly,

dozens of computers have been working on solving Game of

Checkers, applying state-of-the-art soft computing based

techniques to improve the learning process [14].

Game of Checkers represents the most computationally

challenging game to be solved to date. Evolutionary Learning

challenges in Game of Checkers are:

(1) The space to be searched is huge. It is estimated that there

are up to 5X1020 possible positions that can be searched. So any

search algorithm based method which is based on exhaustive

search for the problem space is infeasible.

(2) The search space volume is not smooth and straight forward.

An evaluation function’s parameters which is feature

construction based are highly inter-dependent. In some cases

increasing the values of optimization parameters will result in a

worse performance, but many a times the controlled set of

evolutionary parameter is also increases performance, then an

improved overall performance would be obtained.

(3) The problem is not well understood by researchers. Even

though all top performing programs parameters are hand tuned

by their program designers, finding the best value for each

parameter is mostly based on operational genetic alternatives

[15][16].

Chinook, one of the best checkers program has not completely

solved the game but it is playing at a steady level that makes it

almost unbeatable. The average number of moves to consider in

a checkers at every move making position (called the branching

factor) is less than that for chess. A typical checkers position

without any captures has eight legal moves (for chess it may be

35–40). As a result, checkers programs can search deeper than

their chess counterparts. Checkers provides an easier domain to

work with, and provides the same basic research opportunities as

does chess or Go [17].

2.2 Traditional Game Programming

A board game can usually be divided into three general phases:

the opening, the middle game and the endgame. Inflowing

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

28

thousands of game positions in published books into the

program is a way of creating an opening book. The checkers

program Colossus has a book of over 34 000 positions that were

entered manually. A problem with this approach is that the

program will follow published play, which is usually familiar to

the humans. But without using an opening book, some programs

find many interesting and promising opening moves that

standoff a human quickly. It has a danger of producing incurable

mistakes and enter a losing board configuration quickly as a

deeper search would have been necessary to avoid the mistake.

Thus humans have an advantage over computers in the opening

stage because it is difficult to quantify the relevance of the board

configuration at an early stage [18].

To be more competitive, an opening book can be very

supportive but a huge opening book can make the program

stubborn and without originality.

One of the important parts of game program development is to

design the evaluation function for the middle stage of the game

which is a linear combination of features based on human

knowledge-expertise like such as the number of kings, the

number of checkers, the piece differential between two players,

and pattern-based features. Based on the functional features of

the specific board game function weight determining

components can be devised. Then evolutionary cycles tune the

weights of the evaluation function through algorithms [19].

2.2.1 Evolution and Games

Checkers is the board game for which evolutionary computation

has been used to evolve strategies. Fogel et al. have explored the

potential for a coevolutionary process to learn how to play

checkers without relying on the usual inclusion of human

expertise in the form of features that are believed to be

important to playing well [20].

3. INCORPORATING KNOWLEDGE

INTO EVOLUTIONARY CHECKERS

The game of Checkers has been classified into three stages:

opening, middle and endgame stages. In the opening stage,

about 80-100 previously evaluated and summarized openings

are used to determine the initial moves. In the middle stage, a

move search game tree is used to search for an optimal move

and an evolutionary genetic algorithm is employed to evaluate

leaf nodes of the tree. Genetic algorithms are very suitable to

optimize the fitness value based leaf nodes. As the fitness

landscape of an evolutionary game evaluation function is greatly

dynamic. The performance of evolutionary GA for creating a

checkers evaluation function has been demonstrated by many

researchers. The result of the game is measured in win/loss/draw

after the number of remaining pieces is smaller than a

predefined number (usually from 2 to 10) [21].

1) Evolutionary Concept of a Game Tree: To find the next move

of a player, a game tree is constructed with a limited depth. Each

node in a game tree embodies the configuration of the board at

some stage of the game. The quality factor of the terminal nodes

is measured with the evaluator. These evaluated values of the

terminal nodes are been proliferated upward using min/max

search algorithms. Here the algorithm working is very simple

,the max operation chooses the max value of all children nodes

and the min operation chooses the min value. The current

configuration of the board is represented as a root node and the

arc represents a move. At an odd number level, the max

operation is used and vice versa.

2) Evaluation of a Board Configuration: An evaluation function

is the linear sum of the values of relevant board game features

selected by experts. The input of the evaluation function is the

configuration of the board and the output of the function is a

significance parameter of quality. To Design evaluation function

manually requires board game expertise and tiresome tuning

process with feedback attitude. Board game features tend to be

modeled into using some machine learning techniques. Though

it is not easy and can have its own share of problems for

learning and tuning the evaluation function. The problems are in

the form of architectural determination and configuration

transformation of features into numerical form.

This way the evolved evolutionary program exhibits a flexibility

that can be achieved with Checkers playing program in

evolutionary approaches. This is heavily dependent on all of

their “intellect” being put forwarded in a programmed form. The

evolutionary algorithm is also made capable of adapting its

game play to meet more demanding challenges from better-

quality opponents based on the stages of the game as the game

follows different principles in different stages of the game play.

It can conceive new and untraditional procedures to evolutionary

adapt to novel situations [22].

Evolutionary algorithms discover a large number of points

simultaneously in a search space. This phenomena avoids the

chances of poor move stagnation. It results in a faster and fertile

search. Here coding a given Checkers problem into an

Evolutionary Genetic algorithm computation context, these

canny algorithms becomes capable of evolving winning

solutions to such board games.

4. PROGRAM IMPLEMENTATION

In an evolutionary genetic algorithmic style, each checkerboard

can be represented by a genetic vector with length of 32 with

each vector representing one side to an available position on the

board. As the evaluation function is in a linear form here vector

components are elements having the values −1, 0, +1, where 0

corresponded to an empty square, 1 was the value of a regular

checker, and -1 was the number assigned for an opponent’s

checker piece king. Here the sign of the value for component

was indicative for the piece belongingness, either to the player

(positive) or his/her opponent (negative) [23].

Any move from a player’s is determined by evaluated fitness

function parameters of the board game positions multiplied by

their related vector weight values. Thus evaluation function is

formulated for the evolutionary landscape parameter values. The

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

29

first set of vector values is randomly set using experienced

human expertise. These random set of values are designed to

indicate the spatial characteristics of the game board. Then after

the remaining subsequent values are computed that are based on

evolutionary computation process. It primarily evolves the

genetic weight parameters. These weight values and the

functional features’ values are in dot product formation gives

final fitness values which forms the basis for the move selection.

These values become base for search algorithm like min-max

and the better value is chosen to make the next move. Above

procedure is repeated for a reasonable ply depth of three. Here it

is noteworthy that more depth selection makes the algorithm

slower as exploration of all possibilities for all depth values take

a lot of time. It hampers the evolutionary benefits of better move

selection in reasonable time [24].

In an initial board set up the complexity enhancement is because

of board weights and their respective holdings which are worth

of the board squares importance (based on its substantial

features) and its relative importance in game tree. If these

findings are favorable to the player’s interest then these pieces

take positive values. If very initially the potential move itself is

set closer to the final output then it takes value 1.0, which

denotes that corresponding board square is better. But if the

move takes potential output to an opponent’s favor the square is

set to –1.0, which means the board square situation is worsening

which may result in combined loss over a long run of moves. All

budding winning positions that were wins for the player (e.g., no

remaining opposing pieces) were assigned a value of exactly

1.0, and similarly all losing positions were assigned a value of –

1.0 [25][26].

In a genetic evolutionary process each “parent” is generated as

an off springs by changing all of the associated weights and

related square values. Here all parents and their offspring

compete for survival by playing games moves of checkers and

receiving points (weights) as the results of their play. Each

player scored –1, 0, or +1 points for a loss, draw or win,

respectively. These figures are stand-alone and contain no

optimality parameter into it. A draw is declared in case if a game

lasts for 100 moves. In total, each game has an average of 40-60

moves and such 50 games are been played. In each generation

within a game, each checker piece is observed for its

participation and corresponding fitness values it possesses. After

all move possibilities are explored, all the participating checkers

squares that received the greatest total fitness weight points

across all fitness value analysis and computation are reserved as

parents for the next generation and the evolutionary genetic

process gets repeated for considerable number of time to

accomplish better fitness results.

Each game tree is explored by applying a min-max alpha-beta

search algorithm with a look ahead over a selected number of

moves. The ply depth of the search, d, was set at six (i.e., three

depth move travelling for each side) to allow for reasonable

execution times (30 generations). The depth ply is extended in

units of three any time a forced jump move was encountered

because in these situations no real decision is available.

The every move making place the best move is selected on

values collected over running min-max repeatedly for all

possibility in a given depth. These moves positive and negative

depth are dependent on the side of the player. For the player the

weight notion is positive and for opponent the weight sign is set

to negative.

5. CHECKERS COLLECTED RESULTS

Total 50 Checkers games against human players are been played

with evolutionary algorithmic to determine best moves. No

opponent was told that they were playing against a computer

program, Games were played mainly using a ply of d = 6 to

ensure reasonably mature depth exploration and thus limiting

only 50 games as the used to consume a reasonably good

amount of time.

 With a population size was set to 70 and genetic operator

parameters are selected as follows:

 Selection rate = 0.20

 Crossover rate = 0.80

 mutation rate = 0.01 (occasional)

 Population size= 100

Above mentioned parameters reveal that evolutionary genetic

computation is employed effectively for the game of Checkers

program and its board squares weight parameters underwent

evolutionary progress through their evaluation function. Their

evolved program managed to compete and came up with strong

results because of the mature search depth of ply =6.

Apart from the above mentioned genetic operators described

above, a standard implementation of GA with comparative

selection and single point crossover was used. And results are

collected.

The time line chart in minutes for the initial twenty five

generations for the ply depth of six is shown in fig. 3. This

figure is clearly indicative that initially up to game of five it

takes less time but then after the time consumption in minutes

increases. For the game no of 6, 15 and 25 the time taken in

playing the game is maximum. For the game number between 9

to 15, the time used to play a full game sees a steep rise which

sows the maturity the game attains in playing with a ply depth of

six. The slump in game no. 2 ,9 and 21 shows that opponent

player has made very solid moves which does not allow the

computer program player to lengthen the game and take the

result in its favor.

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

30

Fig. 2 Time Graph to play one Game of Checkers

Fig 4 shows the collected set of min. and max fitness value

(shown by blue and red bars respectively) in each generation s

for final set of twenty five generations. The max .board square

fitness values shows a steady and comparatively sluggish rise

the game of Checkers. But the same values collected for min.

fitness shows a very strong and consistent rise which is very

clear that the game play is getting matured over a span of twenty

five generations and gives positive rise to the board square

fitness in a given set of generations.

Here GAs are acting as a clear Evolutionary Algorithms were

used for evolving evaluation function parameters through a

mature move selection. This game playing approach facilitates

the use of GA for efficiently evolving an evaluation function’s

parameters. As our results will demonstrate, this method is very

fast, and the evolved program is on par with the world’s

strongest checkers programs.

Fig 3 Fitness Value Analysis for 25 Generations

6. CONCLUSION

This paper has shown two results graphs, one on time required

to play one full checkers game and second graph shows Max

and Min. fitness values collected over a span of twenty five

generations. Both these results are clearly indicative of the

positive learning impact of genetic parameters in evolving the

game play and positive increment of fitness values respectively.

These results clearly envisage and justify the effect of

evolutionary genetic approach on all the game of checkers.

The paper has confined it’s research reach to 50 generations

only as the search ply depth of six. For which the results are

collected. This search depth is reasonably good and evolving

games are taking more time to finish which is due to better move

selection evolution.

It is found that for many board game domains, 50-100

generations are good enough to find near-optimal good

solutions. This is better than an exhaustive search based on some

simple game heuristics. The collected results show very clear

fitness function improvement in Max. and Min. values in each of

the generations. The paper concludes the right and mature

choice of genetic algorithm as evolutionary optimization

technique and selected genetic parameters for the specified

board game.

7. REFERENCES

[1]. M. Campbell, A. J. Hoane Jr., and F.-H. Hsu, “Deep blue,”

Artif. Intell.vol. 134, no. 1–2, pp. 57–83, 2002.

[2]. J. Schaeffer, One Jump Ahead: Challenging Human

Supremacy in Checkers. New York: Springer-Verlag, 1997.

[3]. M. Buro, “The othello match of the year: Takeshi

Murakami vs. Logistello,”Int. Comput. Game Assoc. J.,

vol. 20, no. 3, pp. 189–193, 1997.

[4]. D. B. Fogel, Blondie24: Playing at the Edge of AI. San

Mateo, CA:Morgan Kaufmann, 2001.

[5]. S. Y. Chong, D. C. Ku, H. S. Lim, M. K. Tan, and J. D.

White, “Evolved neural networks learning Othello

strategies,” in Proc. Congr. Evol.Comput., vol. 3, 2003, pp.

2222–2229.

[6]. R. Fortman, Basic Checkers (http://home.clara.net/davey/

basicche.html, 2007).

[7]. Seo, Y.G., Cho, S.B., Yao, X.: Exploiting coalition in co-

evolutionary learning. In:Proceedings of the 2000 Congress

on Evolutionary Computation. Volume 2., IEEE Press

(2000) 1268-1275.

[8]. Chellapilla, K., Fogel, D.: Evolving a neural network to

play checkers without human expertise. In Baba, N., Jain,

L., eds.: Computational Intelligence in Games. Volume 62.

Springer Verlag, Berlin (2001) 39-56.

[9]. J. Schaeffer et al., “Solving Checkers” (www.ijcai.org/

papers/ 0515.pdf, 2005).

[10]. Fogel, D., Hays, T., Hahn, S., Quon, J.: A self-learning

evolutionary chess program. Proceedings of the IEEE 92

(2004) 1947-1954.

[11]. Kusiak, M., Waledzik, K., Mandziuk, J.: Evolution of

heuristics for give-away checkers. In Duch, W., et al., eds.:

Arti¯cial Neural Networks: Formal Models and Their

Applications - Proc. ICANN 2005, Part 2, Warszawa,

Poland. Volume 3697 of LNCS Springer (2005) 981-987.

[12]. Kendall, G., Whitwell, G.: An evolutionary approach for

the tuning of a chess evaluation function using population

dynamics. In: Proceedings of the 2001 Congress on

Evolution in Networks and Computer Communications

A Special Issue from IJCA - www.ijcaonline.org

31

Evolutionary Computation CEC2001, IEEE Press (2001)

995-1002.

[13]. Mandziuk, J., Osman, D.: Temporal deference approach to

playing give-away checkers. In Rutkowski, L., et al., eds.:

7th Int. Conf. on Art. Intell. and Soft Comp.(ICAISC

2004), Zakopane, Poland. Volume 3070 of LNAI.,

Springer (2004) 909-914.

[14]. Osman, D., Mandziuk, J.: Comparison of tdleaf(λ) and

td(λ) learning in game playing domain. 11th Int. Conf. on

Neural Inf. Proc. (ICONIP 2004), Calcutta, India. Volume

3316 of LNCS., Springer (2004) 549-554.

[15]. Osman, D., Mandziuk, J.: TD-GAC: Machine Learning

experiment with give-away checkers. In Draminski, M.,

Grzegorzewski, P., Trojanowski, K., Zadro_zny, S., eds.:

Issues in Intelligent Systems. Models and Techniques. Exit

(2005) 131-145.

[16]. Pollack, J.B., Blair, A.D., Land, M.: Coevolution of a

backgammon player. In Langton, C.G., Shimokara, K.,

eds.: Proceedings of the Fifth Artificial Life Conference,

MIT Press (1997) 92-98.

[17]. T. M. Mitchell. Generalization as search. Artificial

Intelligence, 18:203 - 226, 1982.

[18]. Paul Marcos Siqueira Bueno and Mario Jino. Identification

of potentially infeasible program paths by monitoring the

search for test data. In Proceedings of the 15th IEEE

International Conference on Automated Software

Engineering (ASE), Grenoble, France, September 2000.

[19]. S. Edelkamp, A. L. Lafuente, and S. Leue. Directed explicit

model checking with hsf-spin. In Proceedings of the 2001

SPIN Workshop, volume 2057 of Lecture Notes in

Computer Science, pages 57–79. Springer-Verlag, 2001.

[20]. M.S. Campbell and T.A. Marsland. A comparison of

minimax tree search algorithms. Artificial Intelligence,

20(4):347–367, 1983.

[21]. O. David-Tabibi, A. Felner, and N.S. Netanyahu.Blockage

detection in pawn endings. Computers and Games CG

2004, eds. H.J. van den Herik, Y. Bjornsson, and N.S.

Netanyahu, pages 187–201. Springer-Verlag, 2006.

[22]. R. Gross, K. Albrecht, W. Kantschik, and W.Banzhaf.

Evolving chess playing programs. In Proceedings of the

Genetic and Evolutionary Computation Conference, pages

740–747. Morgan Kaufmann Publishers, New York, 2002.

[23]. C.-T. Sun and M.-D. Wu, “Multi-stage genetic algorithm

learning in game playing,” NAFIPS/IFIS/NASA, pp. 223–

227, 1994.

[24]. G. Kendall and C. Smith, “The evolution of blackjack

strategies,” in Proc. Congr. Evol. Comput., vol. 4, 2003, pp.

2474–2481.\

[25]. Chirag S. Thaker , Dharm Singh, Sanjay M. Shah,

Performance Improvement in Game Playing Using

Evolutionary Computation by Large Search Space

Exploration 2011 ETNCC, pp 148-152, IEEE Catalog

Number CFP1196N-CDR , ISBN 978-1-4577-0238-9 and

IEEE Catalog Number CFP1196N-ART , ISBN 978-1-

4577-0240-2.

[26]. N. Richards, D. Moriarty, and R. Miikkulainen, “Evolving

neural networks to play go,” Appl. Intell., vol. 8, pp. 85–96,

1998.

