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ABSTRACT 

Since decades developing programs for board games has been 

part of AI research and this field has attracted computer 

developers and researchers world-wide. Board games have a 

novel feature of simple, precise, easily formalized rules which 

makes them perfect launch vehicle to make computer game 

playing in a suitable development environment. The paper 

focuses on the two players, full knowledge, alternate move, 

deterministic, zero-sum game of Checkers. Genetic algorithmic 

approach is been applied in evolving computer player for the 

game of Checkers. 

The notion of this paper is to incorporate systematic game 

playing approach by analyzing game of checkers. Expert game 

players reveal three major playing strategies to make game 

winning moves. The game moves are divided into three stages 

opening game, middle stage and endgame. An evolutionary 

program plays game of checkers with an intention to build 

resilient middle stage and a set of predefined rules are 

incorporated to make calculated moves in an endgame.  

General Terms 

Evolutionary checkers ,game programming, et. al. 

Keywords 

Open four, split three , game learning Board Game, Genetic 

Algorithm, Checkers, Game Configuration, Fitness Function.  

1. INTRODUCTION 

Evolution by natural selection is first and foremost nature’s truth 

very well explained with scientific methodology by Darwinian 

principles. The process of evolution is a very major and 

effective source for ideas [1]. Though it is by no guarantee that 

an idea that works in the natural world will work in our artificial 

programming environment, but it can be seen as an sign that it 

might work. Researchers are mindful of evolutionary theory, 

particularly when it is connect to the genetic-centered view of 

evolution [2]. 

As the computer age has arrived, developers started feeling the 

need to create an intelligent game program which can be made 

capable of defeating their counterpart human experts. Many 

different approaches have been used for different games 

including neural networks for backgammon, special-purpose 

hardware called Deep Blue for chess and the application of 

expert knowledge with relatively small computational power for 

Othello [3][4]. Many of the mentioned techniques exploited  

expert knowledge domain as much as possible by exploring 

various dimensions like proper learning algorithm for training 

the evaluation function, its relevance factors for the evaluation, 

the weights analysis and mapping to include betterment of the 

evaluation factors, opening knowledge, middle game and an 

endgame strategies of the board game. Building such knowledge 

base requires the expert help and advice of game professionals 

simultaneously it also demands good amount of computational 

power for processing the knowledge extracted and method to 

find the best game-suitable approach [5][6]. 

Age old traditional methods divide board games into three 

winning –move making strategies like opening, middle and 

endgame stages. Each stage requires different philosophies.  For 

example, in an opening game making a very appropriate choice 

is very difficult to make where an opening book from experts 

proves to be very constructive [7]. Likewise in the middle stage, 

a visionary mind set look for a specific characteristics game tree 

with a reasonably limited depth which constructs the platform to 

have high-end mobility. This game phase also believes in 

evaluating functional features with their significance of each 

board square and disc of that square by applying to estimate the 

relevance of each move. End game always aims at maximizing 

the number of pieces or minimizing mobility of opponent’s or 

moves which gives deterministic calculation of the final move(s) 

[8]. 

2. INTRODUCTION TO CHECKERS  

Checkers (also known as “draughts”) is played on an eight-by-

eight board with squares of alternating colors. There are 

numerous variants (more than 150 worldwide) of the game 

played around the world. There are two players who take sides 

denoted by “red” or “white” (or “black” and “white”). Each side 

has 12 pieces which are also called checkers that begin in the 12 

alternating squares of the same color that are closest to that 

player’s side, with the rightmost square on the closest row to the 

player remaining open (Figure 1) [9]. 

It is noteworthy that Checkers are allowed to move forward 

diagonally one square at a time only. In the case that a jump 

condition is satisfied, one can jump diagonally over an opposing 

checker and the opposing checker is removed. Jumps are 

mandatory. When a checker advances to the last row of the 

board, it becomes a king which is capable of moving diagonally 

one square at a time in any direction. The game reached an end 

when a player has no more available moves (that player without 
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moves is the loser) and the game can also end when one side 

offers a draw and the other accepts. Checkers has a relatively 

smaller search space than chess. It is such small enough that one 

can consider solving the problem.  

 

Fig. 1 Checkers Board – Initial Configuration 

Checkers move one square at a time forward diagonally or, 

when possible, may jump over an opposing checker into an 

empty square. This jump moves are forced, although if more 

than one possible jump is available, the player may choose 

which jump to execute. When any checker advances to the last 

row of the board it advances to become a king and now may 

move forward or backward diagonally. The game ends when any 

one side cannot make a legal move, which is most commonly 

brought about by removing that player’s final piece. The player 

who cannot move loses and the other player wins. Alternatively, 

a draw may be declared upon mutual agreement of the players, 

or in tournament play at the discretion of a third party under 

certain circumstances. In some tournament play, a time 

restriction (60 minutes for the first 30 moves) is also introduced 

which if violated results in a loss. This paper is restricted to the 

8X8 variant, but many of the ideas presented here also apply to 

the 10 X 10 game[10][11].  

For the game of checkers, the approach is to search a game 

position state to find an optimal move at each play. This simple 

viewpoint faces many challenges in the opening, middle, and 

endgame stages. Sometimes it is observed that a computer 

checkers program fails to defeat a human player because it 

makes a mistake which is not common for human players 

because of cognitive side of their brain. The root cause of fault 

is found that tree-search made by the computer program was not 

sufficient and deeper search on other hand consumes a lot of 

move finding time. Generally board game related opening 

knowledge and endgame databases are not involved in the 

evolutionary process because evolutionary approach aims to 

explore all dimension centric possibility of pure evolution. 

Though this can be very time consuming and as a result of that, 

it might take a very long evolution time to create a world-level 

champion program without a predefined knowledge base [12]. 

An another methodology is to incorporate a priori knowledge, 

which is as an expert knowledge, metaheuristics, human 

preferences and most  importantly, domain knowledge revealed 

during evolutionary search. Thus these evolutionary algorithms 

(EAs) have gained increasing interest in recent years. It is found 

by a common belief that the combination of diverse well playing 

strategies can defeat the best one because they can complement 

each other for higher performance. This is also very instrumental 

component of evolutionary algorithms.  This paper proposes a 

systematic method to have into evolutionary checkers 

framework at all the opening, middle, and endgame stages [13]. 

2.1 Game Complexity 

The game of checkers has roughly 500 billion- billion possible 

positions (5 × 1020). The task is very daunting to solve the game, 

determining the finishing result in a game with no error made by 

either of the player. Since last three decades, almost incessantly, 

dozens of computers have been working on solving Game of 

Checkers, applying state-of-the-art soft computing based 

techniques to improve the learning process [14]. 

Game of Checkers represents the most computationally 

challenging game to be solved to date. Evolutionary Learning 

challenges in Game of Checkers are:  

(1) The space to be searched is huge. It is estimated that there 

are up to 5X1020 possible positions that can be searched. So any 

search algorithm based method which is based on exhaustive 

search for the problem space is infeasible.  

(2) The search space volume is not smooth and straight forward. 

An evaluation function’s parameters which is feature 

construction based are highly inter-dependent. In some cases 

increasing the values of optimization parameters will result in a 

worse performance, but many a times the controlled set of 

evolutionary parameter is also increases performance, then an 

improved overall performance would be obtained. 

(3) The problem is not well understood by researchers. Even 

though all top performing programs parameters are hand tuned 

by their program designers, finding the best value for each 

parameter is mostly based on operational genetic alternatives 

[15][16]. 

Chinook, one of the best checkers program has not completely 

solved the game but it is playing at a steady level that makes it 

almost unbeatable. The average number of moves to consider in 

a checkers at every move making position (called the branching 

factor) is less than that for chess. A typical checkers position 

without any captures has eight legal moves (for chess it may be 

35–40). As a result, checkers programs can search deeper than 

their chess counterparts. Checkers provides an easier domain to 

work with, and provides the same basic research opportunities as 

does chess or Go [17]. 

2.2 Traditional Game Programming 

A board game can usually be divided into three general phases: 

the opening, the middle game and the endgame. Inflowing 
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thousands of game positions in published books into the 

program is a way of creating an opening book. The checkers 

program Colossus has a book of over 34 000 positions that were 

entered manually. A problem with this approach is that the 

program will follow published play, which is usually familiar to 

the humans. But without using an opening book, some programs 

find many interesting and promising opening moves that 

standoff a human quickly. It has a danger of producing incurable 

mistakes and enter a losing board configuration quickly as a 

deeper search would have been necessary to avoid the mistake. 

Thus humans have an advantage over computers in the opening 

stage because it is difficult to quantify the relevance of the board 

configuration at an early stage [18]. 

To be more competitive, an opening book can be very 

supportive but a huge opening book can make the program 

stubborn and without originality.  

One of the important parts of game program development is to 

design the evaluation function for the middle stage of the game 

which is a linear combination of features based on human 

knowledge-expertise like such as the number of kings, the 

number of checkers, the piece differential between two players, 

and pattern-based features. Based on the functional features of 

the specific board game function weight determining 

components can be devised. Then evolutionary cycles tune the 

weights of the evaluation function through algorithms [19]. 

2.2.1 Evolution and Games 

Checkers is the board game for which evolutionary computation 

has been used to evolve strategies. Fogel et al. have explored the 

potential for a coevolutionary process to learn how to play 

checkers without relying on the usual  inclusion of human 

expertise in the form of features that are believed to be 

important to playing well [20].  

3. INCORPORATING KNOWLEDGE 

INTO EVOLUTIONARY CHECKERS  

The game of Checkers has been classified into three stages: 

opening, middle and endgame stages. In the opening stage, 

about 80-100 previously evaluated and summarized openings 

are used to determine the initial moves. In the middle stage, a 

move search game tree is used to search for an optimal move 

and an evolutionary genetic algorithm is employed to evaluate 

leaf nodes of the tree. Genetic algorithms are very suitable to 

optimize the fitness value based leaf nodes. As the fitness 

landscape of an evolutionary game evaluation function is greatly 

dynamic. The performance of evolutionary GA for creating a 

checkers evaluation function has been demonstrated by many 

researchers. The result of the game is measured in win/loss/draw 

after the number of remaining pieces is smaller than a 

predefined number (usually from 2 to 10) [21]. 

1) Evolutionary Concept of a Game Tree: To find the next move 

of a player, a game tree is constructed with a limited depth. Each 

node in a game tree embodies the configuration of the board at 

some stage of the game. The quality factor of the terminal nodes 

is measured with the evaluator. These evaluated values of the 

terminal nodes are been proliferated upward using min/max 

search algorithms. Here the algorithm working is very simple 

,the max operation chooses the max value of all children nodes 

and the min operation chooses the min value. The current 

configuration of the board is represented as a root node and the 

arc represents a move. At an odd number level, the max 

operation is used and vice versa.  

2) Evaluation of a Board Configuration: An evaluation function 

is the linear sum of the values of relevant board game features 

selected by experts. The input of the evaluation function is the 

configuration of the board and the output of the function is a 

significance parameter of quality. To Design evaluation function 

manually requires board game expertise and tiresome tuning 

process with feedback attitude. Board game features tend to be 

modeled into using some machine learning techniques. Though 

it is not easy and can have its own share of problems for 

learning and tuning the evaluation function. The problems are in 

the form of architectural determination and configuration 

transformation of features into numerical form. 

This way the evolved evolutionary program exhibits a flexibility 

that can be achieved with Checkers playing program in 

evolutionary approaches. This is heavily dependent on all of 

their “intellect” being put forwarded in a programmed form. The 

evolutionary algorithm is also made capable of adapting its 

game play to meet more demanding challenges from better-

quality opponents based on the stages of the game as the game 

follows different principles in different stages of the game play. 

It can conceive new and untraditional procedures to evolutionary 

adapt to novel situations [22]. 

Evolutionary algorithms discover a large number of points 

simultaneously in a search space. This phenomena avoids the 

chances of poor move stagnation. It results in a faster and fertile 

search. Here coding a given Checkers problem into an 

Evolutionary Genetic algorithm computation context, these 

canny algorithms becomes capable of evolving winning 

solutions to such board games. 

4. PROGRAM  IMPLEMENTATION 

In an evolutionary genetic algorithmic style, each checkerboard 

can be represented by a genetic vector with length of 32 with 

each vector representing one side to an available position on the 

board. As the evaluation function is in a linear form here vector 

components are elements having the values −1, 0, +1, where 0 

corresponded to an empty square, 1 was the value of a regular 

checker, and -1  was the number assigned for an opponent’s  

checker piece king. Here the sign of the value for component 

was indicative for the piece belongingness, either to the player 

(positive) or his/her opponent (negative) [23]. 

Any move from a player’s is determined by evaluated fitness 

function parameters of the board game positions multiplied by 

their related vector weight values. Thus evaluation function is 

formulated for the evolutionary landscape parameter values. The 
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first set of vector values is randomly set using experienced 

human expertise. These random set of values are designed to 

indicate the spatial characteristics of the game board. Then after 

the remaining subsequent values are computed that are based on 

evolutionary computation process. It primarily evolves the 

genetic weight parameters. These weight values and the 

functional features’ values are in dot product formation gives 

final fitness values which forms the basis for the move selection. 

These values become base for search algorithm like min-max 

and the better value is chosen to make the next move. Above 

procedure is repeated for a reasonable ply depth of three. Here it 

is noteworthy that more depth selection makes the algorithm 

slower as exploration of all possibilities for all depth values take 

a lot of time. It hampers the evolutionary benefits of better move 

selection in reasonable time [24]. 

In an initial board set up the complexity enhancement is because 

of board weights and their respective holdings which are worth 

of the board squares importance (based on its substantial 

features) and its relative importance in game tree. If these 

findings are favorable to the player’s interest then these pieces 

take positive values. If very initially the potential move itself is 

set closer to the final output then it takes value 1.0, which 

denotes that corresponding board square is better.  But if the 

move takes potential output to an opponent’s favor the square is 

set to –1.0, which means the board square situation is worsening 

which may result in combined loss over a long run of moves. All 

budding winning positions that were wins for the player (e.g., no 

remaining opposing pieces) were assigned a value of exactly 

1.0, and similarly all losing positions were assigned a value of –

1.0 [25][26]. 

In a genetic evolutionary process each “parent” is generated as 

an off springs by changing all of the associated weights and 

related square values. Here all parents and their offspring 

compete for survival by playing games moves of checkers and 

receiving points (weights) as the results of their play. Each 

player scored –1, 0, or +1 points for a loss, draw or win, 

respectively. These figures are stand-alone and contain no 

optimality parameter into it. A draw is declared in case if a game 

lasts for 100 moves. In total, each game has an average of 40-60 

moves and such 50 games are been played. In each generation 

within a game, each checker piece is observed for its 

participation and corresponding fitness values it possesses. After 

all move possibilities are explored, all the participating checkers 

squares that received the greatest total fitness weight points 

across all fitness value analysis and computation are reserved as 

parents for the next generation and the evolutionary genetic 

process gets repeated for considerable number of time to 

accomplish better fitness results.  

Each game tree is explored by applying a min-max alpha-beta 

search algorithm with a look ahead over a selected number of 

moves. The ply depth of the search, d, was set at six (i.e., three 

depth move travelling for each side) to allow for reasonable 

execution times (30 generations). The depth ply is extended in 

units of three any time a forced jump move was encountered 

because in these situations no real decision is available.  

The every move making place the best move is selected on 

values collected over running min-max repeatedly for all 

possibility in a given depth. These moves positive and negative 

depth are dependent on the side of the player. For the player the 

weight notion is positive and for opponent the weight sign is set 

to negative. 

5. CHECKERS COLLECTED RESULTS 

Total 50 Checkers games against human players are been played 

with evolutionary algorithmic to determine best moves. No 

opponent was told that they were playing against a computer 

program, Games were played mainly using a ply of d = 6 to 

ensure reasonably mature depth exploration and thus limiting 

only 50 games as the used to consume a reasonably good 

amount of time. 

 With a population size was set to 70 and genetic operator 

parameters are selected as follows:  

 Selection rate = 0.20 

 Crossover rate = 0.80 

 mutation rate = 0.01 (occasional) 

 Population size= 100 

Above mentioned parameters reveal that evolutionary genetic 

computation is employed effectively for the game of Checkers 

program and its board squares weight parameters underwent 

evolutionary progress through their evaluation function. Their 

evolved program managed to compete and came up with strong 

results because of the mature search depth of ply =6. 

Apart from the above mentioned genetic operators described 

above, a standard implementation of GA with comparative 

selection and single point crossover was used. And results are 

collected. 

The time line chart in minutes for the initial twenty five 

generations for the ply depth of six is shown in fig. 3. This 

figure is clearly indicative that initially up to game of five it 

takes less time but then after the time consumption in minutes 

increases. For the game no of 6, 15 and 25 the time taken in 

playing the game is maximum. For the game number between 9 

to 15, the time used to play a full game sees a steep rise which 

sows the maturity the game attains in playing with a ply depth of 

six. The slump in game no. 2 ,9 and 21 shows that opponent 

player has made very solid moves which does not allow the 

computer program player to lengthen the game and take the 

result in its favor. 
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Fig. 2 Time Graph to play one Game of Checkers 

Fig 4 shows the collected set of min. and max fitness value 

(shown by blue and red bars respectively) in each generation s 

for final set of twenty five generations. The max .board square 

fitness values shows a steady and comparatively sluggish rise 

the game of Checkers. But the same values collected for min. 

fitness shows a very strong and consistent rise which is very 

clear that the game play is getting matured over a span of twenty 

five generations and gives positive rise to the board square 

fitness in a given set of generations.  

Here GAs are acting as a clear Evolutionary Algorithms were 

used for evolving evaluation function parameters through a 

mature move selection. This game playing approach facilitates 

the use of GA for efficiently evolving an evaluation function’s 

parameters. As our results will demonstrate, this method is very 

fast, and the evolved program is on par with the world’s 

strongest checkers programs.  

 

Fig 3 Fitness Value Analysis for 25 Generations 

6. CONCLUSION  

This paper has shown two results graphs, one on time required 

to play one full checkers game and second graph shows Max 

and Min. fitness values collected over a span of twenty five 

generations. Both these results are clearly indicative of the 

positive learning impact of genetic parameters in evolving the 

game play and positive increment of fitness values respectively. 

These results clearly envisage and justify the effect of 

evolutionary genetic approach on all the game of checkers.  

 

The paper has confined it’s research reach to 50 generations 

only as the search ply depth of six. For which the results are 

collected. This search depth is reasonably good and evolving 

games are taking more time to finish which is due to better move 

selection evolution.  

 

It is found that for many board game domains, 50-100 

generations are good enough to find near-optimal good 

solutions. This is better than an exhaustive search based on some 

simple game heuristics. The collected results show very clear 

fitness function improvement in Max. and Min. values in each of 

the generations. The paper concludes the right and mature 

choice of genetic algorithm as evolutionary optimization 

technique and selected genetic parameters for the  specified 

board game.   
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