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ABSTRACT 

In this paper, we elaborate the security threats that exist on 

hybrid cryptosystem based on satisfiability problem. In such 

system the encryption is carried out by generating 3-SAT 

clauses by random insertion of literal in a given 2-SAT clause 

instance. The solution of 2-SAT clause instance gives the secret 

key and the placement of literal for conversion to 3-SAT gives 

the position vector. Two crucial parameter for encryption. Thus, 

the system seems to be robust. However, the security of such 

system is at stake, when we apply the polynomial solvability 

formulation of 3-SAT[2]. Here, we propose a chosen plain text 

attack on such system using polynomial solvability of 3-SAT as 

reported in[3]. We observe that the complexity of the attack is 

O(3n), where n is the number of clauses.  
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1. INTRODUCTION 

Security is a major concern among researchers, especially 

regarding security of electronic transactions on internet. With 

the evolving needs and advancement in technology, have called 

researchers, for development of fairly secure cryptosystem. The 

security threats to the existing cryptosystem in quantum 

computer environment, has lead researchers to explore other 

cryptosystem based on some Nondeterministic Polynomial 

Complete(NP Complete) problem[9][10][11].  

The most secured encryption scheme like RSA, based on 

factorization and discrete logarithms are no more, a secure 

system as their strength is compromised in quantum 

computers[8]. Thus, Knapsack Cryptosystem[5][7], Hybrid 

Cryptosystem[1], Cryptosystem based on Matrix Cover[6] are 

some of the newly proposed cryptosystem. Here, the question 

arises that cryptosystem which are build using these NP-

complete problem are really secure. In this paper, we basically 

emphasize this aspect.\ 

Using the results reported in [2] we show that, how the security 

of such cryptosystem is at stake. To discuss this we have chosen 

Hybrid cryptosystem, which is based on satisfiability problem.  

The cryptosystem for Alice and Bob consists of the following 

steps: Key Generation, encryption process at Alice end and 

decryption process at Bobs. 

 

1.1 Key Generation in Hybrid Cryptosystem 
The key generation process of this system uses both 2SAT and 

3SAT. Thus, the two phase of transformation are involved. The 

steps for the key generation are summarized below: 

1. Generate the random 2SAT clauses using C-2-SAT[1].  

 

2. Use BinSat[1] algorithm to find the values of the 

literals such that the clauses are satisfiable i.e. S. 

 

3. The obtained solution will constitute the secret key. 

 

4. After creating the 2 − SAT, Alice camouflages it as an 

3 − SAT problem, which is difficult. For each clause 

she proceeds, in this way: 

4.1 Add to each clause one literal at the appropriate 

  position, 

4.2 Save the position of the added literal in a vector V  

and creates the integer a = v1v2...vm. 

5. Alice publishes finally the obtained 3 – SAT problem 

 using C-3-SAT[1] which forms its public key. 

1.2 Encryption in Hybrid Cryptosystem 

When Alice wants to send a binary message M =m1,m2....ml to 

Bob, she reads for example the value n and e, Bob’s RSA public 

key(n,e), calculates 

 a’ = ae(mod n) and transmits (C, a’), where C = M  ⊕  S 

1.3 Decryption in Hybrid Cryptosystem 

 To decrypt the message C = c1c2...cl, Bob using its RSA secret 

value d, calculates 

           a = a’d(mod n), 

and then deduces the vector V . He removes the variables added 

to the published 3 − SAT of Alice, and then obtains the 

corresponding 2 − SAT, thereafter its solution S = (s1, s2, ..., sl) 

by using the BinSat* algorithm [ ] and deduces the message of  

Alice by:  S  ⊕  C = M. 

The paper is organized as follows, Section II we will discuss the 

proposed methodology. In section III, we further explain the 

methodology using some examples. Section IV, we give the 

concluding remarks. 
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2. METHODOLOGY 
In Hybrid cryptosystem, the public key–private key pair is 

generated using 2-SAT and 3-SAT instances respectively. It has 

been shown that both these problems are polynomial 

solvable[2][3]. Using these results, we here proposed an 

approach which shows that there exists a security threat on 

hybrid cryptosystem.  

 

In this paper, we discuss the security attack on hybrid 

cryptosystem which is a slight variation from our previous 

work[4]. In the variation of the previous work now we have 

focussed on the results obtained after solving the public key 

instance of 3SAT by applying[2][3].Here we analyse that the 

major concern in this cryptosystem is the public key, private key 

generated using 3SAT and 2SAT resp. Thus, the attacker having 

access to Cipher text and public key could develop an algorithm 

for searching the private key used for encryption.  Here, we are 

going to discuss one such approach for breaking the 

cryptosystem. 

 

       The approach is as follows, the cryptanalyst having access to the 

public key in 3SAT, would generate all possible solution value 

for the literals in the clause using Update Pairs() and 

Truth_Aalysis_3SAT() [2]. After obtaining the values 

corresponding to the literals, the next step is to find the literals 

whose satisfying value would satisfy maximum number of the 

clauses. It is observed that these literals are the literals that are 

being inserted to convert 2SAT to 3SAT using C − 3 – SAT[1]. 

After finding the literals that got inserted, next is to find the 

position at which the literals where inserted. Analyze each 

clause to find the position of these literal in different clauses. 

Using the permutation of the obtained position values we can 

determine vector a. Since, this is an attack on the system, many 

possible values of a would be generated. Taking each possible 

value of a one at a time, we remove the literals at these 
positions, to reduce the given 3 SAT instance to 2SAT.  

      Thus, here a chosen-plaintext attack (CPA) attack model is 

studied. An attack model for cryptanalysis which presumes that 

the attacker has the capability to choose arbitrary plaintext to be 

encrypted and obtain the corresponding cipher text. The goal of 

the attack is to gain some further information which reduces the 

security of the encryption scheme. In the worst case, a chosen-

plaintext attack could reveal the encryption scheme's secret key. 

The obtained a vector is tested for the chosen cipher text. To 

perform this task, according to the value of vector a, the 3SAT 

clause is converted back to 2SAT by removing the literals 

mentioned at the position by a. Once the 2SAT clauses are 

obtained, they are solved using BinSAT*  to obtain S. The XOR 

of CipherText(C) and Secret Key(S) would give us back the 

plain text(M). The discussed method is briefed in the given 

algorithm. 

Algorithm: Public key Reduction to 2SAT 

Input: The public key (3SAT clauses) 

Output: Position vector(a) of randomly inserted literal 

1. Find the literal values in clauses using UpdatePair() and 

Truth analysis[3]. 

 

2. For each literals count the number of times a literal 

occur in the second section of the generated ordered 

pair. 

 

3. Store the number of occurrence of  literals  in second 

part of ordered pairs[3]. 

                               //randomly inserted literals 

 

4. Find literal and its negation that occurs in the second 

part and sums up to the maximum count equivalent to 

highest individual occurrence of any literal. 

 

5. Maintain a position set for the randomly inserted literals 

by considering the position of above obtained literal in 

the public key. 

 

6. Perform permutation of the values to obtain the set of 

position vector. 

 

7. For each set obtained in step 6. 

7.1 Initialize a as the set value. 

7.2 Remove the literals from 3SAT to get 2SAT 

7.3 Solve 2SAT using BinSAT* to get S. 

7.4 Obtain M by using S  ⊕  C 

7.5 If  M is desired text  then exit  

Else go to step 7. 

 

3. EXPERIMENTATION 
 In this section we discuss two aspects one on the sender end and 

other with respect to the attacker. The proposed approach is 

purely based on the observation of the given system and the 

computational formulation proposed [2] showing the polynomial 

solvability of 3SAT. The sender is concern with the key 

generation and encryption process.  The attacker on the other 

has access to the generated public key and the cipher text. We, 

elaborate the methodology using the following examples. 

 

3.1 Example One: Generation of Keys 
Alice chooses the message to be transmitted as SS = 01101, here 

let the total number of clause be m (i.e. 3). Then she executes C-

2-SAT: 

k = 1 : i = 1, j = 2, b = 0.22, SS[1] = 0 ⇒ C1 = (



2x 


1x ). 

k = 2 : i = 3, j = 4, b = 0.55, SS[3] = 1  ⇒ C2 = ( 4x 


3x ). 

k = 3 : i = 4, j = 5, b = 0.63, SS[4] = 0 ⇒ C3 = ( 5x    



4x ). 

The following clauses in 2 – SAT are generated : 

    (



1x  


2x  )  (



3x  4x )  (



4x    5x ). 

To find the solution of the above equation we ca use  BinSat* 

algorithm. The same is illustrated in the fig 1. 
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Fig 1: Illustrating BinSat* algorithm 

Thus, Alice gets S = 10111. Then  she uses C − 3 – SAT to 

generate the public key for the cryptosystem. 

k = 1 : p = 4, b = 0. 27 ⇒ C1 = (



1x 


2x 


4x ),   V [1] = 3. 

k = 2 : p = 2, b = 0.68  ⇒C2 = (



3x    2x    4x ),V [2] = 2. 

k = 3 : p = 1, b = 0.11 ⇒ C3 = (



1x     



4x   5x ),V [3] = 1. 

Hence, Alice’s public key is the 3-SAT:  

(



1x 


2x 


4x )(



3x    2x    4x )(



1x     



4x   

5x ). 

The vector V = (3, 2, 1), then a = 321. 

3.1.1 Encryption 
  Let (n, e) = (36581, 5) be Bob’s RSA public key. Alice ciphers 

a, i.e.,  

                     a’ = ae (mod n) 

                        = 3215 (mod 36581)  

                      = 2677  

and its message M = 0110001101, using S, i.e.,C = M ⊕  S. 

Alice sends Bob: (C, a’) = (1101111010, 2677). 

3.1.2 Attacker Approach 
The attacker will proceed by solving the public key 3SAT clause 

instance using Truth_Analysis( ) & UpdatePairs( ) modules 

discussed in[2][3]. This would result in final set of ordered pairs 

generated with first and their respective second. Here we will 

slightly modify our approach[4] discussed. Rather, then finding 

the position vector a in order to convert 3SAT back to 2SAT, to 

find the private key S.  

We will proceed by solving the ordered pair generated by the 

3SAT clauses. The attacker would basically analyze the first and 

second part of the ordered pairs generated. The second of the 

ordered pairs consist of those literals which are crucial and 

dependent on the value of first. If first literals of any ordered 

pair are selected to be satisfied, then the corresponding second 

have to assigned values. It is found by continuous analysis that 

those literals, which are deliberately inserted to convert the 

given 2SAT into 3SAT would occur usually with less frequency 

in the second section of the ordered pairs.  

Another point of observation is that as algorithm C-3-SAT 

would insert the literals from the specified range specified by the 

user; Like in the given example the range specified is between 1 

to 5. Thus literal or its negation inserted to convert 2 SAT to 

3SAT would be from within this range. Thus the occurrence of 

inserted literals would be more as compared to other.  

In order to attack such system we need to keep track on the 

frequency of the literals particularly in the second section of the 

generated ordered pairs. The observed frequency for the inserted 

literals will be more, and can be easily identified. 

Suppose the attacker get access to the public key 

    (



1x 


2x 


4x )(



3x    2x    4x )(



1x     



4x   

5x ). 

Now, consider the result after applying the algorithm discussed 

[2][3].For the given example the result of ordered pair generated 

are recorded in the below given table: 

 

Table 1:Literals and number of occurrence in second 

First Pair Second Pair 

{ 1x , 2x } 



4x  

{ 1x , 4x } {



2x , 5x } 

 
{ 2x , 4x } 



1x  

{ 3x ,



2x } 4x  

 
{ 3x ,



4x } 2x  

 
{ 2x ,



4x } 



3x  
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{ 1x ,



5x  } 



4x  

{ 4x ,



5x } 



1x  

 

3.1.3  Observation  

After construction of the table check for the literals that occur 

frequently in second of the ordered pair . In the above given 

example, we notice that setting 



1x ,



4x , occur in 2 pair  each. 

As, per the observation we can conclude that these literals where 

inserted, randomly to form the 3SAT. It is further observed that 

there may exist some other literals also, which were inserted 

randomly.  To check for them, evaluate again the table to find 

any such literal and its negation, such that the total number of 

clauses satisfied by them jointly is equal to the maximum value. 

If found, it indicates that the clause was also inserted randomly. 

Here, literal ( 2x ,



2x ) are the required pair. In this case both 

literal and its negation, position are included for permutation to 

find the vector a. 

For, the given example we notice that 



1x occur at position 1 

in both first and third clauses. 



4x occur at position 3 and 2 in 

clauses first and third resp.  The third literal inserted was either 

2x or 



2x . Here, in this example the position of 2x and  



2x is 2. So, the permutation is to be carried by varying the 

obtained set {1}{3,2}and {2}. The possible values of position 

vector will  be as discussed below the list may be varying. 

                                      

{132},{122},{321}{221}{312}{231}{212}{213}{123}. 

 

Now, as per the obtained position vector set removing the 

literals from  3SAT to change it to 2SAT. Finally, solving the 

2SAT using BinSAT* to obtain secret key (S). Then applying M 

= S  ⊕  C , we can obtain the required message. Note that the 

above mentioned test should be carried out first  on  known plain  

text, cipher text pair,  to deduce the secret key. Once,  the  secret 

key is obtained, it can be used to decipher the further 

communication. 

Since, we note the {321} is the required position vector. Hence, 

the attack is feasible. 

 

3.2 Example Two 
In this example we are going to analyze public key with 6 clause 

and 5 literals .Applying the algorithm[1], let us consider the 2-

SAT  clauses generated.  

( 1x   2x  )  ( 1x  4x )  ( 4x  


2x )(  1x 


2x  )( 

2x 


1x )( 2x 


3x ) 

Thus, Alice gets  here secret key S = 11011 by applying 

BinSAT*. Then  she uses C − 3 – SAT to generate the public 

key for the cryptosystem. 

k = 1 : p = 3, b = 0. 27 ⇒ C1 = (



3x  1x  2x ),   V [1] = 1. 

k = 2 : p = 3, b = 0.68  ⇒C2 = ( 1x    3x    4x ),V [2] = 2. 

k = 3 : p = 3, b = 0.11 ⇒ C3 = ( 4x     



2x   3x ),V [3] = 3. 

k = 4 : p = 4, b = 0. 27 ⇒ C4 = ( 1x 


2x 


4x ),   V [4] = 3. 

k = 5 : p = 3, b = 0.68  ⇒C5 = ( 2x  


3x   


1x ),V [5] = 2. 

k = 6 : p = 4, b = 0.11 ⇒ C6 = ( 2x     



4x   



3x ),V [6] = 2. 

Thus the public key generated is: 

(



3x  1x  2x )( 1x    3x    4x )( 4x     



2x   

3x ) ( 1x 


2x 


4x )( 2x  


3x   


1x )( 2x     



4x   



3x ) 

To the above obtained public key applying the algorithm[2][3], 

we have the following results. 

Table 2: Literals and number of occurrence in second 

First Pair Second Pair 

{ 3x , 



1x } {



4x , 2x } 

{



1x , 



2x } {



3x , 4x } 

 
{



1x ,



3x } {



2x , 4x } 

{



1x ,



4x } { 2x , 3x } 

 
{



3x ,



4x } {



2x , 1x } 

 
{



4x , 2x } { 3x } 

{ 2x ,



3x  } { 1x , 4x } 
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{



1x , 2x } {



4x , 3x } 

{



1x , 4x } 
{



3x ,


2x } 

 

{ 2x , 4x } 
{ 1x } 

 

{



2x , 1x } 
{



3x } 

{ 3x , 1x } 
{ 2x } 

{



2x , 4x } 
{



3x } 

{ 4x , 3x } 
{ 1x , 2x } 

{



2x } 
{



3x } 

{ 3x } 
{ 2x } 

 

3.2.1 Observation 

After construction of the table check for the literals that occur 

frequently in second of the ordered pair . In the above given 

example, we notice that occurrence of literal  



3x ,



4x , is 

prominent. Thus, as, per the observation we can conclude that 

these literals where inserted, randomly to form the 3SAT. It is 

further observed that the literals 2x ,



2x  are equally occurring. 

Thus the position vectors corresponding to all these literal must 

be considered for the permutation to find the position vector. 

Looking at the position of 



3x  which occurs at position 

{1,2}, literal position for 



4x position are {2,3}.  Another literal 

and negation pair to be considered would be of 2x ,



2x at 

positions {1,2}. Now as the 6 clause generated we need to find 

the permutation combination for {1,2} ,{2,3} and {1,2}.  

On applying all possible permutation of these value we will 

get the desired combination pair of  {1,2,3,3,2,2}. Although the 

approach would be hit and trial, by applying all possible 

permuted value and removing the literals from the position, to 

reduce it to 2SAT instance. Thereafter applying the BinSAT* to 

find the literals value and thus, the desired secret key. 

Then applying M = S  ⊕  C , we can obtain the required 

message. Note that the above mentioned test should be carried 

out first  on  known plain text, cipher text pair,  to deduce the 

secret key. Once, the secret key is obtained, it can be used to 

decipher the further communication. 

 

4. CONCLUSION 
 

In this paper we have, illustrated the analysis of attack on hybrid 

cryptosystem. We have used the results[2][3] to indicate that 

some kind of attack is possible on such cryptosystem by 

determining the position vectors. Although the approach is hit 

and trial but the approach is feasible and is tested for 10 literals. 

The complexity of the attack O(3n), where n is the number of 

clauses. Thus, the complexity increases with the number of 

clauses. 
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