
Evolution in Networks and Computer Communications

 A Special Issue from IJCA - www.ijcaonline.org

1

Hybrid Cryptosystem Based on 2-SAT & 3-SAT and

the Implications of Polynomial Solvability of 3-SAT

Jaya Thomas Narendra S. Chaudhari
Department Of Computer Science & Engg. Department Of Computer Science & Engg.

Indian Institute of Technology,Indore Indian Institute of Technology,Indore

ABSTRACT

In this paper, we elaborate the security threats that exist on

hybrid cryptosystem based on satisfiability problem. In such

system the encryption is carried out by generating 3-SAT

clauses by random insertion of literal in a given 2-SAT clause

instance. The solution of 2-SAT clause instance gives the secret

key and the placement of literal for conversion to 3-SAT gives

the position vector. Two crucial parameter for encryption. Thus,

the system seems to be robust. However, the security of such

system is at stake, when we apply the polynomial solvability

formulation of 3-SAT[2]. Here, we propose a chosen plain text

attack on such system using polynomial solvability of 3-SAT as

reported in[3]. We observe that the complexity of the attack is

O(3n), where n is the number of clauses.

Keywords

 Public Key, Satisfiability,2-SAT, 3-SAT, NP-complete, Secret

key.

1. INTRODUCTION

Security is a major concern among researchers, especially

regarding security of electronic transactions on internet. With

the evolving needs and advancement in technology, have called

researchers, for development of fairly secure cryptosystem. The

security threats to the existing cryptosystem in quantum

computer environment, has lead researchers to explore other

cryptosystem based on some Nondeterministic Polynomial

Complete(NP Complete) problem[9][10][11].

The most secured encryption scheme like RSA, based on

factorization and discrete logarithms are no more, a secure

system as their strength is compromised in quantum

computers[8]. Thus, Knapsack Cryptosystem[5][7], Hybrid

Cryptosystem[1], Cryptosystem based on Matrix Cover[6] are

some of the newly proposed cryptosystem. Here, the question

arises that cryptosystem which are build using these NP-

complete problem are really secure. In this paper, we basically

emphasize this aspect.\

Using the results reported in [2] we show that, how the security

of such cryptosystem is at stake. To discuss this we have chosen

Hybrid cryptosystem, which is based on satisfiability problem.

The cryptosystem for Alice and Bob consists of the following

steps: Key Generation, encryption process at Alice end and

decryption process at Bobs.

1.1 Key Generation in Hybrid Cryptosystem
The key generation process of this system uses both 2SAT and

3SAT. Thus, the two phase of transformation are involved. The

steps for the key generation are summarized below:

1. Generate the random 2SAT clauses using C-2-SAT[1].

2. Use BinSat[1] algorithm to find the values of the

literals such that the clauses are satisfiable i.e. S.

3. The obtained solution will constitute the secret key.

4. After creating the 2 − SAT, Alice camouflages it as an

3 − SAT problem, which is difficult. For each clause

she proceeds, in this way:

4.1 Add to each clause one literal at the appropriate

 position,

4.2 Save the position of the added literal in a vector V

and creates the integer a = v1v2...vm.

5. Alice publishes finally the obtained 3 – SAT problem

 using C-3-SAT[1] which forms its public key.

1.2 Encryption in Hybrid Cryptosystem

When Alice wants to send a binary message M =m1,m2....ml to

Bob, she reads for example the value n and e, Bob’s RSA public

key(n,e), calculates

 a’ = ae(mod n) and transmits (C, a’), where C = M ⊕ S

1.3 Decryption in Hybrid Cryptosystem

 To decrypt the message C = c1c2...cl, Bob using its RSA secret

value d, calculates

 a = a’d(mod n),

and then deduces the vector V . He removes the variables added

to the published 3 − SAT of Alice, and then obtains the

corresponding 2 − SAT, thereafter its solution S = (s1, s2, ..., sl)

by using the BinSat* algorithm [] and deduces the message of

Alice by: S ⊕ C = M.

The paper is organized as follows, Section II we will discuss the

proposed methodology. In section III, we further explain the

methodology using some examples. Section IV, we give the

concluding remarks.

Evolution in Networks and Computer Communications

 A Special Issue from IJCA - www.ijcaonline.org

2

2. METHODOLOGY
In Hybrid cryptosystem, the public key–private key pair is

generated using 2-SAT and 3-SAT instances respectively. It has

been shown that both these problems are polynomial

solvable[2][3]. Using these results, we here proposed an

approach which shows that there exists a security threat on

hybrid cryptosystem.

In this paper, we discuss the security attack on hybrid

cryptosystem which is a slight variation from our previous

work[4]. In the variation of the previous work now we have

focussed on the results obtained after solving the public key

instance of 3SAT by applying[2][3].Here we analyse that the

major concern in this cryptosystem is the public key, private key

generated using 3SAT and 2SAT resp. Thus, the attacker having

access to Cipher text and public key could develop an algorithm

for searching the private key used for encryption. Here, we are

going to discuss one such approach for breaking the

cryptosystem.

 The approach is as follows, the cryptanalyst having access to the

public key in 3SAT, would generate all possible solution value

for the literals in the clause using Update Pairs() and

Truth_Aalysis_3SAT() [2]. After obtaining the values

corresponding to the literals, the next step is to find the literals

whose satisfying value would satisfy maximum number of the

clauses. It is observed that these literals are the literals that are

being inserted to convert 2SAT to 3SAT using C − 3 – SAT[1].

After finding the literals that got inserted, next is to find the

position at which the literals where inserted. Analyze each

clause to find the position of these literal in different clauses.

Using the permutation of the obtained position values we can

determine vector a. Since, this is an attack on the system, many

possible values of a would be generated. Taking each possible

value of a one at a time, we remove the literals at these
positions, to reduce the given 3 SAT instance to 2SAT.

 Thus, here a chosen-plaintext attack (CPA) attack model is

studied. An attack model for cryptanalysis which presumes that

the attacker has the capability to choose arbitrary plaintext to be

encrypted and obtain the corresponding cipher text. The goal of

the attack is to gain some further information which reduces the

security of the encryption scheme. In the worst case, a chosen-

plaintext attack could reveal the encryption scheme's secret key.

The obtained a vector is tested for the chosen cipher text. To

perform this task, according to the value of vector a, the 3SAT

clause is converted back to 2SAT by removing the literals

mentioned at the position by a. Once the 2SAT clauses are

obtained, they are solved using BinSAT* to obtain S. The XOR

of CipherText(C) and Secret Key(S) would give us back the

plain text(M). The discussed method is briefed in the given

algorithm.

Algorithm: Public key Reduction to 2SAT

Input: The public key (3SAT clauses)

Output: Position vector(a) of randomly inserted literal

1. Find the literal values in clauses using UpdatePair() and

Truth analysis[3].

2. For each literals count the number of times a literal

occur in the second section of the generated ordered

pair.

3. Store the number of occurrence of literals in second

part of ordered pairs[3].

 //randomly inserted literals

4. Find literal and its negation that occurs in the second

part and sums up to the maximum count equivalent to

highest individual occurrence of any literal.

5. Maintain a position set for the randomly inserted literals

by considering the position of above obtained literal in

the public key.

6. Perform permutation of the values to obtain the set of

position vector.

7. For each set obtained in step 6.

7.1 Initialize a as the set value.

7.2 Remove the literals from 3SAT to get 2SAT

7.3 Solve 2SAT using BinSAT* to get S.

7.4 Obtain M by using S ⊕ C

7.5 If M is desired text then exit

Else go to step 7.

3. EXPERIMENTATION
 In this section we discuss two aspects one on the sender end and

other with respect to the attacker. The proposed approach is

purely based on the observation of the given system and the

computational formulation proposed [2] showing the polynomial

solvability of 3SAT. The sender is concern with the key

generation and encryption process. The attacker on the other

has access to the generated public key and the cipher text. We,

elaborate the methodology using the following examples.

3.1 Example One: Generation of Keys
Alice chooses the message to be transmitted as SS = 01101, here

let the total number of clause be m (i.e. 3). Then she executes C-

2-SAT:

k = 1 : i = 1, j = 2, b = 0.22, SS[1] = 0 ⇒ C1 = (



2x 


1x).

k = 2 : i = 3, j = 4, b = 0.55, SS[3] = 1 ⇒ C2 = (4x 


3x).

k = 3 : i = 4, j = 5, b = 0.63, SS[4] = 0 ⇒ C3 = (5x 



4x).

The following clauses in 2 – SAT are generated :

 (



1x 


2x) (



3x  4x) (



4x  5x).

To find the solution of the above equation we ca use BinSat*

algorithm. The same is illustrated in the fig 1.

Evolution in Networks and Computer Communications

 A Special Issue from IJCA - www.ijcaonline.org

3

Fig 1: Illustrating BinSat* algorithm

Thus, Alice gets S = 10111. Then she uses C − 3 – SAT to

generate the public key for the cryptosystem.

k = 1 : p = 4, b = 0. 27 ⇒ C1 = (



1x 


2x 


4x), V [1] = 3.

k = 2 : p = 2, b = 0.68 ⇒C2 = (



3x  2x  4x),V [2] = 2.

k = 3 : p = 1, b = 0.11 ⇒ C3 = (



1x 



4x  5x),V [3] = 1.

Hence, Alice’s public key is the 3-SAT:

(



1x 


2x 


4x)(



3x  2x  4x)(



1x 



4x 

5x).

The vector V = (3, 2, 1), then a = 321.

3.1.1 Encryption
 Let (n, e) = (36581, 5) be Bob’s RSA public key. Alice ciphers

a, i.e.,

 a’ = ae (mod n)

 = 3215 (mod 36581)

 = 2677

and its message M = 0110001101, using S, i.e.,C = M ⊕ S.

Alice sends Bob: (C, a’) = (1101111010, 2677).

3.1.2 Attacker Approach
The attacker will proceed by solving the public key 3SAT clause

instance using Truth_Analysis() & UpdatePairs() modules

discussed in[2][3]. This would result in final set of ordered pairs

generated with first and their respective second. Here we will

slightly modify our approach[4] discussed. Rather, then finding

the position vector a in order to convert 3SAT back to 2SAT, to

find the private key S.

We will proceed by solving the ordered pair generated by the

3SAT clauses. The attacker would basically analyze the first and

second part of the ordered pairs generated. The second of the

ordered pairs consist of those literals which are crucial and

dependent on the value of first. If first literals of any ordered

pair are selected to be satisfied, then the corresponding second

have to assigned values. It is found by continuous analysis that

those literals, which are deliberately inserted to convert the

given 2SAT into 3SAT would occur usually with less frequency

in the second section of the ordered pairs.

Another point of observation is that as algorithm C-3-SAT

would insert the literals from the specified range specified by the

user; Like in the given example the range specified is between 1

to 5. Thus literal or its negation inserted to convert 2 SAT to

3SAT would be from within this range. Thus the occurrence of

inserted literals would be more as compared to other.

In order to attack such system we need to keep track on the

frequency of the literals particularly in the second section of the

generated ordered pairs. The observed frequency for the inserted

literals will be more, and can be easily identified.

Suppose the attacker get access to the public key

 (



1x 


2x 


4x)(



3x  2x  4x)(



1x 



4x 

5x).

Now, consider the result after applying the algorithm discussed

[2][3].For the given example the result of ordered pair generated

are recorded in the below given table:

Table 1:Literals and number of occurrence in second

First Pair Second Pair

{ 1x , 2x }



4x

{ 1x , 4x } {



2x , 5x }

{ 2x , 4x }



1x

{ 3x ,



2x } 4x

{ 3x ,



4x } 2x

{ 2x ,



4x }



3x

Evolution in Networks and Computer Communications

 A Special Issue from IJCA - www.ijcaonline.org

4

{ 1x ,



5x }



4x

{ 4x ,



5x }



1x

3.1.3 Observation

After construction of the table check for the literals that occur

frequently in second of the ordered pair . In the above given

example, we notice that setting



1x ,



4x , occur in 2 pair each.

As, per the observation we can conclude that these literals where

inserted, randomly to form the 3SAT. It is further observed that

there may exist some other literals also, which were inserted

randomly. To check for them, evaluate again the table to find

any such literal and its negation, such that the total number of

clauses satisfied by them jointly is equal to the maximum value.

If found, it indicates that the clause was also inserted randomly.

Here, literal (2x ,



2x) are the required pair. In this case both

literal and its negation, position are included for permutation to

find the vector a.

For, the given example we notice that



1x occur at position 1

in both first and third clauses.



4x occur at position 3 and 2 in

clauses first and third resp. The third literal inserted was either

2x or



2x . Here, in this example the position of 2x and



2x is 2. So, the permutation is to be carried by varying the

obtained set {1}{3,2}and {2}. The possible values of position

vector will be as discussed below the list may be varying.

{132},{122},{321}{221}{312}{231}{212}{213}{123}.

Now, as per the obtained position vector set removing the

literals from 3SAT to change it to 2SAT. Finally, solving the

2SAT using BinSAT* to obtain secret key (S). Then applying M

= S ⊕ C , we can obtain the required message. Note that the

above mentioned test should be carried out first on known plain

text, cipher text pair, to deduce the secret key. Once, the secret

key is obtained, it can be used to decipher the further

communication.

Since, we note the {321} is the required position vector. Hence,

the attack is feasible.

3.2 Example Two
In this example we are going to analyze public key with 6 clause

and 5 literals .Applying the algorithm[1], let us consider the 2-

SAT clauses generated.

(1x  2x) (1x  4x) (4x 


2x)(1x 


2x)(

2x 


1x)(2x 


3x)

Thus, Alice gets here secret key S = 11011 by applying

BinSAT*. Then she uses C − 3 – SAT to generate the public

key for the cryptosystem.

k = 1 : p = 3, b = 0. 27 ⇒ C1 = (



3x  1x  2x), V [1] = 1.

k = 2 : p = 3, b = 0.68 ⇒C2 = (1x  3x  4x),V [2] = 2.

k = 3 : p = 3, b = 0.11 ⇒ C3 = (4x 



2x  3x),V [3] = 3.

k = 4 : p = 4, b = 0. 27 ⇒ C4 = (1x 


2x 


4x), V [4] = 3.

k = 5 : p = 3, b = 0.68 ⇒C5 = (2x 


3x 


1x),V [5] = 2.

k = 6 : p = 4, b = 0.11 ⇒ C6 = (2x 



4x 



3x),V [6] = 2.

Thus the public key generated is:

(



3x  1x  2x)(1x  3x  4x)(4x 



2x 

3x) (1x 


2x 


4x)(2x 


3x 


1x)(2x 



4x 



3x)

To the above obtained public key applying the algorithm[2][3],

we have the following results.

Table 2: Literals and number of occurrence in second

First Pair Second Pair

{ 3x ,



1x } {



4x , 2x }

{



1x ,



2x } {



3x , 4x }

{



1x ,



3x } {



2x , 4x }

{



1x ,



4x } { 2x , 3x }

{



3x ,



4x } {



2x , 1x }

{



4x , 2x } { 3x }

{ 2x ,



3x } { 1x , 4x }

Evolution in Networks and Computer Communications

 A Special Issue from IJCA - www.ijcaonline.org

5

{



1x , 2x } {



4x , 3x }

{



1x , 4x }
{



3x ,


2x }

{ 2x , 4x }
{ 1x }

{



2x , 1x }
{



3x }

{ 3x , 1x }
{ 2x }

{



2x , 4x }
{



3x }

{ 4x , 3x }
{ 1x , 2x }

{



2x }
{



3x }

{ 3x }
{ 2x }

3.2.1 Observation

After construction of the table check for the literals that occur

frequently in second of the ordered pair . In the above given

example, we notice that occurrence of literal



3x ,



4x , is

prominent. Thus, as, per the observation we can conclude that

these literals where inserted, randomly to form the 3SAT. It is

further observed that the literals 2x ,



2x are equally occurring.

Thus the position vectors corresponding to all these literal must

be considered for the permutation to find the position vector.

Looking at the position of



3x which occurs at position

{1,2}, literal position for



4x position are {2,3}. Another literal

and negation pair to be considered would be of 2x ,



2x at

positions {1,2}. Now as the 6 clause generated we need to find

the permutation combination for {1,2} ,{2,3} and {1,2}.

On applying all possible permutation of these value we will

get the desired combination pair of {1,2,3,3,2,2}. Although the

approach would be hit and trial, by applying all possible

permuted value and removing the literals from the position, to

reduce it to 2SAT instance. Thereafter applying the BinSAT* to

find the literals value and thus, the desired secret key.

Then applying M = S ⊕ C , we can obtain the required

message. Note that the above mentioned test should be carried

out first on known plain text, cipher text pair, to deduce the

secret key. Once, the secret key is obtained, it can be used to

decipher the further communication.

4. CONCLUSION

In this paper we have, illustrated the analysis of attack on hybrid

cryptosystem. We have used the results[2][3] to indicate that

some kind of attack is possible on such cryptosystem by

determining the position vectors. Although the approach is hit

and trial but the approach is feasible and is tested for 10 literals.

The complexity of the attack O(3n), where n is the number of

clauses. Thus, the complexity increases with the number of

clauses.

5. REFERENCES
 [1] L Rezkallah, S. Bouroubi An new hybrid cryptosystem

 based on the satisfiability Problem , downloaded

 from the site www.laid3.usthb.dz/road/horizontal/

 road3909.pdf

[2] Narendra .S. Chaudhari, ,Feb 2011 Polynomial Solvability

of 3-SAT -Part III: Polynomial algorithm for 3-SAT

,NHSS,Udaipur,India, ISBN : 978-81-7906-266-1 pp-71-

76.

[3] Narendra .S. Chaudhari, Feb 2011 Polynomial Solvability

of 3-SAT - Part II: Algorithmic formulations for 2-SAT,

NHSS, Udaipur, India, ISBN :978-81-7906-266-1 pp-59-

64 .

 [4] Jaya Thomas, Narendra .S. Chaudhari , Apr 2011,Polyno-

 mial Solvability of Satisfiability and its Implication to Hyb-

 rid Cryptosystem Security International Conference on Em-

 -erging Trends in Networks and Computer Communication

 (ETNCC), 2011.Udaipur,pp:521-54.

[5] Kobayashi, K; Tadaki, K; Kasahara, M; Tsuiji, S; A

Knapsack cryptosystem based on multiple knapsacks

,ISITA 2010, pp428 – 432.

[6] K.B. Lakshmanan and Ravi Janardan , A

Public-Key Cryptosystem based on the Matrix Cover

{NP} - Complete Problem. Advances in Cryptology:

Proceedings of Crypto 82, R. L. Rivest and A.

Sherman and D. Chaum,editors. , volume 0, Plenum Press,

New York, 1983. Pages 21-37.

[7] A. Shamir, A Polynomial Time Algorithm for Breaking

 the Basic Merkle-Hellman Cryptosystem, IEEE Trans.

 Inform.Theory, vol. IT-30, 1984, pp. 699-704.

[8] Peter W. Shor, 1997 Polynomial-Time Algorithms for Prime

 Factorization and Discrete Logarithms on a Quantum

 Computer Siam Journal on Computing - SIAMCOMP , vol.

 26, no. 5, pp. 1484-1509.

[9] Massimo Caboara , Fabrizio Caruso, and Carlo Traverso

 October 2010, Lattice Polly Cracker cryptosystems Journal

 of Symbolic Computation Volume 46, Issue 5, May 2011,

 pp. 534-549.

[10] Rainer Steinwandt, Willi Geiselmann , Regine Endsuleit

 2002, Attacking a polynomial-based cryptosystem:

 Polly Cracker International Journal of Information Securi-

 -ty Volume 1, Number 3, pp143-148.

[11] R. C. Merkle and M. E. Hellman, "Hiding Information and

 Signatures in Trapdoor Knapsacks," IEEE Trans. Inform.

 Theory, vol. 24, 1978, pp. 525-530.

Evolution in Networks and Computer Communications

 A Special Issue from IJCA - www.ijcaonline.org

6

