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ABSTRACT 

The information revolution has given birth to Social Networks, 

which allows structured flow of data, information, and 

knowledge. Social networks are nodes of individuals, groups, 

organizations, and related systems that are linked by one or 

more types of interdependencies. The defining feature of social 

network analysis is its focus on the structure of relationships. 

Social network analysis is a set of theories, tools, and processes 

for better understanding the relationships and structure of a 

network. Identification of Clusters in Social network is an active 

area research in artificial intelligence and pattern matching. 

Adding constraints to clustering improves the performance of a 

variety of algorithms. Cluster analysis is concerned with the 

problem of partitioning a given set of entities into homogeneous 

and well-separated subsets called clusters. Cluster Analysis aims 

at finding subsets, called clusters, which are homogeneous 

and/or well separated. Minimum sum of diameters clustering for 

two clusters can be solved by reduction constraints into the 2- 

Conjunctive Normal Form statement.  

Hansen [4] uses Boolean approach to represent constraint in 2-

cluster analysis, Identified constraints are represented in the 

form of 2-SAT statement. Constraint representation of 3-cluster 

or more then 3-cluster is not possible using Boolean approach. 

In our earlier paper [11], an approach was proposed “Belonging 

approach” using that constraints of 2-Cluster are represented in 

2-SAT form. In this paper “Belonging approach” is extended for 

the representation of constraints in K-cluster. This approach can 

be used to generate constraints for 3-cluster for any value 

positive integer value of k. Constraints is generated in the form 

of K-SAT statement. This paper presents a formulation that find 

out the constraints in k- cluster based on concept of bonding and 

bridging in social network. 

General Terms 

Social Networking Analysis, K-Cluster Analysis, Partitioning, 

Artificial Intelligence, Constraint Clustering, Pattern 

Recognition. 

Keywords 

Must Link Constraint, Can Not Link Constraint, Belonging 

approach, Bonding, Bridging. 

1. INTRODUCTION 
Social networks are social communities of the web, connected 

via electronic mail, websites and web logs, and networking 

applications such as Twitter, FaceBook, or LinkedIn. In Social 

network analysis relationships are important. It maps and 

measures formal and informal relationships to understand what 

facilitate or impede the knowledge flows that bind interacting 

units. Social network analysis is somewhat similar to an 

"organizational x-ray". Social network analysis is a method with 

increasing application in the social sciences and has been 

applied in areas as diverse as psychology, health, business 

organization, and electronic communications. More recently, 

interest has grown in analysis of leadership networks to sustain 

and strengthen their relationships within and across groups, 

organizations, and related systems. 

In social networks, "nodes" of the network are people and the 

"links" are the relationships between people [15]. Nodes are also 

used to represent events, ideas, objects, or other things. Social 

network analysis practitioners collect network data, analyses the 

data and often produce maps or pictures that display the patterns 

of connections between the nodes of the network. These maps 

reveal characteristics of the network that help guide participants 

as they evaluate their network and plan ways to improve their 

collective ability to identify and achieve shared goals. 

Constraints provide guidance about the desired partition and 

make it possible for clustering algorithms to increase their 

performance. 

Wagstaff and Cardie [6] first introduced constraints in the area 

of data mining research. The introduction of constraints 

addresses an important problem neatly: the clustering 

algorithm‟s objective function need not capture all the domain 

expert‟s requirements, but user specified constraints can help 

guide the algorithm to a desirable set partition. Wagstaff and 

Cardie introduced two instance-level constraints that were 

termed must-link and cannot-link. In must-link (ML) constraint 

[7, 9, 10] two instances must be in the same cluster and in 

cannot-link (CL) constraint [7, 9 10] two instances must be in 

different clusters. Bonding and bridging [14] are two different 

kinds of connectivity in social network. Bonding denotes 

connections in a tightly bind group. Bridging denotes 

connections to other cluster (see figure 1). In the Social network 

analysis literature, bonding and bridging are often called 

"closure" and "brokerage". Analyzing network data to measure 

bonding and bridging helps to predict important outcomes such 

as efficiency and innovation: bonding indicates a sense of 

trusted community where interactions are familiar and efficient; 

bridging indicates access to new pattern or group.  
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Fig 1: Mapping of Bonding and Bridging to ML & CL Constraints respectively in a Social Network

 

2. CLUSTER ANALYSIS 

2.1 Cluster Analysis Terminology 
Cluster analysis aims to partition the entities of a given set into 

homogeneous and/or well separated classes, called clusters. 

Clusters are required to be homogeneous and/or well separated. 

Homogeneity means that entities within the same cluster should 

resemble one another and separation means that entities in 

different clusters should differ one from the other. Distance 

measure [4, 12, 13] determines how the similarity of two 

elements is calculated. This will influence the shape of the 

clusters, as some elements may be close to one another 

according to one distance and farther away according to another. 

Entities are partitioned on the basis of dissimilarity values. The 

split [12] of a cluster is the minimum dissimilarity between any 

entity in that cluster and any other one outside it. The split of a 

partition is the minimum of its clusters' splits. The diameter [4, 

13] of a cluster is the maximum dissimilarity between any pair 

of entities of that cluster. The diameter of a partition is the 

maximum of its clusters' diameters. Minimum Sum of Diameter 

[4] is Partitioning of the set of subsets, such that the sum of the 

diameters of the subsets is minimized. Hansen[4] provided an 

algorithm that solved minimum sum of diameter problem for 

two clusters that run with time complexity O (n3logn). 

2.2 Clustering Algorithm 
There are different types of clustering algorithm [4, 13] 

Hierarchical algorithms find successive clusters using previously 

established clusters. Hierarchical algorithms are of two types are 

either agglomerative ("bottom-up") or divisive ("top-down"). 

Agglomerative algorithms begin with each element as a separate 

cluster and merge them into successively larger clusters. 

Divisive algorithms begin with the whole set and proceed to 

divide it into successively smaller clusters. 

Partitional algorithms determine all clusters at once. Density-

based clustering algorithms are devised to discover arbitrary 

shaped clusters. Subspace clustering methods look for clusters 

that can only be seen in a particular projection (subspace, 

manifold) of the data. In Two-way clustering not only the 

objects are clustered but also the features of the objects 

2.3 Cluster Analysis Application 
Cluster analysis has applications in statistical data analysis, in 

machine learning, in data mining, in pattern recognition, in 

image analysis and in bioinformatics. 

 

3. SATISFIABILITY PROBLEM 

3.1 Satisfiability Problem 
A Boolean expression is an expression composed of variables, 

parenthesis and the operators. A formula is said be in 

conjunctive normal form if a Boolean expression is  represented 

as an expression that is a conjunction of disjunctions, where 

each disjunction has two arguments that may either be variables 

or the negations of variables. For example, the following 

formula is in conjunctive normal form. 

)()()( cabcba 
 

An Expression is Satisfiable if there is some assignments of 0„s 

and 1„s to the variables that gives the expression the value 1. 

The Satisfiability problem is to determine given a Boolean 

expression, whether it is Satisfiability [3,5]. 

 

3.2 2-Satisfiability (2-SAT) 
2-Satisfiability (2-SAT) is the problem of determining the 

Satisfiability of a formula in conjunctive normal form where 

http://en.wikipedia.org/wiki/Hierarchical
http://en.wikipedia.org/wiki/Hierarchical
http://en.wikipedia.org/wiki/Partition_of_a_set
http://en.wikipedia.org/wiki/Clustering_high-dimensional_data
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each clause is limited to at most two literals.[2]. Aspvall [1] 

Theorem states that 2-SAT problem can be solved in linear time.  

3.3 K-Satisfiability (K-SAT) 
K-Satisfiability (K-SAT) is the problem of determining the 

Satisfiability of a formula in conjunctive normal form where 

each clause is limited to at most three literals. When the clause 

size is greater than two, the problem is NP-Complete (Cook 

1971). The Cook–Levin theorem [1971] states that the Boolean 

Satisfiability problem is NP-complete [1]. 

 

4. PROBLEM STATEMENT 
Let O =  {O1,  O2, . . .  , ON} denote a set of N = |O| entities and  

D ={ dij/ i ≤ k ≤  N, 1 ≤  j ≤  N } a set of dissimilarities between 

pairs of these entities. A dissimilarity dij is a real number and 

satisfies to the conditions dij≥ 0, dii= 0, and dij = dji for i, j = l, 2, 

. . .  , N. 

4.1 K-Cluster Problem Statement 
A partition }.,..,,{ 21 kk CCCP   of the entities of O into K 

clusters is such that no cluster is empty, any pair of clusters has 

an empty intersection and the union of all clusters is equal to O.  

Let ПK denote the set of all partitions PK of O into K clusters. 

We define the diameter of a cluster Cj є PK noted d (Cj), as the 

largest dissimilarity between entities in Cj:  

klj dCd max)(   

 

The diameter of PK, noted d(PK), as the largest of its clusters' 

diameters: 

)(min)( 

j

CdPd jk  

Another measure of homogeneity of a partition is sum of its 

clusters' diameters. This leads to the minimization problem. find 

P*
M such that 

)(min)*( 

j

jk CdPd  

We have to find a partition of a given set O of N entities into K 

non-empty clusters C1, C2, . . ., Ck such that for the given value 

of r1,r2, . . .,  rk and all constraints are satisfied 

4.1.1 Definition 1. The Feasibility Problem[8,10] 
Given a set O of data entities, a collection C of constraints, does 

there exist at least one partition of O into K clusters such that all 

constraints are satisfied. 

4.1.2 Definition 2. The optimization Problem[8,10] 

Given a set D of data points, a collection C of constraints, for a 

given value of K finding partition such that sum of diameter is 

minimized and all constraints in C are satisfied. 

Finding a partition of a given set O of N entities into K non-

empty clusters such that d(C1)+ d(C2)……+d(Ck) is minimum. 

Such a partition will be called optimal.  

4.1.3 Definition 3 the Feasibility Problem [8, 10] 
Given a set D of data points, a collection C of ML and CL 

constraints on some points in D, upper (Ku) and lower bounds 

(Kl) on the number of clusters, does there exist at least one 

partition of D into k clusters such that Kl ≤ K ≤ Ku and all 

constraints in C are satisfied? 

If the constraints are satisfied then feasible clusters can found at 

each iteration of clustering under constraints algorithm. The 

feasibility problem for clustering under ML constraints is in P 

while clustering under CL only and ML and CL is NP-complete 

 

5. FORMULATION OF CONSTRAINTS 

IN K-CLUSTERING 
Let O =  {O1,  O2, . . . , ON} denote a set of N = |O| entities and  

D ={ dij/ i ≤ k ≤  N, 1 ≤  j ≤  N } a set of dissimilarities between 

pairs of these entities. A dissimilarity dij is a real number and 

satisfies to the conditions dij≥ 0, dii= 0, and dij = dji for i, j = l, 2, 

. . .  , N. A partition PM = {C1, C2, . . . , Ck} of the entities of O 

into K clusters is such that no cluster is empty, any pair of 

clusters has an empty intersection and the union of all clusters is 

equal to O.  

Minimum sum of diameters clustering problem can be solved by 

reducing the problem into K-Conjunctive Normal Form or K- 

SAT.  

 

5.1 Must Link & Can not Link Constraint 
Must Link (ML) Constraint: In Must Link Constraint entities Oi 

and Oj must be in the same cluster. Notation of ML constraint is 

ML (i, j) 

Can Not Link (CL) Constraint: In Can Not Constraint entities Oi 

and Oj must not be in the same cluster. Notation of CL 

constraint is CL (i, j). 

5.2 Graphical representation of ML & CL 

Constraints 
Consider the following set of constraints: 

 ML(a,b), ML(b,c), ML(c,d), ML(d,e,), CL(e,f), ML(f,g) 

ML(g,h), CL(h,i), ML(i,j) & ML(j,k) Constrained Graph for the 

above constraint is as follows corresponding as follows 

 

 

 

 

Fig 2: Representation of ML & CL Constraints in a graph 

kkP   
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Fig 3: Transformation of Business logic into SAT statements 

 

Compare Figure 1 & Figure 2, node1, node2 and node 3 of 

figure 2 looks similar to three clusters of figure 1, Cluster 1, 

Cluster 2 & Cluster 3. Cluster 1 contains entity a, b, c, d, and e; 

Cluster 2 contains entity f, g and h; Cluster 3 contains only 

entity i, j and k. It means a social network can be transformed 

into a mathematical model or in a constrained graph. 

 

One more interesting application feasible constraint graph is that 

if our network is dynamic(size of network changes at run time) 

in nature, then if we want to add another entity to an existing 

feasible network then we can do this by constructing a graph 

like figure 2. If such a graph (constraint graph like figure 2) is 

possible it means such a constraint clustering is possible. We 

can construct a new social network as well as we can check the 

feasibility of existing social network which is feasible for the 

given set of constraints or not. 

 

5.3 Transformation of Social Network to 

SAT Statement 
With reference to above section 5.3 and figure 3 it is clear that 

concept of social networking can be transformed into 

mathematical model. The transformation process is as follow: 

Transformation of business logic on the basis of attributes of 

objects/actor to the properties like homogeneity and separations. 

These properties homogeneity and separations are transformed 

into bonding and bridging respectively so they form Social 

network. These concepts of Social Network are transformed into 

Must Link & Can Not Link Constraints. These ML & CL 

constraints are represented in a mathematical form of as a SAT 

statement. 

 

 

5.4 Belonging Approach to represent the 

constraints 
Let us consider the set of n entities are partitioned into K cluster 

C1, C2 ,…..,Ck, with diameters r1, r2,……,rk respectively. Assume 

that r1 > r2 > ......>rk.  

A new variable type “Belonging Boolean variable” is introduced 

for the representation of an entity belongs to a particular cluster. 

So, if a entity Oi belongs to Kth Cluster then, it is represented by 

a Belonging Boolean variable Tki. So there will be K Different 

Belonging Boolean variable corresponding to K-clusters. 

T1i, T2i,……, Tki are k Belonging Boolean variables. 

Let us associate the following proposition for each entity 

Proposition 1. If Entity Oi belongs to Cluster Ck, then associate 

the rule 

kiki TCO   

If entity Ok belong to cluster C1 then T1k = 1 

5.5 Representation of ML & CL Constraint 

using belonging approach 
 

Let us consider two Cluster C1 & C2 having diameter d1 & d2 

respectively. 

 

5.5.1 Representation of ML Constraint 
 In Must Link Constraint entities Oi and Oj must be in the same 

cluster.  

 

If both entity belong to cluster C1 

 

1)( 11  kl TT  

 
If both entity belong to cluster C2 

 

1)( 22  kl TT  

 

5.5.2 Representation of CL Constraint using 

belonging approach 
 

In Can not Link Constraint entities Oi and Oj must belong to 

different cluster.  

 

So, if Oi belong to C1 then Oj belongs to C2 or if Oi belong to C2 

then Oj belongs to C1 

 

1)()( 1221  klkl TTTT  

 

5.6 Constraints for K-Cluster Problem 
Constraint can be classified into 3-categories. Total numbers of 

Possible Constraints are K+1, where K is the number of Cluster. 

 

 

Homogeneity Bridging   Must Link Constraints SAT Statements 

Separation Bonding      Can Not Link Constraints SAT Statements 

Business  

Logic 
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a) Type 1 Constraint: 

If dkl > r1, then Ok and Ol cannot both belong to any of the 

cluster.  

(Only one constraint can possible in this type) 

 

b) Type 2 Constraint: 

If  rj > dkl >rk then  

 

(i)  Ok and Ol cannot both belong to the same cluster   

Cj+1,Cj+2,….,Ck.  

 

(ii) Ok and Ol can  both belong to the cluster C1, Ci+1,….Cj 

 

    Where kj 2  

    (K-2 constraint can possible in this type) 

         

c) Type 3 Constraint: 

If rk > dkl   then there is no restriction, Ok and Ol can 

belong to any of the cluster. 

(Only one constraint can possible in this type) 

 

 

 

So total numbers of Possible Constraints type are = 

No. of Type 1 Constraint + No. of Type 2 Constraint+ No. of 

Type 3 Constraint 

 => 1 + (K-1) + 1 

 = > K+1 

5.7 Reduction of Constraints into CNF 

Statement for K-Cluster 
All K+1 constraints of section of 4.3 can be reduced as  k-SAT 

statement as follows: 

 

a) Constraint 1: If dkl > r1, then Ok and Ol cannot both belong 

to the same cluster C1 or C2 or……. or Ck.     

 

 

if ))()((.......))()(( klikjlik COandCOororCOandCO  the

n the Boolean  formula is:  

 

1)......( 1  kljllik TTTT  

Where i ≠ j and kji  ,1  

 

(i) Example:  

 if i =1 means     

 

)()( 11 CthenotherclusterOandCO lk  then 

 

)((......))()(())()(( 13121 COororCOandCOorCOandCO klklk 

      ))( kl COand   

 

Then the Boolean formula is:  

 

1).......( 321  klllk TTTT  

 

(ii) Example:  

if i = 2  means 

 

)()( 22 CthenotherclusterOandCO lk   then 

 
)((.......))()(())()(( 23212 COororCOandCOorCOandCO klklk 

))( kl COand   

 

Then the Boolean formula is:  

 

1).......( 312  kllll TTTT  

 

     Where kji  ,1  

 

 

 

b) Constraint 2: rj > dkl > rj+1>……>rk then Ok and Ol cannot 

both belong to the cluster Cj+1, Cj+2,….Ck. and   Ok and Ol 

can    both belong to the cluster C1, Ci+1,….Cj 

 

 

 ljkjljk OandCOorCOandCO ()(())()(( 121        

)()((......)) 13 kljkj COandCOororC    

 

Then the Boolean formula is:  

 

1).......( )2()1(   klljkj TTT  

1)(......)()( 2211  ijjkjklk TTTTTT  

Where kj 1  

 

(i) Example:  

If r1 > dkl > i2, then Ok and Ol cannot both belong to the 

cluster C2 or C3 or……. or Ck.  

 

))()((.......))()(( 232 klklk COandCOororCOandCO   

 

1).......( 32  kllk TTT  

 

1)( 11  lk TT  

(ii) Example:  

           If r1 > r2 > dkl > r3, then Ok and Ol cannot both belong to  

           Cluster C3 or……. or Ck.  

 

))()((.......))()(( 343 klklk COandCOororCOandCO   
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1).......( 43  kllk TTT  

 

1)()( 2211  lklk TTTT  

 

 

c) Constraint 3 : If r3, > dkl   then there is no restriction, Ok and 

Ol can belong to any cluster. 

 

5.8 Checking Satisfiability of Boolean 

Equation 

From the Constraints obtained from section 5.6, a K-SAT 

instance is generated. These K-SAT instances can be solved by 

any K-SAT Solver algorithm, to check the Satisfiability of the 

Boolean expression constructed for some (r0, r1, . . ., rk). If the 

solution is a feasible solution according to Definition 1 then a K-

clustering is possible. There can be more then one feasible 

solution for the values of (r0, r1, r2). One of the solutions among 

the feasible solution is optimum solution. according to 

Definition 2. 

 

6. CONCLUSION 
Social Network Analysis is fast growing field data mining. 
Clustering divides a social network into different classes 

according to properties or pattern of objects in the social 

network. Objective of K-Clustering is to partition the entities 

into k-clusters on the basis of properties or pattern of the 

entities. In this paper we investigated that how the concept of 

Social network are transformed into ML and CL constraint and a 

formulation is proposed which is based on a beautiful and 

simple concept of “belongingness”  to represent constraint in the 

CNF Statement or K-SAT statements. Feasibility of k-SAT 

statement can be checked by any SAT solver algorithm.  

 

Boolean approach is a method to identify and represent 

constraint in 2-cluster analysis which are represented in the form 

of 2-SAT statement. Hansen [4] uses this approach to find out 

minimum sum of diameter for two cluster. Boolean approach 

method is not sufficient to represent the constraint for more then 

two cluster. Approach of our earlier paper [11], is extended in 

this paper to represent the constraints in K-cluster. This paper 

presents a formulation that find out the constraints in k- cluster 

based on concept of bonding and bridging in social network, 

Constraints generated are represented in the form of K-SAT 

statement. 
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