
International Journal of Computer Applications (0975 – 8887)  

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit 

1 

A Perception on Programming Methodologies for Software 

Development 

P.K. Singh 
AMITY University, Noida, 

U.P.,  

Parag Mittal 
JRE Group of Institutions, Gr. 

Noida, U.P.,  

Lakshay Batra 
JRE Group of Institutions, Gr. 

Noida, U.P. l   

Utkarsh Mittal 
JRE Group of Institutions, Gr. 

Noida, U.P.,   
 

 

ABSTRACT 

In this paper some of the basic programming methodoligies are 

covered that are used in day to day life for developing various 

programs. It describes about what each paradigm is all about, 

what are the advantages and disadvantages of using that 

paradigm, it occupies a major part in describing features that 

will make the reader more comfortable in choosing the platform 

on which he wishes to develop his program. Moreover it even 

include list of various programming languages that follow a 

particular methodology. The main purpose of this paper is to 

help the reader in choosing the most appropriate platform or 

methodology for developing his program. It will even benefit 

the readers by creating interest in exploring new paradigms by 

giving them a small yet relevant synopsis about the paradigm. 

GENERAL TERMS 
Software Development Models, Programming Methodologies, 

Software Development, Agent Oriented Softwares, Aspect 

Oriented Softwares 

KEYWORDS 
Software Methodologies, Software Development, AOSD, 

Agent Oriented. 

1. INTRODUCTION 
A software development methodology or system development 

methodology in software engineering is a method which is used 

to design and develop a mechanism of fostering an information 

system. The software development methodology (also known 

as SDM) framework didn't emerge until the 1960s. According 

to Elliott (2004) the systems development life cycle (SDLC) 

can be considered to be the oldest formalized methodology 

framework for building information systems [26]. The primary 

motive behind SDLC has been to carry out the advancement of 

information systems in a calculated manner and procedural 

way, demanding every phase of life chain from birth of the 

belief to dispatch of the terminating system, to be carried out 

thoroughly and gradually" within the ambience of the scheme 

being implemented. The essential concept behind this approach 

scheme in the 1960s was to establish enormous scale operative 

business arrangement in an era of extensive business group. 

Today an abundance of software structures are present from 

structure programming to object oriented, components, aspect 

oriented and agile methodologies. Each one of them is having 

its own role and specific to different types of software 

applications. Major emphasize in this paper is to investigate the 

main role of each methodologies in detail with its usage related 

to specific applications. This paper is organized as follows: 

Section 2 provides basic research procedure used to conduct 

this analysis. Section 3 reports the detail of each software 

methodologies in details with their associated impacts on 

software applications. Major findings with conclusion and 

future scope are presented in Section 4. 

 

2. RESEARCH METHODOLOGY 
Defining an adequate search string is quiet difficult for analysis. 

Most of times identify the string for search relies on the 

experience of the involved researchers [30]. According to our 

research survey, we defined the following string: 

(Software Methodologies) OR (Programming Methodologies) 

OR (Software Frameworks) 

The sources of primary studies vary from indexed repositories 

(IEEE, ACM Digital Library, Elsevier, Science Direct, ICST, 

IJCSE, ICIIP, IJCA etc ) to general purpose search 

engines(Google and Scirus). We have downloaded 105 papers 

out of which, we have considered the related papers on 

software methodologies. We have limited to our findings for 

research papers because we want to analysis the features of 

several methodologies. Each paper is analyzed based on the 

related methodologies and finally conclusion is drawn based on 

the literature reported in the published papers.  

3. SOFTWARE METHODOLOGIES 
There is number of software methodologies reported in the 

literature, we have considered the most popular ones for 

analysis in this research paper. 

3.1 Structured Oriented 
Structured based programming aims clearly on improving the 

developing time, quality and clarity of the program by using 

sequence, selection and repetition statements. This includes use 

of statements like if-else, endif, loops etc. which make the 

program complex and difficult to maintain and is commonly 

called as spaghetti code. A language is described as structured 

when it’s part of syntax is enclosed in between curly braces that 

are preceded by a Keyword. The programmer basically breaks 

his source code into logically structured chunks. Writing a 

structured program requires more time and reusability is not 

provided, which leads it’s to more maintainable software’s. 

ESPOL was reported one of the first structure programming 

language, developed by Burroughs Corporation in 1961. 

Afterward PL/I, PL 360 then C came into existence in 1969 

developed by Dennis Ritchie. 

The primary cons that are present in structured programming 

are absence of encapsulation, information hiding, and 

recurrence of code hence comprising an extensive arrangement 

than is needed. Governing a fault may be difficult to handle; 

debugging attempts can be hamper since the obstacle code will 

look correct and even execute appropriately in one instance of 

the program but not elsewhere. Another disadvantage is that the 

extensive use of GoTo statement i.e. the fact of their jumping 

around in the code is mainly dependent on the line number [1], 



International Journal of Computer Applications (0975 – 8887)  

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit 

2 

if you add a line in between it can destroy the working of your 

code. The main advantages of using structured programming 

are that it more secure and reliable codes. C is one of most 

popular structures programming language and best suitable 

language for system programming till date. Whenever it comes 

to performance, C is unbeatable. C provides you the direct 

access to memory of your CPU that’s why most of the device 

drivers are written in C language. Major parts of the Windows, 

Unix and Linux are still written in C, which makes it still one of 

the best language for system programming. 

3.2 Object Oriented 
All the major concepts were developed in the 1960s as part of a 

language called Simula. Alan Kay and his group developed a 

programming language named Smalltalk in the 1970s. Bjarne 

Stroustrup developed an extension to the C language that 

eventually evolved to the language C++. Explosion of the 

research in object-oriented programming techniques began in 

the first major conference on object-oriented programming in 

1986, there were dozens of languages like Eiffel, Objective-C, 

Actor, Object Pascal, and various Lisp dialects etc. Later to this 

Java emerge as the most effective and popular object oriented 

language. The Java compilers, virtual machines, and class 

libraries were originally developed by Sun Microsystems from 

1991 and first released in 1995 [2, 28]. As of May 2007, in 

yielding with the condition of the Java Community Process, 

Sun reauthorized most of its Java technologies under the GNU 

General Public License. Java initially developed based on the 

key features security, architecture neutral, portable, high 

performance, multi threading and dynamic programming. This 

is based on the byte code concept with the JVM (Java Virtual 

Machine) concept. It released in various version starting from 

JDK 1.0 to Java SE 7 till 2011. Object oriented methodologies 

was developed to overcome the problems of structured 

programming techniques. One of the most important features of 

objected oriented approach is the option to modify existing 

code or solution to solve different problems. Some of the basic 

concepts of object oriented programming are objects, attributes, 

methods, events, abstraction and classes, constructors. There 

are several features that are makes its one of the popular 

language among programmers such as inheritance, 

polymorphism, abstraction, encapsulation and reusability. 

(i)Inheritance: It is the process of deriving a new class from 

existing class. it allows reusability and extension. The sub class 

or derived class gets all the properties of super class or parent 

class. It helps in reducing code size. (ii) Polymorphism and 

Overloading: Polymorphism is ability of different objects to 

respond differently to identical messages. It is a implementation 

concept related to objects. Overloading is a kind of 

polymorphism. (iii) Encapsulation: It is the process of binding 

data and functions together in a object [3]. Its basic aim is 

providing data hiding and ensures security.  (iv) Data 

abstraction: It helps to highlight or point out the essential 

aspects of an application. It also facilitates reusability. (v) 

Reusability: Reusability is re- usage of structure without 

changing the existing one but adding new features or 

characteristics to the existing structure. The design procedure 

that is used in procedural programming is Top down design [4]. 

However, the design procedure used in object oriented 

programming is bottom up and top down both. Java is one of 

the accepted programming languages today for many reasons. It 

is a co-ordinate language with a strong library of reusable 

software components. The programs in Java can be executed on 

many different computer architectures and operating systems 

due to of the use of the JVM (Java virtual machine). It is also 

called as code portability or WORA (write once, run 

anywhere). Java is expected to be tutored in university 

computer science classes. Multiple computer science books 

written in the past decade use Java in the code references. 

Therefore acquiring knowledge of Java syntax is beneficial 

even though you never code in it. Java advantages include 

WORA, acceptability and their major disadvantage is that it is 

lagging than naturally compiled languages. 

The aim that software must be divided into different 

components – structured from prefabricated components - first 

became noticeable with Douglas McIlroy's talk at the NATO 

conference on software engineering in Garmisch, Germany, 

1968, labeled Mass Produced Software Components [32]. 

McIlroy's further attachment of pipes and filters into the UNIX 

operating system was the first implementation of an 

infrastructure for this idea. Brad Cox of step stone explained 

the modern concept of a software component. The 

infrastructure and market for these components was created and 

set up by Brad Cox by inventing the Objective-C programming 

language and called them Software ICs. This view was 

summarized in a book on OOP - An Evolutionary Approach 

1986. In early 1990s IBM guided the path with their System 

Object Model (SOM). In response, the actual deployment of 

component software with COM and OLE was paved by 

Microsoft. As of 2010 many successful software component 

models exist. Development based on Component accentuate on 

the separation of concerns in regard with the wide functionality 

present end to end in a software system. For defining, 

implementing and composing loosely coupled independent 

components into systems a reuse-based approach is implied. 

Both short term and long term benefits for software are 

achieved via this practice .It employs principle of object 

oriented programming. Properties of object are encapsulated by 

each component. A component framework defines dynamically 

loadable and independently developed components, instead of 

classes that are colligated together.  

Component frameworks can be used without access to their 

source code and can be extended through composition thus 

Component frameworks are also known as black-box 

frameworks.There are various facilities provided by component 

based software’s such as (i) Information Hiding: The most 

important characteristic is that components completely hide 

their implementation (ii) Context Independence Components 

can be transformed into different application contexts. 

Components have to be self-contained elements, independent 

from other components[11] (iii) Implicit invocation: 

Components address each other not directly but indirectly, a 

central registry stores information about components as well as 

interfaces [12]. 

3.3 Agent Oriented 
The concept of Agent-oriented programming (AOP) and the 

guidelines of incorporating software around the concept of 

agent was first used by Yoav Shoham in year 1990 in his 

Artificial Intelligence studies [29, 31]. AOP is a sub set of 

OOP. AOP agents show commitments, alternatives, beliefs and 

communicate with one another via constrained set of speech 

type acts like notify, promise, request and decline the state of 

the agent is its intellectual state. The basic unit of agent 

oriented programming is Agent. The following properties are 

observed in an Agent (i) They are autonomic (ii) They share 

and communicate with other agents (iii) They can sense the 

environment and according to change in environment they 

change their responses. Three main components of Agent-

oriented are (i) Formal language with clear syntax and 



International Journal of Computer Applications (0975 – 8887)  

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit 

3 

semantics for describing mental state (ii) Interpreted language 

in which to define and program agents(iii)An “identifier” to 

convert neutral devices into programmable agents [5]. This 

approach is based on concept of software agent which 

represents the central meaning of abstraction in AOSE. [6]. 

Multi-agent systems tend, by their very nature, to be distributed 

— the idea of a centralized multi-agent system is an oxymoron 

[7,8]. Table 1 represents the basic features if OOP and Agent 

Oriented methodologies. 

Table 1. Features of Agent Oriented Methodologies 

Features OOP Agent Oriented 

Basic Unit Object Agent 

Parameters 

defining state 

of basic unit 

Unconstrained Beliefs, commitments, 

capabilities, choices… 

Types of 

messages 

Unconstrained Inform, request, 

offer, promise, 

decline… 

3.4 Aspect oriented Programming 
Aspect oriented programming is a methodology with multiple 

crosscutting concerns or aspects. The idea behind AOP is that it 

separates the concern (similar to encapsulation). The explicit 

concept of AOP was developed by Gregor Kiczales and 

colleagues at Xerox PARC, and this led with the AspectJ AOP 

extension to Java [9, 32]. AOP provide better modularity in 

programs, which is basic prerequisite in software engineering 

discipline and it can also reduce the development effort, testing 

time and provide better reusability and maintenance as compare 

to OOP in several aspects [30]. It’s built upon the existing 

programming methodologies. It expresses each concern in its 

own module i.e. called as Aspect. Here concern is a particular 

goal or area of interests that must satisfy the overall system 

goal. CrossCutting Concerns are the concerns that cannot be 

implemented without scattering codes 

(Duplicate/Complementary code blocks). Aspect is a modular 

unit designed to implement a concern. There are series of 

languages belong to AOSD i.e. AspectJ, AspectJ, CeaserJ and 

Aspect C++ etc. AspectJ is the most popular language and used 

by most among the aspect family of languages. AspectJ is 

widely accepted by researchers because it is mature and code is 

available to prove some framework proposed on AOSD. Some 

of the similarities with OOP are shown in Table 2.  

Table 2. Similarities between OOP and AOP [10] 

OOP AOP 

Class – encapsulates 

methods and attributes 

Aspect – encapsulates 

pointcuts, advice & attributes 

Method signature – defines 

entry points for execution 

of methods 

Pointcuts – defines the set of 

entry points in which advice is 

triggered 

Method bodies – 

implementation of primary 

goals 

Advice – implementation of 

crosscutting concerns 

Compiler – converts source 

code to byte code 

Weaver – instruments code 

with advice 

In spite of the popularity of Aspect Oriented methodologies, it 

is still immature and need more investigation. Aspect is not the 

popular choice among software industry because some the 

issues related to the maintenance, performance, reusability are 

still open. Still there are some drawbacks associated with it 

such as poor tool supports, debuggers, profilers etc. 

Maintenance and debugging is too complex and difficult to 

adapt but still it have several advantages of AOP (i)Reduces 

technical complexity (ii)Easy to Use once get use to (iii) 

Allows codes and functions to bind together in one block 

(iv)Useful in solving problems like logging, security. 

3.5 Goal Oriented 
Goal oriented programming methodology makes use of 

languages that have very high level of abstraction. These are 

typically used as professional programmer’s productivity tool. 

This type of paradigm is restricted to only a specific type of 

application thus referred to as Goal Oriented. GOAL first 

appeared in the books based on investigation studies on primary 

school children during 1970s and 1980s (as cited in Payne, 

Youngcourt, and Beaubien (2007)). Incorporating Atkinson's 

theory of achievement motivation (1964), researchers were 

biased in demonstrating the differences in classroom learning 

styles. It focus on developing software agents that perform in a 

goal directed way and are capable to dynamically switch from 

one character to another, to dodge failure in accomplishing their 

own goals or to meet requirements in a quality way [13]. Goal-

oriented programming is targeted at dynamic domains such as 

agent based systems in which the programmer does not have 

full control over all aspects of system behavior [14]. Goal-

oriented programming is abounding. Monitoring the execution 

for goal achievement does not add anything as the program was 

developed to satisfy the goals. In the Goal-Oriented Execution 

model, an agent A is defined through the following tuple: A = 

(KB; SS; CP; GS) [15] where: KB is the agent Knowledge 

Base, SS describes Set of Services offered by the agent. The 

agent uses these services to achieve its goal; these services can 

be shared by other agents too for accomplishing of the goal. CP 

is the set of Compiled Plans given by the agent to achieve its 

goals.SG represents the Goals that are to be achieved by the 

agent.It adds flexibility in handling failures.Goal-oriented 

Requirements Language (GRL), is an i*-based modeling 

language applied in system development, is executed to 

strengthen goal-oriented modeling and reasoning about both 

functional and non-functional requirements. It contributes 

constructs for exhibiting various types of concepts that appear 

during the specification process [33, 34]. 

3.6 Service Oriented 
Service-oriented architecture (SOA) is a software developing 

methodology built on structured collections of discrete software 

modules, known as services, that together provide the complete 

functionality of a huge software application [16]. As from 2008 

network managers are applying the principles of SOA in their 

area. Various remarkable examples of service-oriented network 

management architectures include M.3060: Principles for the 

Management of Next Generation Networks recommendation 

from the ITU-T and TS 188 001 NGN Management OSS 

Architecture from ETSI. SOA is a technique of software 

architecture for building software in the form of interoperable 

services. To interface with SOA XML and JSON are used. 

Loose coupling of services with operating systems and other 

application governing technology is required by SOA. SOA 

divides functions into distinct blocks, or services, those 

developers make accessible over a network in order to allow 

multiple users to combine and reuse them in the development of 

http://en.wikipedia.org/wiki/Gregor_Kiczales


International Journal of Computer Applications (0975 – 8887)  

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit 

4 

applications. These resources and their corresponding 

consumers interact with one another by transferring (passing) 

data in a well-defined, shared format, or by handling an activity 

between two or more resources [17]. Major requirements for 

adequate usage of SOA are to be fulfilled are as follows: (i) 

Interoperability passing data in a well-defined, shared format, 

or by coordinating an activity between two or more services 

[17]. Major requirements for adequate usage of SOA are to be 

fulfilled are as follows: (i) Interoperability among different 

systems and programming languages (ii) Need of creating a 

federation of resources, data flow must be secured and 

maintained to a federated database system which as a result 

permits new functionality augmented to point out a common 

business format for each data element [17].  

The following principle for service-oriented design was given 

by The Microsoft Windows Communication Foundation team 

[17]. Services are autonomous, Boundaries are explicit, services 

share contract and schema, not class, service compatibility is 

based on policy define by Thomas Erl of SOA Systems Inc 

[18],it explained some specific service-orientation principles 

that are common to all SOA platforms. The principles stated by 

Thomas Erl were published in “Service-Oriented Architecture: 

Concepts, Technology, and Design”: Standardized service 

contract, Service loose coupling, service abstraction, service 

reusability, Service abstraction, Service reusability, Service 

autonomy, Service statelessness, Service discoverability, 

Service composability. Authors also included the following 

principles: Service granularity, Service normalization, Service 

optimization, Service relevance, Service encapsulation, Service 

location transparency. There are various types of SOA; Service 

Architecture, Service Compostion Architecture, Service 

Inventory Architecture, Service-oriented enterprise 

Architecture. It provides several benefits; SOA helps businesses 

responding more quickly and makes it more cost-effective to 

the changing market conditions [19], SOA mainly promotes its 

ease of reuse, SOA helps in attaining the objective of separating 

users. This helps in maximizing the reuse of services; It reduces 

the interconnection to—and usage of—existing IT legacy. 

Some other usages may be considered as SOA quite adoptive in 

designing are as follows: (i) Loose coupling; language 

independence, helps interface with legacy system. 

(ii)Distributed; manage load, failover for reliability (iii) Asset 

management; Leverage existing resources, creates assets, 

separates team[20]. It offers all these benefits along with some 

restrictions such as SOA is not always the best architectural 

choice because best utilization of SOA needs additional 

development and designs along with infrastructure which 

increases the cost. Web Services and Service Oriented 

Architecture is not suitable for applications because of the 

following reasons: (i) Stand alone, non distributed applications 

which do not require application or component integration (ii) 

Applications which have limited scope (iii) Applications in 

which loose coupling is not required and one way asynchronous 

communication is required or desired iv)Homogenous 

application environments for example, an environment in which 

all applications were made by using J2EE components. In the 

instances mentioned, it is recommended to use XML over 

HTTP for inter-component communications instead of utilizing 

Java remote method invocation (v) Applications which require 

GUI based functionality. Such an application is not suited for 

heavy data exchange that is service based. It is widely accepted 

in several applications like i) E-commerce (ii) E-business (iii) 

M-commerce (iv) E-entertainment (v) E-learning (vi) E-

government (vii) E-health etc. Various tools which are used for 

managing SOA infrastructure are: (i) HP Software & Solutions 

(ii) HyPerformix IPS Performance Optimizer (iii) IBM Tivoli 

Framework (iv) Red Hat JBoss Operations Network (v) Oracle 

SOA Management Pack Enterprise Edition. 

3.7 Autonomic Computing 
Autonomic Computing refers to the self-management of 

computing systems, adapting to unpredictable changes while 

hiding intrinsic complexity to operators and users. It was started 

by IBM in 2001.The main purpose of Autonomic Computing 

was to make computer systems skilled enough for self-

management to remove the increasing complexity of computing 

systems management. An autonomic system is a system which 

is capable of making decisions on its own, using high-level 

policies; it will continuously keep checking and optimizing its 

status and automatically adapt itself to changing conditions 

[22]. Central idea is based in Context-oriented Programming. 
IBM defined the following four functional areas: (i) Self-

configuration: Components are configured automatically, (ii) 

Self-healing: Faults are automatically detected and corrected 

(iii) Self-optimization: Resources are controlled and monitored 

automatically to confirm the proper functioning as per exact 

requirements (iv) Self-protection: Recognition and shield from 

arbitrary attacks. IBM defined five evolutionary levels in the 

automatic deployment model: Level 1 presents the ongoing 

situation where systems are to be configured manually. Levels 

2, 3 & 4 basically define the functions for automated 

management and level 5 presents the goal of autonomic 

computing or self-managing computing systems. The design 

complexity of Autonomic Systems can be uncomplicated by 

using design patterns such as the model-view-controller (MVC) 

pattern to enhance concern separation by encasing functional 

concerns [21]. This approach can be integrated in distributed 

systems so that the main controllers (human) do not have to 

worry about the small errors and issues. System should be 

capable of solving as many problems as possible on its own. 

Therefore we need a system which could ease the management 

of operations automatically. Autonomic Computing is one of 

the best answers in this area [27]. 

The actual idea used in Autonomic Systems is Closed Control 

Loops. This idea evolves from the Process Control Theory. A 

closed control loop in an Autonomic System invigilates the 

hardware or software component and automatically keeps its 

parameters in the defined range. It posses several characteristics 

such as; The behavior of autonomic systems differ from system 

to system but even then the system should at least illustrate 

some properties to achieve its motive (ii) Automatic: This 

means to be able of controlling the internal functions as well as 

various operations (iii) Adaptive: It should be capable of 

changing the operation as per requirement (i.e. configuration, 

state and functions) (iv) Aware: An autonomic system must be 

able to monitor (sense) its operational context as well as its 

internal state in order to be able to assess if its current operation 

serves its purpose [22]. It offers several benefits; (i) The most 

important feature of autonomic computing is reduced TCO 

(Total Cost of Ownership) (ii) Maintenance cost is scaled down 

as there are less breakdowns (iii) Less number of people or IT 

personnel will be needed to handle the computing systems (iv) 

Reduced deployment (v) Stability of IT systems is increased by 

Automation or Autonomic Computing (vi) Autonomic 

Computing provides maximization of system availability, thus 

minimizes human effort to manage large servers and also cost 

of maintenance. The major characteristics of this computing 

associated with its metrics are presented in Table 3. 

 



International Journal of Computer Applications (0975 – 8887)  

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit 

5 

Table 3. Autonomic Computing Characteristics [23] 

Characteristics Metrics 

Self-configuration Maintainability, Usability, 

Functionality, and Portability 

Self-healing Reliability and Maintainability 

Self-optimization Efficiency, Maintainability, and 

Functionality 

Self-protection Reliability and Functionality 

Self-awareness Functionality 

Openness Portability 

Context-awareness Functionality 

Anticipatory Efficiency and Maintainability 

 

There are number of applications reported in literature, most 

important are; (i) It simply reduces the complexity of 

computing management systems, (ii) It provides the basis for 

Grid Computing and E-Sourcing (iii) It balances the server load 

(iiv) Also, it helps in process allocation, memory error-

correction, automatic updating of drivers and related software, 

monitoring power supply, pre-failure warning, automated 

system recovery and backup etc. Context-oriented 

Programming (COP) joins layers; intense activation based on 

context, and scoped activation. Various combinations of these 

approaches are already there, some of them are very old also. 

The separation of programs into layers is a approach that goes 

back to early experiments made in Smalltalk [35]. There, layers 

were accepted as a component to express different design 

options of the same software, and permit the developer to apply 

various combinations thereof. Delegation layers and Slate are 

very close to COP in that they are based on layers, allow 

sending messages in the scope of a specific layer, and even 

allow manual dynamic composition of layers. ContextL, 

ContextJ, ContextS are popular variants of COP. These 

language abstractions enable non-trivial and efficient 

implementations. 

3.8 Agile Methodologies 
Agile methodology is basically used in software 
development in software industry worldwide. It helps teams 

react to uncertainty through additional, repeated work cadences, 

known as sprints [24]. Lightweight agile software development 

methods came up in the mid-1990s as a reaction against the 

heavyweight waterfall-oriented methods, which were described 

by their experts as being heavily regulated, controlled, 

micromanaged and excessively additional approaches to 

development. Early practices of agile methods include Rational 

Unified Process (1994), Scrum (1995),Crystal Clear, Extreme 

Programming (1996), Adaptive Software Development, Feature 

Driven Development, and Dynamic Systems Development 

Method (DSDM) (1995). These practices are now altogether 

referred to as agile methodologies, after the Agile Manifesto 

was stated in early 2001. This methodology is a substitute to 

waterfall or the traditional sequential development technology. 

It is a cluster of software development methods that are based 

on repeated and additional development, where necessities and 

answers come in existence through association between self-

organizing, cross-functional teams. Some basic key features it 

provides are delivering frequently more iterations, less defects, 

test frequently, collaborative approach and maximum ROI [25]. 

There are number of advantages with agile;(i)Agile 

methodology is the saving of time and money(ii) No detail 

requirement needed(iii) Early benefit to the user/business(iv) 

Face to face communication (v) Agile facilitates smooth flow 

of knowledge sharing(vi) Less time to market(vii) Less cost to 

customer and high quality. It come with some limitations as 

follows: (i) Smaller Planning Horizon (ii) Lesser design and 

documentation (iii) Need clear customer vision (iv) Necessity 

of experienced and senior resources. Well-known agile 

software development methods include; (i)Agile Modeling (ii) 

Agile Unified Process (AUP) (iii) Crystal Clear(iv) Crystal 

Methods (v) Dynamic Systems Development Method (DSDM) 

(vi) Extreme Programming (XP) (vii) Feature Driven 

Development (FDD) (viii) GSD (ix) Kanban (development) (x) 

Lean software development (xi) Scrum (xii) Velocity tracking. 

It is widely accepted methodologies among the software 

developers because of its flexibility features during 

development and manages the projects easily through it usages. 

However, according to the researcher the agile methods seem 

far better and outdo other methods for developmental and non-

sequential projects. It is believed by many organizations that 

agile methodologies are too extreme and follow a hybrid 

approach that fuses elements of agile and plan-driven 

approaches. 

4. CONCLUSION AND FUTURE SCOPE 
In this paper several methodologies starting from the structural 

programming, object oriented methodologies to finally agile 

software development with its associated pros and cons were 

reported. Number of benefits offered by these frameworks 

along with their limitations is presented in this paper. Major 

emphasize is given on identifying the key concepts behind each 

framework and its usages. Data analysis based on their usages 

related to several applications may be carried out to know its 

better effectiveness and acceptability among worldwide 

developers is part of future work. This paper will helps the 

researchers on providing the brief idea on software 

development frameworks and provide an overview of each 

methodologies strengths and its usages specific to several 

applications.  

5. ACKNOWLEDGMENTS 
We would like to express our deepest thanks to AMITY 

University, Noida and JRE group of Institutions, Greater 

Noida, Uttar Pradesh for providing us research facilities and 

environment.  

6. REFERENCES 
[1] http://wiki.answers.com/Q/What_are_the_advantages_an

d_disadvantages_of_structured_programming  

[2] Byous, Jon. "Java technology: The early years." Sun 

Developer Network 1998.  

[3] http://www.exforsys.com/tutorials/programming-

concepts/features-of-oop.html  

[4] http://www.ctp.bilkent.edu.tr/~russell/java/LectureNotes/

1_OOConcepts.htm  

[5] www.cs.ucf.edu/~lboloni/Teaching/EEL6938_2007/AOP  



International Journal of Computer Applications (0975 – 8887)  

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit 

6 

[6] Mubarak, Hisham. "Developing flexible software using 

agent-oriented software engineering." Software, IEEE 25.5 

(2008):12-15.  

[7] Wooldridge, Michael, and Nicholas R. Jennings. "Pitfalls 

of agent-oriented development." Proceedings of the second 

international conference on Autonomous agents. ACM, 

1998.  

[8] http://en.wikipedia.org/wiki/Agent-

oriented_programming  

[9] http://en.wikipedia.org/wiki/AOP  

[10] http://www.authorstream.com/Presentation/aSGuest1142

9-142463-aspect-oriented-programming-entertainment  

[11] http://en.wikibooks.org/wiki/Computer_Programming/Co

mponent_based_software_development  

[12] http://en.wikibooks.org/wiki/Computer_Programming/Co

mponent_based_software_development  

[13]  Morandini, Mirko, Frédéric Migeon, Marie-Pierre 

Gleizes, Christine Maurel, Loris Penserini, and Anna 

Perini. "A goal-oriented approach for modelling self-

organising MAS." In Engineering Societies in the Agents 

World X, pp. 33-48. Springer Berlin Heidelberg, 2009.  

[14] ]http://awesome007.disi.unige.it  

[15] Palanca, Javier, et al. "Distributed goal-oriented 

computing." Journal of Systems and Software 85.7 (2012): 

1540-1557.  

[16] Velte, Anthony T. (2010).Cloud Computing: A Practical 

Approach. McGraw Hill. ISBN 978-0-07-162694-1.  

[17] http://en.wikipedia.org/wiki/SOA  

[18] Microsoft Windows Communication Foundation team 

(2012). "Principles of Service Oriented Design". 

msdn.microsoft.com. Retrieved September 3, 2012.  

[19] C. Koch, "A new blueprint for the enterprise." CIO 

Magazine 5.4 (2005): 1-8.  

[20] http://cs.simpson.edu/files/DAMA_Presentation.pdf  

[21] Xiang-xi Meng; Ya-sha Wang; Lei Shi; Feng-Jian Wang, 

"A Process Pattern Language for Agile Methods," 

Software Engineering Conference, APSEC 2007., pp.374-

381, 4-7 Dec. 2007.  

[22] http://en.wikipedia.org/wiki/Autonomic_computing  

[23] Nami, Mohammad Reza, Koen Bertels, and Stamatis 

Vassiliadis. "Autonomic Computing Systems: Issues and 

Challenges." 17th Annual Workshop on Circuits, Systems 

and Signal Processing, published in 2006.  

[24] http://agilemethodology.org/  

[25] http://www.rsrit.com/Documents/AgileMethodology_Rel

iableSoftware.pdf  

[26] J. Strachan & G. Elliott 2004 Global Business 

Information Technology. pp.87.  

[27] Pradeep Kumar Singh, Arun Sharma, Amit Kumar and 

Ayush Saxena “Autonomic Computing-A Revolutionary 

Paradigm for Managing Self Managing Systems”, in the 

proceeding of IEEE, Dec. 2011.  

[28] Object-oriented programming "The History of Java 

Technology". Sun Developer Network. ca. 1995. 

Retrieved 2013-04-30.  

[29] Shoham, Y. (1990). Agent-Oriented Programming 

(Technical Report STAN-CS-90-1335). Stanford 

University: Computer Science Department.  

[30] P.K.Singh, O.P.Sangwan and Arun Sharma, “A 

Systematic Review on Fault Based Mutation Testing 

Techniques and Tools for Aspect-J Programs”, published 

in IACC-2013, India, February 22-23, 2013.  

[31] Shoham, Y. (1993). Agent-Oriented Programming. 

Artificial Intelligence.pp.51-92. Cite SeerX: 

10.1.1.123.5119  

[32] M. Douglas, McIlroy (January 1969). "Mass-produced 

software components." Proceedings of the 1st International 

Conference on Software Engineering, Garmisch 

Pattenkirchen, Germany. sn, 1968.. pp. 79.  

[33] E. S. Yu, "Towards modelling and reasoning support for 

early-phase requirements engineering."Requirements 

Engineering, 1997., Proceedings of the Third IEEE 

International Symposium on. IEEE, 1997.  

[34] L. Chung, J. Mylopoulos, & E. Yu, (1999). From object-

oriented to goal-oriented requirements analysis. 

Communications of the ACM, 42(1), 31-37.  

[35] Hirschfeld, Robert, Pascal Costanza, and Oscar 

Nierstrasz. "Context-oriented programming." Journal of 

Object Technology 7.3 (2008).  

 

http://en.wikipedia.org/wiki/CiteSeer#CiteSeerX
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.123.5119

