
International Journal of Computer Applications (0975 – 8887)

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit

33

Recursive Fitness Algorithm for Generating and Solving

Sudoku

Sparsh Arora
Newgen Software Technologies, D 162, Okhla -1,

New Delhi-110020

ABSTRACT

This paper presents the modification in the Brute Force

algorithm for generating and solving common Sudoku problem.

Although a number of procedures exist for solving Sudoku and

some papers also follow heuristic approach. In this paper the

true capability of computer system known as recursion and

comparison is explored to provide better results than Brute

force Algorithm. Recursive fitness algorithm works with a

condition or test applied, known in our context as the Fitness

test. This algorithm shows a good value in terms of logic used

in comparison to the brute force algorithm.

KEYWORDS
Sudoku, Brute Force, Recursion, Fitness Test, Algorithm.

1. INTRODUCTION
Since the first formation of Sudoku in 1979 world has seen the

rapid growth in its popularity. Sudoku logic is very simple to

understand but not simple to solve. It requires practice and

dedication to solve Sudoku [1]. Sudoku is a logical number

placement puzzle.

It consists of a grid of 9X9 squares. 9X9 squares are further

divided into sub squares of 3X3. These sub squares are also

known as boxes, blocks, regions or subsections. Logic behind

solving Sudoku is that one number should appear only once in

the row, column and 3X3 sub square [2]. Puzzle setter provides

some of the grids filled and some empty depending on the

complexity of problem. Depending on the complexity of the

problem the Sudoku may have one or many solutions. [3]

There are multiple algorithms present that can solve and

generate Sudoku problems. Section 2: Literature review section

of this paper provides a brief description on brute force

algorithm. Section 3 puts some light on the previous work in

this field. Section 4 describes the functions and pseudo code of

the Recursive Fitness algorithm. Section 5 of this paper shows

the execution result of the algorithm.

1.1 History
Throughout the history Sudoku relates many number puzzles.

In 1983, 9X9 Latin squares that was invented by Euler is the

super-set of the Sudoku solutions and is similar to 9X9 magic

squares solution set that was invented in beginning of 10th

century AD. [4]

Dell Magazine published the first modern puzzle named as

Number Place. Howard Grans, an American Architect invented

it, and after being published by Nikoli that was the first

Japanese Puzzle Magazine, it gained popularity in Japan.

Sudoku refers to “Su-ji wa dokushin ni kagiru" which means

“the number must be single” in Japanese. [1]

In 2005, Sudoku raised and become the “fasting growing puzzle

in the world” by world media. Puzzle-addict was provided the

puzzles on hundreds of websites; also many modern

newspapers publish the puzzle on daily and weekly basis [5].

After that a efficient and plentiful generated puzzles become a

profitable venture. According to the report of CNN money one

firm that conducts the puzzle generation program received

revenue of over 1 million dollar [6].

1.2 Terminology
In Fig 1 shows an example of Sudoku that is given with a 9X9

grid of cells and further divided into blocks that is the 3X3

subsections.

As an example, each cell contains single number as shown in

figure to fulfill the requirement follows:

Cell must contain a number i.e. from 1 to 9.

 Every row must contain exactly one number from 1 to 9.

 Every column must contain exactly one number from 1-9.

 Each box must contain exactly one number from 1-9.

Fig. 1. Sample sudoku puzzle

Some numbers are previously filled in Sudoku that are called as

givens, that must satisfy the conditions follows;

 No givens should void the above rules.

 In result of Sudoku could have a single or multiple

solution i.e. given's set should be solvable.

International Journal of Computer Applications (0975 – 8887)

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit

34

Fig. 2. Solution to given puzzle

2. LITERATURE REVIEW
Brute force algorithm provides an effective approach in a least

efficient manner to solve any problem. Brute force technique

will enumerate all integers from 1 to 9 and tries to fit to find a

solution. Brute force algorithm will provide a definite solution

as long as problem is valid. It is to implement. This algorithm

uses the computational capabilities of computers to maximum

extent. This algorithm is efficient for solving problems with

small complexity. [7]

It has been discovered that 6.67 x 1021 final grids exists for

Sudoku. Any Sudoku problem is one of the grids. The

efficiency of brute force algorithm depends how quickly brute

force search finds the result so; the efficiency of the algorithm

is unrelated to the complexity of the problem. [8]

3. PREVIOUS WORK
Sudoku solving techniques, algorithms and combinations are

studied well. Approx. 6:671X1021 valid Sudoku can be formed

by approx. 5.25X1027 9x9 Latin Squares that was shown by the

Felgenhauer and Jarvis in 2005 [9]. Producing a puzzle requires

minimal numbers of clues to get a unique solution is 17 is

known as Royle hypothesizes. A Sudoku puzzle can be solved

by NP- complete that is showed by Yato and Seta [10].

Human uses many logical strategies to solve the Sudoku, in 7

categories. [11] By omitting lengthy discussion we can say that

they may vary from simple examination of different elements in

row/columns. Mathematical solving techniques vary from brute

force algorithms and recursive backtracking that is a classic

computer science assignment to stochastic methods, integer

programming, genetic algorithms, constraint solving algorithms

and computer learning. [12]

Difficulty rating algorithm is used to make the puzzle more

effective by determining computational difficulty without

increasing the difficulties for human solver. Fowler describes a

function of techniques to determine the human difficulty.

Depending on the difficulty of puzzle more difficult techniques

are provided more times although the choice has been made by

the programmer.

Puzzle generating algorithms may vary in publicly available

algorithms. As a randomize approach is used in grand majority

i.e check for the unique solution by randomly replacing the

numbers in random positions. [13]

Solving a Sudoku is easier then generating it and generating it

is easier then evaluating its difficulty as per Flower that is also

been confirmed by Sudoku aficionados an online forum

4. RECURSIVE FITNESS ALGORITHM
Recursive fitness algorithm works on two additional principles

to the brute force algorithm. The detailed description of

algorithm is given below.

4.1 Non-Repetitive Random number

generation
This function generated random numbers between 1 and 9

without repetition. If the problem is solved by using any

random number there are chances of repetition of these

numbers. Due to this we may end up trying and trying with the

numbers that are not part of solution. In other terms we are

testing with repeated numbers and wasting time hence

decreasing efficiency. This provides advantage of not entering

the infinity loop while solving through brute force algorithm.

Whenever this function is used in the algorithm it will return a

random number without repetition and if all number has been

returned it will reset the counter. For example the sequence of

numbers returned by this function will be: 1245793682543681

4.2 Row Fitness Test
This function tests the fitness of a number in a row. The rule of

Sudoku states that one number can only exist in a row once. So,

if the number is already present in any cell of that row the test

fails. This function repeatedly requests for a non-repetitive

number form function Non-Repetitive Random Number

Generator. If the fitness test fails for a particular number the

function requests for a new number from Non-Repetitive

Random Number Generator.In the example given in Figure 3

the Row fitness is tester for number 8 in 0 row

4.3 Column Fitness Test
This function is similar to row fitness test except it tests for

fitness in column of the cell. If the number is already present in

any cell of that column the test fails. This function also uses

Non-Repetitive Random Number Generator function for

generating random numbers.

4.4 Box Fitness Test
As per the rules of Sudoku each box should permit a number to

appear only once. This function is trickier than previous two

fitness functions. Sudoku has 81 cells and 9 boxes. The

working of this function is divided into two parts. The first part

of the function identify the box in which cell belongs. The

second part of the function check for the fitness of the number

generated by Non-Repetitive Random Number Generator in

that box. If the test fails the second part of the function is

repeated till a number is returned which fits in the box.

International Journal of Computer Applications (0975 – 8887)

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit

35

Fig. 3. Row fitness test

In figure 4, the example depicts the two phases of the Box

Fitness Function Algorithm. For example while finding fitness

of number 8 in the cell 4X3 the box is identified first. The box

identified here ranges from 3X3 to 5X5. For the fitness the

existence of number 8 is tested in all cells in the box. In our

example the test fails as the number already exists in cell 3X4.

Fig. 4. Box fitness test

4.5 The Recursion
There no adaptive methods used here to deduce the result in

this algorithm. Sudoku has possible 6:671X1021 solutions out

of 5.25X1027 possibilities. This means that there are

5.25X1027 minus 6.671X1021 formations that are not valid

Sudoku. There is good possibility that we may end up forming

one of the invalid Sudoku.

In our algorithm if any of the functions: Row Fitness Test,

Column Fitness test or Box Fitness Test calls the Non-

Repetitive Random number generation for more than 9 times

that means we are at the point of no-solution i.e. we have tried

fitness for all numbers between 1 to 9. At this point we start

processing again from cell 0X0.

The Algorithm

The algorithm runs as follows:

Step 1: Generate a Non-Repetitive Random number using

Non-Repetitive Random number generation.

Step 2: Check for fitness in row using Row Fitness Test.

Step 3: If Step: 2 is repeated for more than 9 times go to

Step: 1.

Step 4: Check for fitness in column using Column Fitness

Test.

Step 5: If Step: 4 is repeated for more than 9 times go to

Step: 1.

Step 6: Check for fitness in box using Box Fitness Test.

Step 7: If Step: 6 is repeated for more than 9 times go to

Step: 1.

Step 8: If fitness test is successful for cell 8X8 then stop

execution and print solution.

5. TESTING RESULT
The problem has been divided in to 5 complexity levels, 1

being the least complex problem and 5 being the most complex

Sudoku problem. The execution was made on the Intel Pentium

Dual CPU E2180 processor. Twenty five cycles of each

complexity was executed and data captured as processing time

in Nano seconds.

The data from execution is depicted in the graph in figure 6.

The y axis of the graphs shows the execution time in Nano

seconds and x axis of the graph is the pass or test number. The

series 1 to 5 shows the complexity of problem. Series 1 being

the lowest complexity problem and series 5 being the highest

complexity problem.

It is very much clear from the graph that higher the complexity

lesser the redundancy in the data. Thus this algorithm is stable

at the lower complexity problems. In case of brute force

algorithm we don’t see this stability even for low complexity

problems.

Fig. 5. Average and Standard Deviation

International Journal of Computer Applications (0975 – 8887)

4th International IT Summit Confluence 2013 - The Next Generation Information Technology Summit

36

Fig. 6. Execution data

Figure 5, shows the relationship between the average and

standard deviation with level of complexity of problem. This

graph put some more light on the judgment derived from figure

6. Higher the complexity of the problem higher is the average

time required for execution and standard deviation in the

execution time.

6. CONCLUSION
From the testing results of our algorithm we can conclude that

Recursive Fitness Algorithm for Generating and Solving

Sudoku shows some stability for less complex problems i.e.

deviation from average result is low. However it is not stable at

higher complex problems.

As explained earlier, this algorithm is based on the brute force

algorithm with to additional functions: Fitness Test and Non-

Repetitive Random number generator. In comparison to brute

force algorithm in which solving time is unrelated to the

difficulty of problem this algorithm portrays the relation with

the complexity of the problem i.e. the efficiency of this

algorithm is greater for lower complexity problems and higher

for more complex problems.

This may not be the best algorithm to solve Sudoku puzzles, but

adding two functions to brute force algorithm overcomes the

problem statement of brute force algorithm.

7. REFRENCES
[1] T. 2280, "Sudoku: Bagging a Di±culty Metric & Building

Up Puzzles," 18 February 2008.

[2] J. K. L. A. R. K. D. S. E. L. Lawler, The Traveling

Salesman problem- A Guided Tour of Combinatorial

Optimization, John Wiley & Sons, 1985.

[3] "What is Sudoku?," [Online]. Available:

http://www.sudoku-space.com/sudoku.php. [Accessed 1

February 2013].

[4] "Nikoli," 1 February 2013. [Online]. Available:

http://www.nikoli.co.jp/en/publication/sudoku_books.html

. [Accessed 23 April 2013].

[5] "Sudoku - popularity in the media," February 2008.

[Online]. [Accessed 10 March 2013].

[6] P. L. Monica, "Much ado about sudoku," September

2005. [Online]. [Accessed 26 April 2013].

[7] J.P B.P. Christof Paar, Understanding Cryptography: A

Textbook for Students and Practitioners, Germany:

Springer, 2010.

[8] S. B. S. P. K. D. Kedar Nath Das, "A Retrievable GA for

Solving Sudoku Puzzles," 2008. [Online]. Available:

http://www.cse.psu.edu/~sub194/papers/sudokuTechRepor

t.pdf. [Accessed 10 February 2013].

[9] F. J. B. Felgenhauer, "Enumerating possible Sudoku

grids," 2005.

[10] T. S. T. Yato, "Complexity and completeness of ¯nding

another solution and its application to puzzles.

[11] G. Royale, "Minimum Sudoku," [Online]. Available:

http://school.maths.uwa.edu.au/~gordon/sudokumin.php.

[Accessed 13 April 2013].

[12] J. O. Ines Lynce, "Sudoku as a SAT Problem," Proc. of

the Ninth International Symposium on Artificial

Intelligence and Mathematics. Springer, 2006.

[13] G. Fowler, "9x9 sudoku solver and generator," 2008.

