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ABSTRACT 

The soft computing approach for gaming is different from the 

traditional one that exploits knowledge of the opening, 

middle, and endgame stages. It is aims to evolve efficiently 

some simple heuristics that can be created easily from the 

basic knowledge of the game. Integrating sphere knowledge 

into soft computation can enhance the performance of evolved 

algorithmic methodologies and quicken the learning of 

solution finding. In this paper, one of the major constituents of 

soft computing- genetic algorithm approach is employed to 

develop a game playing program for Reversi (Game of 

Othello).  

Evaluation function based genetic game playing strategies are 

been used to implement than a single simple heuristic based 

one. Genetic parameters implemented using Reversi game 

based fitness function using min –max search algorithm is 

strategic combination focus of the paper.  Experimental 

results show that the proposed method is promising for 

generating better strategies.Developing players programs for 

board games has been part of novel soft computing research 

arms for decades. Board games have precise, easily 

formalized rules that make them perfect modeling in a 

programming environment. In this paper focus is on full 

knowledge (perfect information), deterministic, zero-sum 

board games by inculcating genetic algorithm as better move 

making search optimization.   

Keywords 

Soft Computing, Reversing, Fitness Function, Genetic 

Algorithm, Genetic Weight. 

1. INTRODUCTION 
The idea of constructing computer programs modeled on the 

intelligent decision based on move making is motivational 

purpose for systems which exhibit acumen, learning aptitude 

and self-adaptation. The human brain has many highly desired 

features that are hard to imitate in conventional computer 

systems. Incremental systematic efforts are made to acquire 

increasingly sophisticated proficiencies over a span of definite 

time. These soft computing based systems have shown the 

tendency of constantly altering and improving. 

Simultaneously it always retains its truthfulness as a learning 

system. Such learning algorithms and systems are adaptive in 

nature and show elasticity to changes in its learning 

atmosphere, so that new practices and stimuli are incorporated 

into soft computing based 

system without altering existing competences. It shows to 

leverage computing power to withstand loss of intermediate 

results and the ability to self-evolve and self-reorganize in 

such a way that it retains developing functionality. [1] 

Since the beginning of the computer era, people specially 

computer experts and game researchers is keen to build a 

smart game program capable of defeating human experts. 

They have chartered many different approaches for different 

board games including neural networks for backgammon, 

special-purpose hardware called Deep Blue for chess, and the 

application of expert knowledge with relatively small 

computational power for checkers and Othello. Some of these 

approaches are branches of soft computing.  

Most of these techniques exploit expert knowledge as main 

facet of learning as much as possible, such as the proper 

learning algorithm for training the evaluation function, game 

feature centric relevance factors for the evaluation, the 

weights evolution of the evaluation parameters, board game 

opening knowledge and an endgame database. Acquiring such 

knowledge requires multidimensional help and advice of 

game experts, computational power for processing the 

knowledge extracted, and a process of trial and error to find 

the best overall approach. Various soft computing branches 

like fuzzy logic, neural network and evolutionary algorithms 

help many programmers and players, to acquire expert 

knowledge which can be digitalized and be made accessible 

through various network based technologies like Internet, grid 

networks or in latest cloud networks. [2][3] 

The human brain is highly versatile in its ability to learn 

diverse tasks and to develop abstract symbolic models which 

enable the living system to operate effectively in complex 

environments. The game playing programs tries to imitate 

them in its own limited functioning scopes. Such competences 

can be well explored in an important domains like board 

games of zero-sum, deterministic, full-knowledge, alternate 

move and two player. A game of research for this paper is 

Game of Reversi as shown in fig.1.  

They are played on an NxN board for some given N. Here 

work is done on Reversi, also known as Othello, is a popular 

game with a rich exploration history. Though a board game 

played on an 8x8 board, it differs widely from other board 

games as it is a piece-placing game rather than a piece-

moving game. In Reversi the number of pieces on the board 

increases as the game progresses on, rather than decreasing as 

it does in board games like Chess and Checkers. The number 

of moves in Reversi is limited by the board‟s size, making it a 

limited move game. [4]. 
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Fig.1 Game of Reversi Board 

2. GENETIC ALGORITHMS 

ESSENTIALS 
The Genetic Algorithms (GAs) are inspired in the Darwin‟s 

principles of evolution. Genetic algorithms are probabilistic 

algorithms that offer a parallel and adaptive search 

mechanism based on the principle of natural selection, 

survival of the fittest and reproduction. GAs uses a direct 

analogy of natural life behaviour. They work with a 

population of “individuals” called population embers, each 

representing a possible solution to a given problem. Each 

individual chromosome is assigned a “fitness score” 

according to how good a solution to the problem it is. The 

fittest individuals are given opportunities to “reproduce” and 

transmit their “good” features to the next generation. The least 

fit members of the population are less likely to get selected for 

reproduction process and so “die out” and most of the times 

are not carried to the next generation. GAs are able to 

“evolve” solutions to real world problems, if they have been 

suitably encoded. One of the innumerable applications of the 

GAs is to solve problems with a large search space and with 

characteristics that should be combined to look for the best 

solution. The utilization of GAs is really important and most 

suited to deal with the problem found in this work. [5][6] 

 Genetic algorithm approach as a branch of evolutionary 

computational systems were developed in the 1960s and 

1970s as optimization tools to solve engineering problems, 

with early applications including the optimization of real-

valued parameters for airfoils. The idea behind these early 

systems was to evolve a small population of candidate 

solutions to a given problem by applying operators inspired 

by biological evolution, particularly mutation and selection. 

Genetic algorithms (GAs) were first developed by John 

Holland in the 1960s as an abstraction of biological evolution, 

rather than as a tool to solve a specific problem. Holland's 

book Adaptation in Natural and Artificial Systems presented a 

sound theoretical foundation for the study of GAs as a method 

for moving from one population of chromosomes (candidate 

solutions) to another, using genetic operations such as 

selection, crossover (recombination), mutation, and inversion. 

Since then, GAs have been effectively applied to solve a wide 

selection of modern-day problems in the scientific and 

engineering communities. [7][8] 

An important step in the application of GAs is the 

identification of a “fitness function”, which is used to measure 

how close each chromosome comes to solving the problem at 

hand. The fitness function is also used to select those 

chromosomes that will  

participate in the creation of offspring. Characteristics of the 

fitness function play a significant role in the behavior and 

success of the GA in finding a solution. Considerable research 

efforts have focused on the issue of epistasis, a characteristic 

of a fitness function in which the fitness of a chromosome 

depends on the interaction between gene values at different 

locations on the chromosome. Generally speaking, the more 

stagnant or static a fitness function, the more likely that the 

GA will prematurely converge to a local optimum, delaying 

its convergence to a solution. [9]  

It is important and noteworthy to know that the GAs do not 

guarantee to find the best of the possible solutions for a 

problem, but they are generally good at finding acceptable 

solution in an acceptable time. This is a requirement of many 

problem domains involving very high search space. Before a 

GA can be run, a suitable coding (or representation) for the 

problem must be devised, it is required a fitness function, 

which assigns a merit to each encoded solution and it is 

important to define the selection and reproduction rules which 

are genetic operators. Each possible solution for a problem is 

represented by a set of parameters or genes. The genes are 

joined together to form a string of values or a chromosome. 

The most common representation is the binary string form as 

it is simple and easy to be manipulated by the genetic 

operators. [10][11] 

The most traditional genetic operators are the crossover and 

the mutation. In the first case, two individual‟s chromosomes 

of the population are selected based on some selection criteria 

and their chromosome strings are cut at a randomly chosen 

position. Resultant two tail segments are then swapped over to 

generate two new full length chromosomes. The mutation 

operator is generally applied to each descendent individually 

after crossover. It randomly alters some genes with a small 

probability. Mutation is traditionally seen as a “background” 

operator; however, examples in nature show that asexual 

reproduction can evolve sophisticated creatures without 

crossover. [12] 

To solve the board game  described, it was used a binary 

representation with 10 bits where each bit (or each 

chromosome gene, in the language of GAs) represents one of 

the possible board square position family members which can 

be selected in the radial direction. When the value of the bit is 

1, it means that the bit to which it refers is occupied by 

player‟s disc and when the value of the bit is 0, the disc is not 

selected or occupied.The fitness function provides the 

decidability. The greater the decidability values for a given 

distribution of points, the greater the fitness of the individual 

and the higher the probability of being chosen for 

reproduction.An individual is selected from the current 

population and then, two genes are randomly chosen. 

Therefore, those genes are swapped to produce a valid 

descendant. In order to ensure that the next population will 

have better individuals, that is, the populations members will 

converge to a better result, the offspring are joined with their 

“parents” and then, those fittest entities are selected to form 

the next generation. This procedure avoids the loss of an 

individual with high fitness. [13][14] 
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3.  DETERMINISTICS BOARD GAMES 
The main focus of traditional procedures for developing 

tactics for board games such as checkers and chess divide the 

game into various game stages like opening, middle, and 

endgame stages. For each stage, a different heuristic can be 

applied. For example, it is very problematic to define the most 

appropriate choice in the opening stage of a game, so the use 

of an opening book from games played by experts is 

beneficial. These opening games are to build very strong piece 

or disc formation strategies which can help to build good 

board capturing or board mobility feature in mid game.  In the 

middle stage, a game tree with a limited depth is constructed 

and a game feature based heuristic evaluation function is 

applied to estimate the relevance of each move. Here efficient 

and optimized search algorithm and good evaluators are badly 

needed to build strong end game base. Finally, in the end 

game, the number of pieces (or possible moves) becomes 

reasonably small and deterministic calculation of the final 

moves is possible. [15] 

3.1 Board Game Solution Hypothesis 
In Reversi, the typical linear evaluation function and min-max 

search algorithm uses a computer program to search a game 

tree to find an optimal move at each play, but there are 

challenges in overcoming an expert‟s experience in the 

opening, middle, and endgame stages.  Sometimes a computer 

Reversi program fails to defeat a human player because it 

makes a mistake that is not common among human expert 

players. Sometimes the error is discovered by the computer 

program after searching beyond the predefined depth of the 

game tree (a so-called “horizon effect”). To defeat the best 

human players, Reversi uses an opening game, middle game 

and end game strategies. Also, game of Reversi relies on 

expert knowledge that is captured in an evaluation function, 

which is used to find out next move by exploring and 

evaluating current possible moves in the stage. Reversi‟s 

success is based largely on traditional game theory mechanics 

(game tree and alpha-beta search) and expert knowledge 

(opening book, middle game, components in evaluation 

function and endgame). [16] 

Recently, soft computing based evolutionary induction of 

game strategies have gained popularity because of the success 

reported in various board game programs. In games such as 

Othello, Go, Chess and Backgammon, the evolutionary soft 

computing approach has been applied to discover better game 

playing strategies. For games, it might take a long evolution 

time to create a world-level champion program without a 

predefined knowledge base. [17] 

Incorporating a priori knowledge, such as expert knowledge, 

evaluation function and human move preferences and most 

importantly, domain knowledge discovered during 

evolutionary search, into evolutionary algorithms (EAs) has 

gained increasing interest in recent years. In this paper, soft 

computing approach is incorporated to propose a method for 

systematically inserting expert knowledge into evolutionary 

board game framework at the opening, middle and endgame 

stages. 

3.2  Conventional Game Playing Phases 
A game can usually be divided into three general phases: the 

opening, the middle game, and the endgame. Entering 

thousands of positions in published books into the program is 

a way of  

creating an opening book. A problem with this approach is 

that the program will follow published play, which is usually 

familiar to the human players. Without using an opening 

book, some programs find many interesting opening moves 

that stymie a human quickly. However, they can be potential 

producer of fatal mistakes and may enter a losing board 

configuration quickly (within a span of 2 or 3 moves) because 

a deeper search would have been necessary to avoid the 

probable mistake. Human players certainly possess an 

advantage over computers in the opening stage because it is 

difficult to quantify the relevance of the board configuration 

at an early stage. To be more competitive from very early 

playing phase, an opening book can be very helpful but a huge 

opening book can make the program inflexible and without 

innovation. One of the important parts of game programming 

is to design the evaluation function which builds very good 

move making and disc positioning by capturing good 

positions for games like Reversi for the middle stage of the 

game. [18][19] 

The evaluation function is often a linear combination of game 

features and board square weights. These features are based 

on human knowledge, such as the number of important disc 

positions, the number of free positions to make 

move(potential mobility), the piece differential between two 

players, the stable discs which can‟t be flipped by opponent 

(stable discs) and other pattern-based features. Determining 

these components and assigning weights to them requires 

expert knowledge and a long trial-and-error tuning. Attempts 

have been made to tune the weights of the evaluation function 

through various automated processes by using linear 

equations; the processes are fuzzy game theory, neural nets, 

and EAs. These can compete with hand-tuning weights in 

terms of time and efficiency. In Reversi, the results of the 

game can be calculated in real-time if the number of empty 

spaces is less than 26. Recently, the construction of a ten-

piece evaluation function based on Reversi symmetry has 

been completed. [20] 

4. REVERSI FUNCTION AND GAME 

EVALUATION 
Reversi also known as Othello is a well-known and 

challenging game for human players. Reversi triggered the 

emergence of mobility strategies based evaluation functions to  

characterize different stages (opening game, mid-game, and 

end-play) in the game of Reversi and the corresponding static 

evaluation function for each stage was evolved using a genetic 

algorithm.The evaluation function proposes that output of the 

quality of each possible move at the current board 

configuration. The function along with min-max search in the 

game of Reversi at each move making level saw the updated 

board and gives the rank of each move and only a subset of 

these moves was explored in limited ply depth. [21] 

The function identified several important principles of game 

play and used them as the basis for genetic evolving of 

populations.In this paper we are examining whether 

developmental programs can be evolved through genetic 

evolution to play Reversi. In Soft computing research building 

computer programs that play games has been considered a 

worthwhile objective. The idea of using a game tree of a 

certain depth and using a board evaluation function that 

allocates a numerical score according to how good a board 

position is for a genetic player. The method for determining 

best moves from these available moves is performed by min-

max search algorithm using alpha beta pruning. The main task 

is to define and genetically refine a board evaluation function. 

[22] 
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After two computer players have played a game, the loser is 

replaced with a deterministic alternative of the winner by 

changing the weights for other set of discs or the determining 

features that were used, or by replacing features that had very 

low weight co efficient compared to other features. More 

recently, board evaluations functions for various games have 

been obtained through various evolutionary techniques have 

been used to adjust the weights in Games of Reversi, Go, 

Chess, and Checkers.Three are three major criticisms of these 

approaches.The first disapproval is in the use of a board 

evaluation function and the min-max algorithm. Such 

combined methods appear to bear little resemblance to the 

methods that human players use to play games well. 

Typically, human beings consider relatively few potential 

board positions and evaluate the favorability of these boards 

in a highly intuitive and heuristic manner. They usually learn 

during a game, indeed, this is how, generally humans learn to 

be good at any game. If learning is one major criteria of 

research then these approaches stands very little or no value. 

Because the research algorithms will not return a numerical 

value for the favorability of a board position or use min-max 

but merely indicate which piece to move and where. The 

second criticism is with those methods or algorithms that 

evolve weights to achieve a high standard of play through 

better move selection. For this there is no counterpart 

biological plausibility. First in case, natural evolution 

produces organisms which are gradually better suited to their 

environment and this is an enormously slow process. Second, 

fitness function weight evolving efforts will unavoidably 

become infeasible when size becomes very large.Third point 

is organisms learning happens in their lifetime and evolution 

is not involved into them. Evolution inducted in next pool of 

generation.  An evolutionary approach is interested in finding 

the learning positions and wants to use evolutionary process 

to create the learning rules that ultimately construct a learning 

system. In this way the size of the genotype will be unrelated 

to the size and connectivity of the population member 

networks.As development of self-learning computational 

system design is required it is a better option to constructs a 

learning system with a method of automatic program 

evolution called Genetic algorithmic approach to discover 

better move making system. The population members are 

made up of bit strings which act as chromosomes that encode 

programs that represent various aspects of board squares. 

When the encoded genetic string programs plays from 

generation to generations (player) genotype are executed as 

they cause a computational bit strings to evolve that can play 

game of Reversi. The key idea here is that genetic string do 

gets evolved which has weights of potential board squares and 

their related fitness function which when executed build and 

continuously shape and change the string at run time.  

5. REVERSI BOARD EXECUTION 
Recent applications of Genetic Algorithms (GAs) in the 

search for better fitness weights found in min-max search 

objects have suggested that GA convergence time can be 

improved by adapting to fitness function components on the 

fly. In particular, it is known that if such fitness functions F 

have the following format 

F = Σ (Wi * Fi) 

 Wi where is a set of fitness functions weights associated with 

properties 

 Fi that collectively define the search problem in terms of 

feature parameters of the Board Game (Reversi) 

Board game performance can be improved by enhancing GA 

evolution by defining a related fitness function. [23] 

The application theory of Genetic Algorithms (GAs) to 

“binary” search intensive problems has been well developed. 

It also provides a solid theoretical foundation for future 

research. This general class of GA search community 

highlights problems which are fertile areas for those 

researchers wishing to demonstrate the correctness of general 

theories. In this situation, the chromosomes (potential 

solutions) are expressed as fixed length binary strings. Reversi 

has a binary string of 10 bits which are based on symmetry 

feature of the board game. This ten discs set gets replicated 

throughout the Reversi board so their relative weight for each 

of the disc set is same across board. It is also known that any 

fitness function defined on binary strings can be evaluated by 

assigning fitness values to them and subsequently gets 

evolved over a span of defined set of generations. Thus 

productive research efforts have been exploited in this 

representation. Unfortunately, the actual representation for an 

arbitrary binary fitness function and their evolution is 

computationally expensive. Consequently, the alternative 

strategy of many researchers is to demonstrate the correctness 

of hypotheses by showing that the results hold. [24] 

In particular, results show that multiple modifications of the 

coefficients improve convergence time over GA runs in which 

no coefficient changes are made; furthermore, results in show 

that just one special modification to the coefficients, early in 

the GA run, brings greater improvement in convergence times 

than those runs in which multiple coefficient modifications 

were applied. In this paper, we examine the effect of similar 

coefficient changes when applied to GA search problems in 

which the fitness function is defined on chromosomes that 

have the form of binary strings of fixed length. The program 

implementation algorithm works as follows: 

1. Start with a randomly generated population of n      

chromosomes, all of fixed length. (10 bit string chromosome) 

2. Calculate the fitness F(c) of each chromosome c in the 

population. 

If a solution has been found, i.e. F(c) = T for some c, and 

predefined target T (Target T is Win in Reversi Game or no 

dics is empty condition), then stop. Otherwise, 

4. Repeat the following steps until n offspring have been 

created: 

a. Select some pair of chromosomes as parents for the 

    creation of offspring. (Selection) 

b. Recombine the genetic material from the two  

    parents to form two offspring (Recombination) 

5. Mutate p randomly selected genes on each of q randomly  

    selected offspring  (Mutation). 

6. Replace all the chromosomes in the current population with  

    the new offspring. 

7. Go to step 2 for next Generation 

 

In the experiments conducted in this paper, the „fitness 

proportionate‟ selection method has chosen to apply for 

pairing parents. In addition, out of two traditional 

recombination operators: the „single point crossover‟ and the 
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„uniform crossover‟, uniform crossover is used as crossover 

method keeping the disc family set representing disc position 

for each type in mind. [25] 

Genetic Approach is to search for a chromosome that satisfies 

game features and their importance properties F1, F2, …, Fk. 

The fitness function could be constructed with k components 

as  

F(x) = Σκ Fi(x) 

Where each Fi would represent a measure of fitness of a 

candidate chromosome regarding property weight Wi. 

Suppose further that a chromosome c is a solution if and only 

if Fi(c) = 1 for all i < k.  

 

Fig.2 Different Game of Reversi Board Positions 

A typical implementation of the GA would apply the fitness 

function F to each chromosome without regard to the 

function's composite characteristics. However, in a board 

game which all discs are same in terms of importance it is the 

board square position shown in Fig. 2 as A,B,C and X which  

would be expected that some property Fi is less selective 

(more easily satisfied) than others.  

Consequently, chromosomes bit positions satisfying this 

property are given influence in the evolution of the population 

in early GA reiterations.  

The paper presents more effective approach which has 

associated function is constructed with component 

„coefficients‟, αi , as follows:  

F‟(x) = Σκ αiFi(x) (5) 

 where αi > 0, Σκ αi = 1,  

 where c is a solution if and only if Fi(c) = 1  

 for all i < k (and consequently, F‟(c) = 1).  

Throughout iterations of the GA, the values of the coefficients 

αI can be manipulated in such a way as to control the 

influence of some of the less selective properties and their 

corresponding fitness function components. 

6. RESULTS 
The Reversi game program played twenty five games and 

each game was played for 50 game generations. Figure 3 

shows the fitness weight values collected for 25 games. 

 
 

Fig.3 Reversi Game’s Peak & Average Fitness Value 

Chart 

Plotting of average fitness values is shown as series 1 and 

peak fitness value in each full span of game is shown as series 

2 in the figure. Both these categories of values show rise or 

evolution of weight values. Series 1 shows consistent rise in 

weight values after initial learning drop in first two 

generations. Whereas peak fitness values have zigzag pattern 

of evolution but it overall shows positive increment after 

game no. 18 and attains new peaks as game progresses.  

 
 

Fig.4 One Game Generation’s Min. & Max. Fitness Values  

Figure 4 shows Min. and Max. fitness values collected for one 

sample Reversi game which has 50 generations. For all 

generations the Maximum and Minimum fitness values shows 

very turbulent fitness values as they are varying in a larger 

range of values. This proves that fitness evolution genetic 

approach passes through tough phase of each generation in 

every individual Reversi game. 

7. CONCLUSIONS 
The game of Reversi is perceived and executed using soft 

computing approach as genetic algorithm as its significant 

branch to understand learning. The above mentioned collected 

and analyzed results show slow and steady evolution of 

fitness function weights.This board game problem domain is 

one of such kind which can potentially be solved not using 

conventional computer program development. But it needs 

novel branch like Soft computing where effective learning can 

take place using genetic algorithm on one linear fitness 

function which take board game features into consideration 

and selects bit string representing each board square family 

uniquely. The collected results very possibly prove and re 

affirm the researchers‟ belief that soft computing not only 

enhances the effectiveness of learning momentously but it 

also proves that genetic approach can improvise the board 

game learning progress further. 
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