
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication and Networks, No.4. Dec.2011, www.ijcaonline.org

15

Emerging Soft Computing Methodology to Enrich

Evaluation Function Weights Efficiency

Chirag S. Thaker
Research Scholar

Faculty of Engineering
 SGVU, Jaipur, India

Dharm Singh
College of Technology &

Engineering, MPUAT
Udaipur, India

S.M. Shah
Research Scholar

Faculty of Engineering
 SGVU, Jaipur, India

ABSTRACT

The soft computing approach for gaming is different from the

traditional one that exploits knowledge of the opening,

middle, and endgame stages. It is aims to evolve efficiently

some simple heuristics that can be created easily from the

basic knowledge of the game. Integrating sphere knowledge

into soft computation can enhance the performance of evolved

algorithmic methodologies and quicken the learning of

solution finding. In this paper, one of the major constituents of

soft computing- genetic algorithm approach is employed to

develop a game playing program for Reversi (Game of

Othello).

Evaluation function based genetic game playing strategies are

been used to implement than a single simple heuristic based

one. Genetic parameters implemented using Reversi game

based fitness function using min –max search algorithm is

strategic combination focus of the paper. Experimental

results show that the proposed method is promising for

generating better strategies.Developing players programs for

board games has been part of novel soft computing research

arms for decades. Board games have precise, easily

formalized rules that make them perfect modeling in a

programming environment. In this paper focus is on full

knowledge (perfect information), deterministic, zero-sum

board games by inculcating genetic algorithm as better move

making search optimization.

Keywords

Soft Computing, Reversing, Fitness Function, Genetic

Algorithm, Genetic Weight.

1. INTRODUCTION
The idea of constructing computer programs modeled on the

intelligent decision based on move making is motivational

purpose for systems which exhibit acumen, learning aptitude

and self-adaptation. The human brain has many highly desired

features that are hard to imitate in conventional computer

systems. Incremental systematic efforts are made to acquire

increasingly sophisticated proficiencies over a span of definite

time. These soft computing based systems have shown the

tendency of constantly altering and improving.

Simultaneously it always retains its truthfulness as a learning

system. Such learning algorithms and systems are adaptive in

nature and show elasticity to changes in its learning

atmosphere, so that new practices and stimuli are incorporated

into soft computing based

system without altering existing competences. It shows to

leverage computing power to withstand loss of intermediate

results and the ability to self-evolve and self-reorganize in

such a way that it retains developing functionality. [1]

Since the beginning of the computer era, people specially

computer experts and game researchers is keen to build a

smart game program capable of defeating human experts.

They have chartered many different approaches for different

board games including neural networks for backgammon,

special-purpose hardware called Deep Blue for chess, and the

application of expert knowledge with relatively small

computational power for checkers and Othello. Some of these

approaches are branches of soft computing.

Most of these techniques exploit expert knowledge as main

facet of learning as much as possible, such as the proper

learning algorithm for training the evaluation function, game

feature centric relevance factors for the evaluation, the

weights evolution of the evaluation parameters, board game

opening knowledge and an endgame database. Acquiring such

knowledge requires multidimensional help and advice of

game experts, computational power for processing the

knowledge extracted, and a process of trial and error to find

the best overall approach. Various soft computing branches

like fuzzy logic, neural network and evolutionary algorithms

help many programmers and players, to acquire expert

knowledge which can be digitalized and be made accessible

through various network based technologies like Internet, grid

networks or in latest cloud networks. [2][3]

The human brain is highly versatile in its ability to learn

diverse tasks and to develop abstract symbolic models which

enable the living system to operate effectively in complex

environments. The game playing programs tries to imitate

them in its own limited functioning scopes. Such competences

can be well explored in an important domains like board

games of zero-sum, deterministic, full-knowledge, alternate

move and two player. A game of research for this paper is

Game of Reversi as shown in fig.1.

They are played on an NxN board for some given N. Here

work is done on Reversi, also known as Othello, is a popular

game with a rich exploration history. Though a board game

played on an 8x8 board, it differs widely from other board

games as it is a piece-placing game rather than a piece-

moving game. In Reversi the number of pieces on the board

increases as the game progresses on, rather than decreasing as

it does in board games like Chess and Checkers. The number

of moves in Reversi is limited by the board‟s size, making it a

limited move game. [4].

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication and Networks, No.4. Dec.2011, www.ijcaonline.org

16

Fig.1 Game of Reversi Board

2. GENETIC ALGORITHMS

ESSENTIALS
The Genetic Algorithms (GAs) are inspired in the Darwin‟s

principles of evolution. Genetic algorithms are probabilistic

algorithms that offer a parallel and adaptive search

mechanism based on the principle of natural selection,

survival of the fittest and reproduction. GAs uses a direct

analogy of natural life behaviour. They work with a

population of “individuals” called population embers, each

representing a possible solution to a given problem. Each

individual chromosome is assigned a “fitness score”

according to how good a solution to the problem it is. The

fittest individuals are given opportunities to “reproduce” and

transmit their “good” features to the next generation. The least

fit members of the population are less likely to get selected for

reproduction process and so “die out” and most of the times

are not carried to the next generation. GAs are able to

“evolve” solutions to real world problems, if they have been

suitably encoded. One of the innumerable applications of the

GAs is to solve problems with a large search space and with

characteristics that should be combined to look for the best

solution. The utilization of GAs is really important and most

suited to deal with the problem found in this work. [5][6]

 Genetic algorithm approach as a branch of evolutionary

computational systems were developed in the 1960s and

1970s as optimization tools to solve engineering problems,

with early applications including the optimization of real-

valued parameters for airfoils. The idea behind these early

systems was to evolve a small population of candidate

solutions to a given problem by applying operators inspired

by biological evolution, particularly mutation and selection.

Genetic algorithms (GAs) were first developed by John

Holland in the 1960s as an abstraction of biological evolution,

rather than as a tool to solve a specific problem. Holland's

book Adaptation in Natural and Artificial Systems presented a

sound theoretical foundation for the study of GAs as a method

for moving from one population of chromosomes (candidate

solutions) to another, using genetic operations such as

selection, crossover (recombination), mutation, and inversion.

Since then, GAs have been effectively applied to solve a wide

selection of modern-day problems in the scientific and

engineering communities. [7][8]

An important step in the application of GAs is the

identification of a “fitness function”, which is used to measure

how close each chromosome comes to solving the problem at

hand. The fitness function is also used to select those

chromosomes that will

participate in the creation of offspring. Characteristics of the

fitness function play a significant role in the behavior and

success of the GA in finding a solution. Considerable research

efforts have focused on the issue of epistasis, a characteristic

of a fitness function in which the fitness of a chromosome

depends on the interaction between gene values at different

locations on the chromosome. Generally speaking, the more

stagnant or static a fitness function, the more likely that the

GA will prematurely converge to a local optimum, delaying

its convergence to a solution. [9]

It is important and noteworthy to know that the GAs do not

guarantee to find the best of the possible solutions for a

problem, but they are generally good at finding acceptable

solution in an acceptable time. This is a requirement of many

problem domains involving very high search space. Before a

GA can be run, a suitable coding (or representation) for the

problem must be devised, it is required a fitness function,

which assigns a merit to each encoded solution and it is

important to define the selection and reproduction rules which

are genetic operators. Each possible solution for a problem is

represented by a set of parameters or genes. The genes are

joined together to form a string of values or a chromosome.

The most common representation is the binary string form as

it is simple and easy to be manipulated by the genetic

operators. [10][11]

The most traditional genetic operators are the crossover and

the mutation. In the first case, two individual‟s chromosomes

of the population are selected based on some selection criteria

and their chromosome strings are cut at a randomly chosen

position. Resultant two tail segments are then swapped over to

generate two new full length chromosomes. The mutation

operator is generally applied to each descendent individually

after crossover. It randomly alters some genes with a small

probability. Mutation is traditionally seen as a “background”

operator; however, examples in nature show that asexual

reproduction can evolve sophisticated creatures without

crossover. [12]

To solve the board game described, it was used a binary

representation with 10 bits where each bit (or each

chromosome gene, in the language of GAs) represents one of

the possible board square position family members which can

be selected in the radial direction. When the value of the bit is

1, it means that the bit to which it refers is occupied by

player‟s disc and when the value of the bit is 0, the disc is not

selected or occupied.The fitness function provides the

decidability. The greater the decidability values for a given

distribution of points, the greater the fitness of the individual

and the higher the probability of being chosen for

reproduction.An individual is selected from the current

population and then, two genes are randomly chosen.

Therefore, those genes are swapped to produce a valid

descendant. In order to ensure that the next population will

have better individuals, that is, the populations members will

converge to a better result, the offspring are joined with their

“parents” and then, those fittest entities are selected to form

the next generation. This procedure avoids the loss of an

individual with high fitness. [13][14]

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication and Networks, No.4. Dec.2011, www.ijcaonline.org

17

3. DETERMINISTICS BOARD GAMES
The main focus of traditional procedures for developing

tactics for board games such as checkers and chess divide the

game into various game stages like opening, middle, and

endgame stages. For each stage, a different heuristic can be

applied. For example, it is very problematic to define the most

appropriate choice in the opening stage of a game, so the use

of an opening book from games played by experts is

beneficial. These opening games are to build very strong piece

or disc formation strategies which can help to build good

board capturing or board mobility feature in mid game. In the

middle stage, a game tree with a limited depth is constructed

and a game feature based heuristic evaluation function is

applied to estimate the relevance of each move. Here efficient

and optimized search algorithm and good evaluators are badly

needed to build strong end game base. Finally, in the end

game, the number of pieces (or possible moves) becomes

reasonably small and deterministic calculation of the final

moves is possible. [15]

3.1 Board Game Solution Hypothesis
In Reversi, the typical linear evaluation function and min-max

search algorithm uses a computer program to search a game

tree to find an optimal move at each play, but there are

challenges in overcoming an expert‟s experience in the

opening, middle, and endgame stages. Sometimes a computer

Reversi program fails to defeat a human player because it

makes a mistake that is not common among human expert

players. Sometimes the error is discovered by the computer

program after searching beyond the predefined depth of the

game tree (a so-called “horizon effect”). To defeat the best

human players, Reversi uses an opening game, middle game

and end game strategies. Also, game of Reversi relies on

expert knowledge that is captured in an evaluation function,

which is used to find out next move by exploring and

evaluating current possible moves in the stage. Reversi‟s

success is based largely on traditional game theory mechanics

(game tree and alpha-beta search) and expert knowledge

(opening book, middle game, components in evaluation

function and endgame). [16]

Recently, soft computing based evolutionary induction of

game strategies have gained popularity because of the success

reported in various board game programs. In games such as

Othello, Go, Chess and Backgammon, the evolutionary soft

computing approach has been applied to discover better game

playing strategies. For games, it might take a long evolution

time to create a world-level champion program without a

predefined knowledge base. [17]

Incorporating a priori knowledge, such as expert knowledge,

evaluation function and human move preferences and most

importantly, domain knowledge discovered during

evolutionary search, into evolutionary algorithms (EAs) has

gained increasing interest in recent years. In this paper, soft

computing approach is incorporated to propose a method for

systematically inserting expert knowledge into evolutionary

board game framework at the opening, middle and endgame

stages.

3.2 Conventional Game Playing Phases
A game can usually be divided into three general phases: the

opening, the middle game, and the endgame. Entering

thousands of positions in published books into the program is

a way of

creating an opening book. A problem with this approach is

that the program will follow published play, which is usually

familiar to the human players. Without using an opening

book, some programs find many interesting opening moves

that stymie a human quickly. However, they can be potential

producer of fatal mistakes and may enter a losing board

configuration quickly (within a span of 2 or 3 moves) because

a deeper search would have been necessary to avoid the

probable mistake. Human players certainly possess an

advantage over computers in the opening stage because it is

difficult to quantify the relevance of the board configuration

at an early stage. To be more competitive from very early

playing phase, an opening book can be very helpful but a huge

opening book can make the program inflexible and without

innovation. One of the important parts of game programming

is to design the evaluation function which builds very good

move making and disc positioning by capturing good

positions for games like Reversi for the middle stage of the

game. [18][19]

The evaluation function is often a linear combination of game

features and board square weights. These features are based

on human knowledge, such as the number of important disc

positions, the number of free positions to make

move(potential mobility), the piece differential between two

players, the stable discs which can‟t be flipped by opponent

(stable discs) and other pattern-based features. Determining

these components and assigning weights to them requires

expert knowledge and a long trial-and-error tuning. Attempts

have been made to tune the weights of the evaluation function

through various automated processes by using linear

equations; the processes are fuzzy game theory, neural nets,

and EAs. These can compete with hand-tuning weights in

terms of time and efficiency. In Reversi, the results of the

game can be calculated in real-time if the number of empty

spaces is less than 26. Recently, the construction of a ten-

piece evaluation function based on Reversi symmetry has

been completed. [20]

4. REVERSI FUNCTION AND GAME

EVALUATION
Reversi also known as Othello is a well-known and

challenging game for human players. Reversi triggered the

emergence of mobility strategies based evaluation functions to

characterize different stages (opening game, mid-game, and

end-play) in the game of Reversi and the corresponding static

evaluation function for each stage was evolved using a genetic

algorithm.The evaluation function proposes that output of the

quality of each possible move at the current board

configuration. The function along with min-max search in the

game of Reversi at each move making level saw the updated

board and gives the rank of each move and only a subset of

these moves was explored in limited ply depth. [21]

The function identified several important principles of game

play and used them as the basis for genetic evolving of

populations.In this paper we are examining whether

developmental programs can be evolved through genetic

evolution to play Reversi. In Soft computing research building

computer programs that play games has been considered a

worthwhile objective. The idea of using a game tree of a

certain depth and using a board evaluation function that

allocates a numerical score according to how good a board

position is for a genetic player. The method for determining

best moves from these available moves is performed by min-

max search algorithm using alpha beta pruning. The main task

is to define and genetically refine a board evaluation function.

[22]

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication and Networks, No.4. Dec.2011, www.ijcaonline.org

18

After two computer players have played a game, the loser is

replaced with a deterministic alternative of the winner by

changing the weights for other set of discs or the determining

features that were used, or by replacing features that had very

low weight co efficient compared to other features. More

recently, board evaluations functions for various games have

been obtained through various evolutionary techniques have

been used to adjust the weights in Games of Reversi, Go,

Chess, and Checkers.Three are three major criticisms of these

approaches.The first disapproval is in the use of a board

evaluation function and the min-max algorithm. Such

combined methods appear to bear little resemblance to the

methods that human players use to play games well.

Typically, human beings consider relatively few potential

board positions and evaluate the favorability of these boards

in a highly intuitive and heuristic manner. They usually learn

during a game, indeed, this is how, generally humans learn to

be good at any game. If learning is one major criteria of

research then these approaches stands very little or no value.

Because the research algorithms will not return a numerical

value for the favorability of a board position or use min-max

but merely indicate which piece to move and where. The

second criticism is with those methods or algorithms that

evolve weights to achieve a high standard of play through

better move selection. For this there is no counterpart

biological plausibility. First in case, natural evolution

produces organisms which are gradually better suited to their

environment and this is an enormously slow process. Second,

fitness function weight evolving efforts will unavoidably

become infeasible when size becomes very large.Third point

is organisms learning happens in their lifetime and evolution

is not involved into them. Evolution inducted in next pool of

generation. An evolutionary approach is interested in finding

the learning positions and wants to use evolutionary process

to create the learning rules that ultimately construct a learning

system. In this way the size of the genotype will be unrelated

to the size and connectivity of the population member

networks.As development of self-learning computational

system design is required it is a better option to constructs a

learning system with a method of automatic program

evolution called Genetic algorithmic approach to discover

better move making system. The population members are

made up of bit strings which act as chromosomes that encode

programs that represent various aspects of board squares.

When the encoded genetic string programs plays from

generation to generations (player) genotype are executed as

they cause a computational bit strings to evolve that can play

game of Reversi. The key idea here is that genetic string do

gets evolved which has weights of potential board squares and

their related fitness function which when executed build and

continuously shape and change the string at run time.

5. REVERSI BOARD EXECUTION
Recent applications of Genetic Algorithms (GAs) in the

search for better fitness weights found in min-max search

objects have suggested that GA convergence time can be

improved by adapting to fitness function components on the

fly. In particular, it is known that if such fitness functions F

have the following format

F = Σ (Wi * Fi)

 Wi where is a set of fitness functions weights associated with

properties

 Fi that collectively define the search problem in terms of

feature parameters of the Board Game (Reversi)

Board game performance can be improved by enhancing GA

evolution by defining a related fitness function. [23]

The application theory of Genetic Algorithms (GAs) to

“binary” search intensive problems has been well developed.

It also provides a solid theoretical foundation for future

research. This general class of GA search community

highlights problems which are fertile areas for those

researchers wishing to demonstrate the correctness of general

theories. In this situation, the chromosomes (potential

solutions) are expressed as fixed length binary strings. Reversi

has a binary string of 10 bits which are based on symmetry

feature of the board game. This ten discs set gets replicated

throughout the Reversi board so their relative weight for each

of the disc set is same across board. It is also known that any

fitness function defined on binary strings can be evaluated by

assigning fitness values to them and subsequently gets

evolved over a span of defined set of generations. Thus

productive research efforts have been exploited in this

representation. Unfortunately, the actual representation for an

arbitrary binary fitness function and their evolution is

computationally expensive. Consequently, the alternative

strategy of many researchers is to demonstrate the correctness

of hypotheses by showing that the results hold. [24]

In particular, results show that multiple modifications of the

coefficients improve convergence time over GA runs in which

no coefficient changes are made; furthermore, results in show

that just one special modification to the coefficients, early in

the GA run, brings greater improvement in convergence times

than those runs in which multiple coefficient modifications

were applied. In this paper, we examine the effect of similar

coefficient changes when applied to GA search problems in

which the fitness function is defined on chromosomes that

have the form of binary strings of fixed length. The program

implementation algorithm works as follows:

1. Start with a randomly generated population of n

chromosomes, all of fixed length. (10 bit string chromosome)

2. Calculate the fitness F(c) of each chromosome c in the

population.

If a solution has been found, i.e. F(c) = T for some c, and

predefined target T (Target T is Win in Reversi Game or no

dics is empty condition), then stop. Otherwise,

4. Repeat the following steps until n offspring have been

created:

a. Select some pair of chromosomes as parents for the

 creation of offspring. (Selection)

b. Recombine the genetic material from the two

 parents to form two offspring (Recombination)

5. Mutate p randomly selected genes on each of q randomly

 selected offspring (Mutation).

6. Replace all the chromosomes in the current population with

 the new offspring.

7. Go to step 2 for next Generation

In the experiments conducted in this paper, the „fitness

proportionate‟ selection method has chosen to apply for

pairing parents. In addition, out of two traditional

recombination operators: the „single point crossover‟ and the

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication and Networks, No.4. Dec.2011, www.ijcaonline.org

19

„uniform crossover‟, uniform crossover is used as crossover

method keeping the disc family set representing disc position

for each type in mind. [25]

Genetic Approach is to search for a chromosome that satisfies

game features and their importance properties F1, F2, …, Fk.

The fitness function could be constructed with k components

as

F(x) = Σκ Fi(x)

Where each Fi would represent a measure of fitness of a

candidate chromosome regarding property weight Wi.

Suppose further that a chromosome c is a solution if and only

if Fi(c) = 1 for all i < k.

Fig.2 Different Game of Reversi Board Positions

A typical implementation of the GA would apply the fitness

function F to each chromosome without regard to the

function's composite characteristics. However, in a board

game which all discs are same in terms of importance it is the

board square position shown in Fig. 2 as A,B,C and X which

would be expected that some property Fi is less selective

(more easily satisfied) than others.

Consequently, chromosomes bit positions satisfying this

property are given influence in the evolution of the population

in early GA reiterations.

The paper presents more effective approach which has

associated function is constructed with component

„coefficients‟, αi , as follows:

F‟(x) = Σκ αiFi(x) (5)

 where αi > 0, Σκ αi = 1,

 where c is a solution if and only if Fi(c) = 1

 for all i < k (and consequently, F‟(c) = 1).

Throughout iterations of the GA, the values of the coefficients

αI can be manipulated in such a way as to control the

influence of some of the less selective properties and their

corresponding fitness function components.

6. RESULTS
The Reversi game program played twenty five games and

each game was played for 50 game generations. Figure 3

shows the fitness weight values collected for 25 games.

Fig.3 Reversi Game’s Peak & Average Fitness Value

Chart

Plotting of average fitness values is shown as series 1 and

peak fitness value in each full span of game is shown as series

2 in the figure. Both these categories of values show rise or

evolution of weight values. Series 1 shows consistent rise in

weight values after initial learning drop in first two

generations. Whereas peak fitness values have zigzag pattern

of evolution but it overall shows positive increment after

game no. 18 and attains new peaks as game progresses.

Fig.4 One Game Generation’s Min. & Max. Fitness Values

Figure 4 shows Min. and Max. fitness values collected for one

sample Reversi game which has 50 generations. For all

generations the Maximum and Minimum fitness values shows

very turbulent fitness values as they are varying in a larger

range of values. This proves that fitness evolution genetic

approach passes through tough phase of each generation in

every individual Reversi game.

7. CONCLUSIONS
The game of Reversi is perceived and executed using soft

computing approach as genetic algorithm as its significant

branch to understand learning. The above mentioned collected

and analyzed results show slow and steady evolution of

fitness function weights.This board game problem domain is

one of such kind which can potentially be solved not using

conventional computer program development. But it needs

novel branch like Soft computing where effective learning can

take place using genetic algorithm on one linear fitness

function which take board game features into consideration

and selects bit string representing each board square family

uniquely. The collected results very possibly prove and re

affirm the researchers‟ belief that soft computing not only

enhances the effectiveness of learning momentously but it

also proves that genetic approach can improvise the board

game learning progress further.

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Communication and Networks, No.4. Dec.2011, www.ijcaonline.org

20

8. REFERENCES
[1] S. Chong, D. Ku, H. Lim, M. Tan, and J. White. Evolved

neural networks learning othello strategies. In

Evolutionary Computation, 2003. CEC ‟03. The 2003

Congress on, volume 3, pages 2222 – 2229 Vol.3,

December 2003.

[2] Daugman J. G., “How iris recognition works”.

Proceedings of 2002 International Conference on Image

Processing, Vol. 1,2002.

[3] S. Schiffel and M. Thielscher. A multiagent semantics

for the game description language. In Proc. of the Int.‟l

Conf. on Agents and Artificial Intelligence, Porto 2009.

Springer LNCS.

[4] T. Srinivasan, P.J.S. Srikanth, K. Praveen and L. Harish

Subramaniam, “AI Game Playing Approach for Fast

Processor Allocation in Hypercube Systems using Veitch

diagram (AIPA)”, IADIS International Conference on

Applied Computing 2005, vol. 1, Feb. 2005, pp. 65-72.

[5] M. Hlynka and J. Schaeffer. Automatic generation of

search engines. In Advances in Computer Games, pages

23–38, 2006.

[6] Rosenbloom, P. (1982). A world championship level

Othello program. Artificial Intelligence, 19:279-320.

[7] J. R. Koza. Genetic Programming: On the Programming

of Computers by Means of Natural Selection. MIT Press,

Cambridge, MA, USA, 1992.

[8] Holland, J. H. Adaptation in Natural and Artificial

Systems. University of Michigan Press, 1975

[9] Hong, J.-H. and Cho, S.-B. (2004). Evolution of

emergent behaviors for shooting game characters in

robocode. In Evolutionary Computation, 2004.

CEC2004. Congress on Evolutionary Computation,

volume 1, pages 634–638, Piscataway, NJ. IEEE.

[10] S. Luke. Code growth is not caused by introns. In D.

Whitley, editor, Late Breaking Papers at the 2000

Genetic and Evolutionary Computation Conference,

pages 228–235, Las Vegas, Nevada, USA, July 2000.

[11] T. P. Runarsson and S. M. Lucas. Coevolution versus

self-play temporal difference learning for acquiring

position evaluation in small-board Go. IEEE

Transactions on Evolutionary Computation, 9(6):628–

640, 2005.

[12] J. Schaeffer, N. Burch, Y. Bjornsson, A. Kishimoto, M.

Muller, R. Lake, P. Lu, and S. Sutphen. Checkers is

solved. Science, 317(5844):1518–1522, 2007.

[13] Y. Jin and J. Branke. Evolutionary optimization in

uncertain environments – a survey. IEEE Trans.

Evolutionary Computation, 9(3):303–317, 2005.

[14] Y. Jin and B. Sendhoff. Tradeoff between performance

and robustness: An evolutionary multiobjective

approach. In Proc. Evolutionary Multi-Criterion

Optimization, LNCS 2632, pages 237–251, 2003.

[15] Kargupta, H., and B. H. Park. Gene expression and fast

construction of distributed evolutionary representation,

Evolutionary Computation, pp 43-69, 2001.

[16] Linton, R.C. Policies for Managing Composite, Epistatic

Fitness Functions in Genetic Algorithms,” Proceedings

of the 40th Annual ACM Southeast Conference, pp 23-

30, ACM Press, 2002.

[17] McClure, M., and R. C. Linton, Proper Timing of Fitness

Function Adaptation in Genetic Algorithms, Proceedings

of the 41st Annual Southeast ACM Conference, pp 251-

256, ACM Press, 2003.

[18] Mitchell, M. An Introduction to Genetic Algorithms,

Cambridge, MA:MIT Press, 1996.

[19] M. Muller, “Computer Go,” Artificial Intelligence, vol.

134, pp. 145–179, 2002.

[20] Naudts, B., Suys D., and Verschoren A. Epistasis as a

basic concept in formal landscape analysis. Proceedings

of the 7th International Conference on Genetic

Algorithms, 1997.

[21] Lee, K. -F., and Mahajan, S. (1990). The development of

a world class Othello program. Artificial Intelligence,

43:21-36.

[22] Matt Gilgenbach. Fun game AI design for beginners. In

Steve Rabin, editor, AI Game Programming Wisdom 3,

2006.

[23] Singh Dharm, Thaker Chirag S and Shah Sanjay M.

Fitness Value Optimization for Disc Set in Board Game

Through Evolutionary Learning in IJCA

2011:3728/encc/017 IJCA Special Issue on “Evolution in

Networks and Computer Commumnication” ISBN 978-

93-80864-98-7.

[24] O. David-Tabibi, A. Felner, and N.S. Netanyahu.

Blockage detection in pawn endings. Computers and

Games CG 2004, eds. H.J. van den Herik, Y. Bjornsson,

and N.S. Netanyahu, pages 187–201. Springer-Verlag,

2006.

[25] J¨org Denzinger, Kevin Loose, Darryl Gates, and John

Buchanan. Dealing with parameterized actions in

behavior testing of commercial computer games. In

Proceedings of the IEEE 2005 Symposium on

Computational Intelligence and Games (CIG), pages 37–

43, 2005.

