
International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

25

A Study of Distributed Deadlock Handling Techniques

Garima Rana

Amity University,

Haryana

Parveen Kumar

Amity University,

Haryana

Kanchan
Choudhary

Amity University,

Haryana

Dilshana
Khurshid

Amity University,

Haryana

ABSTRACT
A deadlock is a situation where a process or a set of processes

is blocked, waiting on an event that will never occur. In this

case of a deadlock, the intervention of a process outside of

those involved in the deadlock is required to recover from the

deadlock. The formation and existence of deadlocks in a

system lowers system efficiency. Therefore, avoiding

performance degradation due to deadlocks requires that a

system be deadlock free or that deadlocks be quickly detected

and eliminated. In this paper, we study deadlock handling

strategies in distributed system. Several deadlock techniques

based on various control organisations are described. Pros and

cons of these techniques are discussed and their performance

is compared.

1. INTRODUCTION
A distributed system is a set of autonomous processes that

communicate with each other to perform some task. It also

includes single machine with multiple communicating

processes. In computer systems, many transactions may

compete for a finite number of resources at the same time.

While the request for a particular resource is ongoing, a

transaction may enter a wait state if the request is not granted

due to non-availability of the resource. Some time a situation

may arise wherein waiting processes may not ever get a

chance to change their states. This condition arises when the

requested resources are held by other waiting processors. This

situation is termed as deadlock [4, 10].

Deadlocks can be handled in three ways:

1.1 Deadlock prevention
In this scheme, all the resources that a transaction requires are

pre-declared. This strategy defines that, a request is granted to

the transaction, only if, all the resources, it requires are

available and the system in turn guarantees that none of these

resources would be required by any ongoing transaction. In

this approach, all the resources required are reserved in

advance. However, no priority must be set for different

processes. Deadlock prevention has two obvious

disadvantages: First, concurrency is reduced due to pre

allocation of resources. Second, evaluation of the safety of the

request results in additional overhead. Prevention is the only

feasible scheme for handling deadlocks in systems that have

no provision for restoring states [5, 10].

1.2 Deadlock Avoidance
The deadlock avoidance says that before starting any

transaction, it is not necessary to determine the resources they

require. If the requested resources are unavailable for any

transaction, still the transaction can proceed. The transactions

are allowed to wait for a particular time interval if the

requested resource is been occupied by other transaction. In

this conflict either the requested

transaction or the victim selection criteria for the abortion of a

transaction vary depending on the avoidance scheme used [5,

10]. In distributed systems, the deadlock avoidance scheme is

considered as more attractive than prevention scheme because

such systems already have ability to abort transactions.

1.3 Deadlock Detection
When conflicts between transactions occur then the requesting

transactions are handled by allowing the requesting

transactions to wait freely. The outcome of this may be

deadlock and hence it must be detected and later resolved.

One of the most important tasks performed by the detection

algorithm is to find cycles among transactions each waiting

for a resource held by the other. To find the deadlock cycles

among the transactions, we use directed graph. In the graph,

the vertices are marked as transactions and resources,

whereas, the edges represent the requests and allocations [9,

10].

2. CONTROL ORGANISATION FOR

DISTRIBUTED DEADLOCK

DETECTION
Deadlock detection algorithms can be categorized as

distributed, centralized or hierarchical. The main demerit of

deadlock detection is the additional overhead incurred due to

detection of cycles in the graph and abortion and restart of

transaction upon detection of deadlocks [9, 10].

2.1 Centralized Control
In the centralized deadlock detection algorithm, a control site

(designated site) holds the responsibility of developing the

global WFG and finding it for cycles. This control site may

maintain the global WFG constantly or it may build it

whenever deadlock detection is to be carried out. As

compared to other detection algorithms, the centralized

deadlock detection algorithms are conceptually simple and

easy to implement. However, at a point the centralized

deadlock detection algorithm fails. When the sites receive

WFG information from all other sites then the communication

between the sites get clogged [2, 10].

2.2 Distributed Control
In the distributed deadlock detection algorithm, the selection

process of global deadlock is shared among all sites. A

distributed deadlock algorithm is different from centralized

detection algorithm in the way that this is not more prone to a

single point of failure and no site is swamped with deadlock

detection activity. In addition to this, a deadlock detection is

initiated only a point when a deadlock cycle has a waiting

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

26

process. The algorithms of distributed deadlock detection

scheme are difficult to design due to non presence of globally

shared memory- sites altogether report the presence of a

global cycle after observing its segments at different instants.

Also the difference between the centralized and distributed

also lies in the fact that a number of sites may initiate

deadlock detection for the same deadlock in the distributed

deadlock control [7, 10].

2.3 Hierarchical Control
In hierarchical deadlock detection algorithms, sites are

sequentially arranged in a hierarchical manner and a site

detects deadlock containing only its descendant sites. The

hierarchical is considered as the best deadlock control scheme

as it get the best of both centralized as well as distributed and

there is no single point of failure. However, this requires some

special care as the sites should be arranged in a hierarchy [10].

3. REVIEW OF SOME LEADING

DISTRIBUTED DEADLOCK

DETECTION ALGORITHMS
As the name suggests, this algorithm altogether cooperate

with all the sites to detect a cycle in the state graph that is used

to distribute over many sites of the system. The distributed

deadlock detection algorithm can be initiated either by the

local site of the process or by the site where the process waits.

There are four main algorithms for distributed deadlock

detection scheme:

1. Path pushing algorithm

2. Edge chasing algorithm

3. Diffusion computation algorithm

4. Global state detection algorithm

3.1 Path Pushing Algorithm [8]
A path pushing deadlock detection algorithm track a path for

the information about the wait for dependencies graph.

Obermarck‟s algorithm defines a path pushing algorithm. This

was designed for distributed database system: hence,

transactions are termed as processes denoted by, T1, T2,

T3…….Tn.

However a transaction may also include a number of sub

transactions that normally execute at different sites.

The Algorithm
Deadlock detection at a site follows the following iterative

processes,

Initially the sites wait for the information about the deadlock

from all other sites.

The site collects the information and combines it with its local

TWF graph and constructs a new updated TWF graph. It then

finds all the cycles and breaks only those cycles which do not

contain the node „Ex‟.

The present site transmit the transaction nodes into string form

‟Ex->T1->T2->ex‟ to all other sites, where a sub transaction

of T2 is waiting to receive a message from the sub transaction

of T2 at this site.

The path pushing algorithm reduces the traffic of message

passing by lexically ordering transactions and sending the

string „Ex, T1, T2, T3, Ex‟ to different sites only if the

priority of T1 is higher than T3 in lexical ordering. Obermarck

gave an informal correctness proof of the algorithm. It is

found that this algorithm is incorrect becauseitdetectsphantom

 Deadlocks

.

Fig 1: An example of Obermarck’s path-pushing

algorithm.

3.2 EDGE CHASING ALGORITHM [3]
Chandy-Misra-Hass‟s gave another distributed deadlock

detection algorithm which was named as Edge chasing

algorithm. This algorithm uses a special message called a

probe. If a process requires any resource, it sends a request for

it. Unfortunately, resource fails or times out then the process

generate a probe message and send it to all the processes

holding one or more of its requested resource.

Each probe message include the following information:

 the id of the process that is blocked,

 the id of the process is sending this particular

version of the probe message; and,

 the id of the process that should receive this probe

message.

The starting process Pj is dependent on the terminal process in

a sequence of processes Pj, Pi1, Pi2,….Pim, Pk such that each

process is blocked and each process except Pj is waiting for

the resources which is being held by other processes. Process

Pj is locally dependent upon Process Pk if Pj is dependent

upon Pk and both the processes are at the same site.

The Algorithm
The system executes the following algorithm to determine if a

blocked process is deadlocked:

If Pi is locally dependant on itself

 then declare deadlock.

else for Pk and Pj

 Pj is waiting for Pk and,

 Pj and Pk are situated on different sites, transfer

probe (i. j, k) to Pk(home site).

Thus along the edges of the global TWF graph the probe is

successfully propagated and a deadlock is detected as soon as

the probe message returns to its initiating process.

The advantages of probe message are,

1. The message has a fixed length.

2. No false state is found in this algorithm.

3. Computations are very little. Hence, it is very easy

to implement.

4. No need for special data structure.

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

27

Fig 2: An example of Chandy et al. edge-chasing

algorithm.

3.3 A DIFFUSION COMPUTATION

BASED ALGORITHM [6]
In diffusion computation based distributed deadlock detection

algorithms; deadlock detection computation is diffused

through the WFG of the system. Chandy et al.‟s distributed

deadlock detection algorithm illustrates the technique of

diffusion computation based algorithm.

A diffusion computation is initialized by the process to

determine if it is deadlocked or not. The message used in

diffusion computation is in the form of a query(i,j,k) and a

reply(i,j,k), denoting that they belong to diffusion

computation initiator by the process Pi and then get transfer

from process Pj to process Pk. A process can be in two states:

active state or blocked state. In active state, a process is in the

executing state whereas in blocked state, the process is in

waiting state to acquire a resource. A blocked state broadcasts

a message to all the states from whom it is waiting to receive

the message. The message is discarded if it is received by the

active process whereas if the message is received by a blocked

process then the following action takes place:

If this is the first query message received by Pk for the

deadlock detection initiated by Pi(called the engaging query),

then it propagates the query to all the processes in its

dependent set and sets a local variable numk(i) to the number

of query messages sent.

If this is not an engaging query, then Pk returns a reply

message to it immediately, provided Pk has been continuously

blocked since it received the corresponding engaging query.

Otherwise, it discards the query.

A local Boolean variable waitk(i) at process Pk denotes the

fact that it has been continuously blocked since it received the

last engaging query from process Pi.

The Algorithm
Here we describe the Chandy et al.‟s diffusion computation

based deadlock detection algorithm.

Initiate a diffusion computation for a blocked process Pi:

 Send query (i, i, j) to all processes Pj in the dependent set

DSi of Pi;

numi(i):= |DSi|; waiti(i):= true;

When a blocked process Pk receives a query (i, j, k):

 if this is the engaging query for process Pk

 then send query (i, k, m) to all Pm in its dependent set DSk;

if this the engaging query for process Pk;

 else if waitk(i) then send a reply(i, k, j) to Pj.

When a process Pk receives a reply (i, j, k).

If waitk(i)

 then begin

 numk(i):= numk(i) -1;

 if numk(I) = 0

then if i=k then declare a deadlock

else send reply (i,k,m) to Pm.

3.4 A GLOBAL STATE DETECTION

BASED ALGORITHM [1]
Using the global state detection approach, there exist three

deadlock detection algorithms to detect the distributed

deadlocks. First approach is algorithm by Bracha and Toueg

consists of two phases. In the initial phase, the algorithm

records a description of distributed WFG and in the second

phase, the algorithm regulates the granting of requests to

check for various deadlocks. The first phase terminates after

the second phase has been terminated because the first phase

is nested within the second phase. Now the, the algorithm by

Wang et al. also includes two phases. In the first phase a place

description of distributed WFG is recorded whereas in the

second phase, the static WFG recorded in the initial phase is

reduced to detect any deadlocks. This algorithm has one major

feature that is, both the phases occur simultaneously.

Now, the algorithm by Wang et al. also includes two phases.

In the first phase a description of distributed WFG is recorded

whereas in the second phase, the static WFG recorded in the

initial phase is reduced to detect any deadlocks. This

algorithm has one major feature that is, both the phases occur

simultaneously.

The Kshemkalyani- Singhal algorithm consists of only one

single phase, which consists of a fan-out sweep of messages

outwards from an initiator process and a fan in sweep of

messages inwards to the initiator process [5].

4. CONCLUSION
The detection of deadlocks requires performing two tasks:

first, maintaining a WFG; second, searching the WFG for

cycles. Depending upon the way the WFG is maintained and

the way a control to carry out the search for cycles is

structured, deadlock detection algorithms are classified into

three categories: centralized, distributed, and hierarchical.
Distributed deadlock detection algorithms can be divided into

four classes; path-pushing, edge-chasing, diffusion

computation, and global state detection. In path-pushing

algorithms, wait-for dependency information of the global

WFG is disseminated in the form of paths. In edge chasing

algorithms, special messages called probes are circulated

along the edges of the WFG to detect a cycle. When a blocked

process receives a probe, it propagates the probe along its

outgoing edges in WFG. A process declares a deadlock when

it receives a probe initiated by it. Diffusion computation type

algorithms make use of echo algorithms to detect deadlock.

Deadlock detection messages are successively propagated

through the edges of the WFG. Global State Detection based

algorithms detect deadlocks by taking a snapshot of the

system and by examining it for the condition of a deadlock.

5. REFERENCES

[1] Bracha,G., and S. Toueg, “Distributed Deadlock

Detection,” Distributed Computing, vol. 2, 1987.

[2] Chandy, K.M., and L.Lamport, “Distributed Snapshots:

Determining Global States of Distributed Systems,”ACM

Trans. On Computer Systems, Feb.1985.

[3] Chandy, K.M.,J. Mishra, and L.M.Haas.”Distributed

Deadlock Detection,” ACM Trans. On Computer

Systems, May 1983.

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

28

[4] Herman,T., and K.M. Chandy.” A Distributed Procedure

to Detect AND/OR Deadlocks.” Tech. Report TR LCS-

8301, Dept. of Computer Sciences, University of Texas

at Austin, 1983.

[5] Kshemkalyani, A.D., and M. Singhal, “Efficient

Detection and Resolution of Generalized Distributed

Deadlocks,” IEEE Transactions on Software

Engineering, vol.20, no.1, Jan. 1994.

[6] Menasce, D.E., and R.R. Muntz, “Locking and Deadlock

Detection in Distribute Databases,” IEEE Trans. On

Software Engineering, May 1979.

[7] Mitchell, D.P., and M.J. Merritt, “ A Distributed

Algorithm for Deadlock Detection and Resolution,”Proc.

Of the ACM Conference on Principles of Distributed

Computing, Aug.1984.

[8] Obermarck,R.”Distributed Deadlock Detection

Algorithm,”ACM Trans. On Database Systems,June

1982.

[9] Singhal,M.,”Deadlock Detection in Distributed

Systems,” IEEE Computer, Nov..1989.

[10] Singhal., Shivaratri. ”Advanced Concepts in Operating

Systems” McGrawHill, 1994.

IJCATM : www.ijcaonline.org

