
International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

4

Study of Optimization and Prioritization of Paths in
Basis Path Testing

Gaurav Siwach
Research Scholar

M.Tech(CSE)
Amity University, Haryana

 Sunil Sikka,PhD
 Assistant Professor

Deptt. of CSE
Amity University, Haryana

Priyanka Makkar
Assistant Professor

Deptt. of CSE
Amity University, Haryana

ABSTRACT

Testing has become an essence part of the software

development life cycle. Structural testing is a testing type,

which focuses on the control flow of the program. Basis path

testing is a kind of structural testing which derives a set of

basis paths from control flow graph. These basis paths

ensure that every statement of the program under test has

been executed at least once. This paper studies the different

techniques used by different researchers for the prioritization

of these paths. The optimization and prioritization of the

paths increases the probability of finding more errors within

the limited resources.

Keywords

Basis path testing, Control Flow Graph, Cyclometic

Complexity

1. INTRODUCTION
Software testing is a necessary and integral part of the

software quality process. It is estimated that 80% of software

development cost is spent on detecting and fixing defects [1].

It is a necessary evil in the process of software development.

Moreover, it adds nothing to the functionality of the software.

Even with intense testing, we cannot give assurance that our

software is 100% free from errors. Software testing is done to

enhance the quality of the software and this is achieved by

detecting and fixing the bugs. There are many methods of

testing which are mainly grouped in Black box testing and

White box testing. Black box testing also called behavioral

testing focuses on the functionality of the software. It uses

some input condition which will fully exercise the

functionality of program. It uncovers the errors of following

categories:(1) incorrect or missing functions, (2) interface

errors, (3) errors in data structures or external database access,

(4) behavior or performance errors and (5) initialization and

termination errors[2]. On the other hand White Box Testing

also called glass box testing focuses on the structure of the

software. That is why it is also called structural testing. Test

cases are designed to check the coverage of each path, branch

or statement [2]. Basis path testing is also a white box

technique developed by Thomas MaCabe. This method

generates a set of linearly independent paths, which are called

basis paths. These paths can be derived from Control Flow

Graph (CFG). Basis Path Testing is a more rigorous software

testing criterion typically used for program unit testing. To

uphold the thoroughness of testing, the tester has to design the

test cases, but sometime test cases grow in much large size

that they drain all the testing resources. In most cases, the

tester has to determine test cases manually. This becomes

more difficult when the program under test has complex

branching structure. So basis path testing helps in tackling

above both the problems. The method devised by McCabe to

carry out basis path testing has following four steps.

Step 1. Generate CFG of program under test.

Step 2. Compute the cyclomatic complexity from CFG.

Step 3. Generate the basis set of paths which are equal to

 cyclometic complexity.

Step 4. Design test cases for each of the generated paths.

CFG is the graphical representation of the control structure of

the program under testing. It consists of a set of nodes N and a

set of edges E. Each node represents a set of procedural

statement and is denoted by a circle labeled with a name or

number. Edges in CFG represent the control flow within the

program. It is denoted by an arrow and must terminate at a

node. Any executable path in module's CFG would start from

the entry node and end at the exit node. In a CFG, a node

including condition is called a predicate node, and edges from

the predicate node must converge at a certain node. For

example Fig 1 shows the CFG of following pseudo code to

display roots a quadratic equation of the form ax2 +bx+c=0.

1. Input(a,b,c)

2. D=b2-4ac

3. if(D>0) then

4. r1=(-b+ sqrt(D)) / (2*a)

 r2=(-b-sqrt(D)) / (2*a)

 print r1.r2

5. else if(D=0),then

6. r1=(-b) / (2*a);

 r2=r1

 print r1,r2

7. else print "Roots are Imaginary "

8. end

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

5

Fig 1: Control Flow Graph for solving quadratic equation

The cyclomatic complexity also known as structural

complexity calculates the number of independent paths

through a program. It provides the upper bound of the number

of test cases that must be designed, in order to ensure that all

statements have been executed at least once and all conditions

have been tested. Generally cyclomatic complexity of a graph

G is denoted by V(G).

There are three methods to calculate the Cyclomatic

complexity. One of these is V(G) = e – n + 2, where e

represents the number of edges and n denotes the no. of nodes

in the CFG. According to second method V(G) = P + 1 where

P is no. of predicate nodes in CFG. According to the third

method V(G) is equal to number of regions in the CFG. The

outside area of CFG is also a region.

The rest of the paper is organized in two sections. Section 2

presents the review of various research works related to basis

path testing and section 3 presents the conclusion of the paper.

 2. LITERATURE REVIEW
A lot of researchers have given various techniques for finding

the feasible paths and prioritization of paths. Prioritization of

execution of paths increases the chances of finding more

errors. It also helps in selection of more appropriate test paths

if there is less time for testing. Optimization of paths helps in

removing the infeasible paths from basis set of paths.

Infeasible paths defined as the path that cannot be executed by

any set of possible input values. Infeasible paths mainly crop

up when decision nodes are in series connection and variables

involved in decision nodes before and after have a certain

degree of dependency [3]. This section reviews some of the

techniques for prioritization of paths.

Z.Guangmei et al. [4] deduced a method of generating the

basis set of path by applying Depth First Search (DFS) on the

CFG of the program . The given procedure first visits that

path whose tail node is the start node and the head node of

this edge is stored on the top of stack (A stack is used for

storing the head nodes of the visited edges). Next it visits the

subsequent unvisited edge of current edge and store their head

node onto the stack. While developing a basis path, when a

multi-in-degree node encounters and there is no sub-path from

this node to the exit node then that path (from start node to

multi-in-degree node) is recorded. And when a sub-path is

found to exit node, a new basis path is generated by merging

the recorded sub-path and current sub-path. Hence, the given

method readily generates the basis set of paths.

T. Lertphumpanya et al. [3] proposed a method which applies

basis path testing on Web Service Business Process Execution

Language (WS-BPEL) services. WS-BPEL is an OASIS

standard executable language for specifying action within

business processes with web services. The method used here

generates the test suit for basis path testing of WS-BPEL. This

test suite includes test cases, auxiliary state services that assist

in test and stubs of the constituent Web Services within the

flow. A tool is also specified in the paper which will be used

by service tester.

P.R Srivstava et al. [5] used the coordinated behaviour of real

ants and applied to some artificial agent which collaborate to

solve the complex computational problems. The proposed

algorithm selects all the optimal paths in between entry node

and exit node. And this selection is based on the probability of

each path. Higher is the probability higher the chances of

selection of path. The probability of each path depends on the

feasibility of path, Pheromone Value, and heuristic

information of the path.

S.Bardin et al. [6] focused on a very important problem called

path explosion phenomenon. This is a common problem in

path based testing with item coverage. It uses three heuristics

to tackle this problem which are both easy to implement and

cheap enough to execute. Moreover each heuristic deals with

a different source of path explosion. These three heuristic are:

 The Look Ahead (LA) heuristic: when it find out that

from current control location, there is no possible path to

some uncovered pat, it stops the current path exploration.

 The MaxCall Depth (MCD) heuristic: It tackles the path

explosion problem which occurs due to nested calls.

 The Solve First (SF) heuristic: It gives priority to solve

shorter path prefixes.

Y. Chen et al. [7] used Genetic Algorithm for automatic test

data generation. Use of the appropriate fitness function is very

important for any genetic algorithm as it increases the chances

of finding a solution and possibly uses few system resources.

This paper compared such two fitness function namely

BDBFF and SIMILARITY. The applied Genetic Algorithm

based approach for automatic test data generation using above

two fitness function, is applied on triangle classification

problem. The experimental results showed that BDBFF based

approach achieved the target path within less test data in

comparison to SIMILARITY based approach.

D. Jeya Mala et al. [8] proposed a method called Artificial

Bee Colony(ABC) optimization which is a non-pheromone

based intelligent optimization technique for test suits

optimization. The model uses three agents: Search Agent,

Optimizer Agent & Selector Agent in correspondence to three

group of bees are Employed, onlooker & scouts. The paper

used path coverage as the test adequacy criterion for

improving the quality of the test cases. ABC based approach

also removed the problems which were faced in Ant Colony

Optimization like continuous pheromone update,

computational time and memory overheads.

1

2

4 5

3

7 6

8

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

6

.Z. Zhonglin, et al. [9] introduced a approach for avoiding the

infeasible paths in the basis set. It gave the reason of

occurrence of infeasible path is that when two decision nodes

are connected in series then there are more chances of

occurrence of infeasible paths. It modified the CFG by

replacing the edges which are data dependent with the dotted

edge and control edges with solid edge. Then it chose the

shortest path as a baseline path having more predicates node

and applied the flip operation to extract feasible paths.

D. Gong et al. [10] proposed a very efficient method for

detecting the infeasible paths. The method first scans the

whole program for conditional statements and for the

correlation between them. Then it applies a theorem for

detecting33 the infeasible paths. A case study was also used

for the verification of results. However the experimented

results are preliminary as the method was performed on

simple program with simple structure.

Qingfeng, et al. [11] proposed a method which deals with the

infeasible paths in basis set. This method modified the

generated CFG by connecting the causal paths of two series

judgment parts and skipping the intermediate nodes. The

reason behind the occurrence of infeasible path is that the two

decision nodes are in series connection.

Minjie Yi [12] proposed a method for automatic generation

of test data by mixing two most important techniques: Ant

Colony Optimization and Genetic Algorithm. Author proved

that this method produces more efficient test data in terms of

validity and quality.

Madumita Panda et al. [13] found out the number of feasible

paths present in the CFG using cyclometic complexity. And it

compared actual no of paths covered by test cases which were

evolved using three meta-heuristic search algorithm Genetic

Algorithm, Artificial Bee Colony Optimization algorithm and

Differential evaluation. Authors also showed the effectiveness

of all three search algorithms. Study demonstrated that overall

Differential Evaluation is more effective in comparison to

other two techniques. In terms of time complexity the

execution time of Differential evaluation is better than other

two. But the search space exploration of paths is slightly

better for Artificial Bee Colony Optimization than Differential

evaluation.

S. Srivastva et al. [14] proposed a model for prioritization of

basis paths in basis path testing using Ant Colony

Optimization (ACO) algorithm. It used the CFG to represent

the software under test. After execution of this algorithm it

would first calculate the probability of each path then give the

highest priority to that path which would have highest

probability.

Y.Suresh et al. [15] developed a system which automatically

generates the test data using the soft computing technique

called Genetic Algorithm (GA). The proposed system first

calculates the basis paths from the CFG and then produces the

most favorable test data from these basis paths automatically.

Initially, the GA generates the population randomly (Here

population is considered for test data). Then it calculates the

fitness value of each individual chromosome using some

fitness function. On the basis of that value it performs

mutation and cross-over (GA operation) to enhance their

fitness value. These enhanced chromosomes makes the next

generation. This process continues until all individual

chromosome reach to their maximum fitness. So this

automatic generation of test data reduces the time, cost and

effort of the tester.

Himanshi
,

et al. [16] elaborated the work of Srivastva giving

a varying Ant Colony Optimization Algorithm. In comparison

to work of Srivastva this method gave priority on the basis of

probability of path as well as path length.

Y.D.Salman et al. [1] used UML state chart diagram for

design specification of the software under test(SUT) and

thereafter generating the test cases. It doesn't generate the test

cases directly from UML state chart diagram. First, it converts

the state chart diagram of SUT to an intermediate Testing

Flow Graph(TFG) , and then from TFG it generates test cases.

The paper first found out the possible test paths from TFG and

reduced them into feasible test paths.

Ghiduk et al. [17] proposed a different technique for

automatic test data generation using the Genetic Algorithm.

The GA technique applies the idea of dominance relation

between nodes to define a new fitness function to evaluate the

generated test data. The technique has completed many

objectives in the sense that it is effective in achieving

coverage of test requirement and also in reducing the size of

test suits.

G. Balakrishnan et al. [18] applied the method of abstract

interpretation to find the infeasible paths on the basis of their

semantics. It deduced the feasible paths in the CFG by using

path insensitive forward and backward run sequence.

2.1 Analysis of Different Techniques

Discussed
In this section analysis of different techniques discussed in

this paper is provided. This analysis is done in terms of

problems countered and the methodology used to solve that

problem. This is provided in tabular form in table 1.

 Table 1. Analysis of different techniques

Authors Problem Countered Methodology Used

Z.Guangmei

et al.[4]

1. Automatic

generation of

basis set of paths

2. To prove that

path generated

are basis paths

Depth First Search

of CFG

P.R Srivstava

et al.[5]

1. Automatic

selection of

optimal path

2. Path prioritization

Ant Colony

Optimization(ACO)

S.Bardin et

al.[6]

1. Path explosion in

path testing due

to loops, nested

loops, conditions

1. Look-Ahead

heuristic(LA)

2. Max-Call Depth

heuristic(MCD)

3. Solve First(SF)

D.Jeya Mala

et al.[8]

1. To increase the

efficiency of test

cases

2. Optimization of

test cases

3. 100% path

coverage with

least test cases

Non-pheromone

based Artificial Bee

Colony

Optimization(ABC)

Z. Zhonglin

et al.[9]

1. Detection of

infeasible path in

basis path testing

Baseline method is

combined with data

dependency

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

7

2. Removal of

infeasible paths

occurred due to

data dependency

Minjie

Yi[12]

1. Automatic

generation of test

data for test paths

Combination of 1)

Ant Colony System

algorithm which is

a modified version

of ACO and 2)

Genetic Algoritm

Himanshi et

al.[16]

1. Sequencing the

execution of

test path among

a set of test path

2. prioritizing the

test path

Extension of Ant

Colony

Optimization which

give highest

priority to shortest

feasible path

3. CONCLUSION

Many researchers have proposed various techniques for

optimization and prioritization of test paths. Few important

techniques discussed in this paper are: Genetic algorithm, Ant

Colony optimization, Artificial Bee optimization algorithm,

Differential Evaluation, UML State Chart based etc. However,

each technique uses a different method for solving the

problem but has a common aim: Automation of generation of

test suits and increasing the effectiveness of path based

testing.

 4. REFERENCES
[1] Y.D.Salman, N.L.Hashim (2014). "An Improved Method

Of Obtaining Basic Path Testing For Test Case Based

on UML State Chart ", International Symposium on

Research in Innovation and Sustainability(1013-5316).

[2] R. Pressman (2009). Software Engineering: A

Practitioner's Approach, 7th ed., McGraw Hill.

[3] T. Lertphumpanya T. S. (2008). "Basis Path Test Suite

and Testing Process for WS-BPEL", WSEAS

TRANSACTIONS on COMPUTERS(1109-2750),

Volume-7, Issue -5.

[4] Z.Guangmei, C. R., L.X. (2005). "The Automatic

Generation of Basis Set of Path for Path Testing", Asian

Test Symposium (1081-7735),IEEE.

[5] P.R Srivstava, K.M. Baby, and G Raghuram (2009). " An

Approach of Optimal Path Generation using Ant Colony

Optimization ", IEEE(1-6).

[6] S.Bardin, P. H. (2009). "Pruning the Search Space in

Path-based Test Generation", International Conference

on Software Testing Verification and Validation.

[7] Y. Chan, Y. Z. and T. S. (2009). "Comparison of Two

Fitness Functions for GA-based Path-Oriented Test Data

Generation", Fifth International Conference on Natural

Computation.

[8] D.Jeya Mala, M. K. and R. S. (2009). " Intelligent Tester

– Software Test Sequence Optimization Using Graph

Based Intelligent Search Agent ", International

Conference on Computational Intelligence and

Multimedia Applications.

[9] Zhang Zhonglin, Mei Lingxia (2010). "An Improved

Method of Acquiring Basis Path for software testing",

ICCSE'10 (pp. 1891-1894).

[10] D. Gong, X. Yao (2010). "Automatic detection of

infeasible paths in software testing ", IET Software(361–

370), Volume-4, Issue- 5.

[11] Du Qingfeng, Dong Xiao (2009). “An improved

algorithm for basis path testing”. IEEE (pp. 175-178).

[12] Minjie Yi (2012). "The Research of path-oriented test

data generation based on a mixed ant colony system

algorithm and genetic algorithm ", IEEE.

[13] Madumita, Partha Pratim (2013). " Performance

Analysis Of Test Data Generation For Path Coverage

Based Testing Using Three Meta-heuristic Algorithms",

International Journal of Computer Science and

Informatics(2231 –5292), Volume-3, Issue-2.

[14] Saurabh Srivastva, Sarvesh Kumar, Ajeet Kumar Verma

(2013). "Optimal Path sequencing in Basis Path Testing",

IJACEN(2320-2106), Volume – 1, Issue – 1.

[15] Y.Suresh, S.K.Rath(2013). " A Genetic Algorithm based

Approach for Test Data Generation in Basis Path

Testing", The International Journal of Soft Computing

and Software Engineering (2251-7545), Volume-3, Issue

No.-3.

[16] Himanshi, Nitin Umesh, and Sourabh Srivastva (2013).

"Path Prioritization using Meta-Heuristic Approach",

International Journal of Computer Applications (0975 –

8887) Volume -77, Issue No.-11.

[17] Ghiduk, Harrold andGirgis (2007).”Using Genetic

Algorithms to Aid Test-Data Generation for Data-Flow

Coverage”, Universal Journal of Computer Science and

Engineering Technology (64-72).

[18] G.Balakrishnan, S.S (2008). "Path-Sensitive Analysis

through Infeasible-PathDetectionandSyntactic Language

Refinement", springer verlag(1-16).

[19] Sommerville, i.(2009). software engineering. london:

pearson edition.

IJCATM : www.ijcaonline.org

