
International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

15

Fault Tolerance Approach in Mobile Distributed Systems

Renu

Department of Computer Science & Engineering

Amity University, Haryana

Praveen Kumar

Department of Computer Science & Engineering

Amity University, Haryana

ABSTRACT

Mobile agent become very popular and attracted more

importance these days due to the exponential growth of

internet applications. The design of fault tolerance system

become very challenging due to limited bandwidth of wireless

network, mobile host mobility, limited local storage, limited

battery power and handoff. A distributed system is a

collection of independent entities to solve the problem that

cannot be solved individually. A distributed system is

susceptible to failure when it does not meet its specifications.

Fault tolerant techniques enable systems to perform tasks even

in the presence of faults. To deal with failure, a checkpoint is

taken at specific place in a program at which standard process

is interrupted specifically to preserve the status information.

To recover from a failure one may restart computation from

the last checkpoints, thereby avoiding repeating computation

from the previous consistent global checkpoint. A mobile

computing system is a distributed system where some of

processes are running on mobile hosts (MHs), whose location

in the network changes with time. The number of processes

that take checkpoints is minimized to 1) avoid awakening of

MHs in doze mode of operation, 2) minimize thrashing of

MHs with checkpointing activity, 3) save limited battery life

of MHs and low bandwidth of wireless channels. In this paper

we provide an overview on Fault Tolerance in Mobile

Distributed Systems (MDS).

Keywords

Domino effect, rollback recovery, mobile host, mobile support

station, consistent global checkpoint

1. INTRODUCTION
Distributed systems are self-governing computers that appears

to the users of the system as a single computer. The term

Distributed Systems consists of several computers that do not

share memory or a clock, each computer having its own

memory and runs its own operating system and communicate

with each other by exchanging messages over a

communication network [22].

A mobile distributed system (MDS) is a distributed system

where some of processes are running on mobile hosts (MHs).

A mobile distributed system having fixed and mobile station

interconnected through a communication network. The fixed

station is located at the fixed location and the mobile station

moves from one location to another in the network. Mobile

Hosts (MHs) are becoming common in distributed systems

due to their accessibility, cost, and mobile connectivity. The

term “mobile” means able to move while retaining its network

connection. An MH is a computer that may retain its

connectivity through a wireless network while on move.

Mobile environment is designed for cellular network, which

facilitate the mobility management constraints includes the

Mobile Host (MHs) and Mobile Support Station (MSS). An

MSS has large storage capacity, high computing power,

continuous availability and security but MH does not have

large storage capacity. An MH communicates with other MH

of system with the help of special node called mobile support

station (MSS). An MSS provides the services to its local MH.

A local MH can directly communicate with an MSS only if

the MH is actually located within the cell serviced by MSS.

Mobile network maintains the MH in the MSS in a cell. An

MSS is connected through both wired and wireless links and

acts as interface between the static network and other parts of

the mobile network. Static nodes are connected via a high

speed wired network. Static network connects all MSSs. A

static node that has no support to MH, for this critical

applications are required to execute fault-tolerant in the

system. The static network provides reliable, sequenced

delivery of messages between two MSSs, with arbitrary

message latency. The wireless network within a cell also

ensures FIFO delivery of messages between an MSS and a

local MH i.e. there exist a FIFO channel from an MH to its

local MSS and another FIFO channel from the MSS to the

MH. If an MH does not leave the cell, then sent message from

local MSS to MH would receive in sequence. Message

communication from an MH1 to another MH2 occurs as

follows. MH1 first sends the message to its local MSS1 using

wireless link. MSS1 forwards it to MSS2, the local MSS of

MH2 via a fixed network. MSS2 then transmit it to MH2 over

its wireless network [1]. However location of MH2 may not be

known to MSS1 so MSS1 may require to first determining the

location of MH2.

1.1 Issues or Challenges in designing

Algorithms for Mobile Distributed Systems

Wired Network

MSS1

Fixed host

MSS4 MSS3

MSS2

MH4 MH3

MH2
MH1

Wireless cell

Wireless cell
Wireless cell

Wireless cell

 Figure 1: Block diagram of Mobile Distributed System

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

16

(1) Mobility: A message sent from MSS to a non-local MH

incurs a search cost. Change in location of an MH complicates

routing messages. The destination node (MH) disconnected

from old MSS and now is connected to new MSS. To handle

node mobility the checkpointing algorithm may generate a

request for disconnected MH to take its snapshot. Delaying a

response to such a request until the MH reconnects with some

MSS may significantly increase the completion time [1].

(2) Energy Consumption: The various components like

CPU, display, disk drive etc. drain the battery. Message

transmission and reception also consumes energy.

(3) Stable Storage Capacity: There is limited storage

capacity of MHs system. Each process needs the storage

capacity to store the snapshot of the checkpoints. There is

Lack of stable storage devices in MH. Rollback recovery uses

stable storage to save checkpoints, event logs and other

recovery related information.

(4) Bandwidth: Limited communication bandwidth of

Network.

 (5) Disconnections: Disconnection of one or more MH

should not prevent recording the global state of an application

executing on MH. The frequent disconnection of MH is an

expected feature of the mobile distributed environments.

(6) Synchronization: The energy conservation and low

bandwidth constraints require the checkpointing algorithms to

minimize the number of synchronization messages and the

number of checkpoints [1, 4, 13, 18, 19, 20].

2. SOFTWARE BASED FAULT

TOLERANCE APPROACH
In software-based fault, an application is restarted from an

earlier checkpoint or recovery point after a failure. This may

result in the loss of some processing computation and

applications may not be able to meet strict timing targets.

Besides providing fault tolerance, check pointing can be used

for process migration, debugging distributed applications, job

swapping, post-mortem analysis and stable property detection.

Fault Tolerance Approaches
To recovery from failure, a fault tolerance technique is used to

bring the system in erroneous state. There are two kinds of

recovery approaches: 1) forward recovery 2) backward

recovery. Backward recovery approach is used to bring the

system back into the previous correct state. Forward recovery

approach is used to bring the system in correct new state.

There are three steps involved in the forward error recovery.

These are:

• Check pointing the error-free state periodically

• Detect that new state is error free

• Restoration in case of failure

The key challenge in the forward recovery is that the number

of possible errors should be known in advance. It also requires

checking for the redundancy every time while taking new

checkpoint. In recovery algorithm each process updates its

local state from time to time, so it is difficult to find the

recovery line. If the most recently saved state does not form

the recovery line, then domino-effect (rollback to initial state

of computation losing all the work performed before the

failure) can occur. Checkpoint is defined as a chosen place in

a program at which a process is interrupted significantly to

protect the process status information. So, the solution to this

problem is to use the coordinated checkpointing algorithm.

Checkpointing is the process of saving the status information

by invoking the checkpointing algorithm. The global state

(GS) is a collection of the local states of the processes and

global checkpoint is a collection of local checkpoints. A

global state is said to be “consistent” if it contains no orphan

message; i.e. a message whose receive event is recorded, but

its send event is missing [5]. To recover from a failure one

may resume computation from the last checkpoints thereby

avoiding repeating computation from the previous consistent

global checkpoint. This saves all the computation done up to

the last checkpointed state and only the computation done

thereafter needs to be redone. The process of resuming

computation by rolling back to a saved state is called rollback

recovery. The checkpoint-restart is one of the well-known

methods to realize dependencies of the processes in

distributed systems. When process takes a checkpoint the

local state information is need to store in the stable storage.

Rolling back a process and again resuming its execution from

a prior state involves overhead and delays the overall

completion of the process. It is needed to make a process

rollback to a most recent possible state. Rollback recovery

achieves fault tolerance by periodically saving the state of a

process during the failure free execution, and restarting from a

saved state on a failure to reduce the amount of lost

computation. Rollback recovery can be classified into four

categories: uncoordinated or independent checkpointing,

coordinated checkpointing, communication induced check-

pointing and message logging based checkpointing [23].

2.1 Uncoordinated Checkpointing
In uncoordinated or independent checkpointing, processes do

not coordinate their checkpointing activity. There is no

coordination required between the processes to take the

checkpoint and each process save its local checkpoint

independently. Each process is free to decide when to take

checkpoint i.e. each process may take a checkpoint when it is

most convenient. Thus eliminates synchronization overhead

and forms a consistent global state. We can determine the

consistent global state by tracking the dependencies among

the processes. It may require cascaded rollbacks that may lead

to the initial state due to domino-effect. It requires saving

multiple checkpoints for each process and periodically

invokes garbage collection algorithm to remove the

checkpoints that are no longer needed [23]. In this scheme, a

process may take a useless checkpoint that will never be a part

of global consistent state. Useless checkpoints incur overhead

without advancing the recovery line [6].

2.2 Coordinated Checkpointing
In coordinated checkpointing, processes coordinate their

checkpointing activities to form a system-wide consistent

state. Coordinated checkpointing algorithm is not susceptible

to the domino effect. In case of failure, the system state can be

restored to such a consistent set of checkpoint (last saved

checkpoint), preventing the rollback propagation. This

technique has additional overhead at the runtime but it avoids

the domino effect at recovery time. This algorithm also

requires saving only one checkpoint for each process into the

stable storage [23]. The coordinated checkpointing protocols

can be classified into two types: blocking and non-blocking.

In blocking algorithms, blocking of some processes takes

place during checkpointing. After taking local checkpoint, to

prevent from orphan messages, communication is blocked

until the entire checkpointing activity is complete. The

disadvantage of this approach is that the no computation can

be done during blocking period. So, non-blocking

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

17

checkpointing algorithm is preferable. In non-blocking

algorithms, no blocking of processes is required for

checkpointing. In this scheme processes do not block its

computation during checkpointing. The coordinated

checkpointing algorithms can also be classified into following

two categories: minimum-process and all process algorithms.

[7, 9, 11, 13, 14].

2.3 Quasi-Synchronous or Communication

Induced Checkpointing
Communication-induced checkpointing avoids the domino-

effect without coordination of checkpointing activity. In these

protocols, processes take two kinds of checkpoints, local and

forced. Local checkpoints can be taken autonomously, while

forced checkpoints are taken to promise the eventual progress

of the recovery line and to minimize useless checkpoints. As

opposed to coordinated checkpointing, these protocols do no

exchange any special coordination messages to determine

when forced checkpoints should be taken. But, they

piggyback protocol specific information on each application

message; the receiver uses this information to decide whether

it should take a forced checkpoint. This decision is based on

the receiver determining if past communication and

checkpoint patterns can lead to the creation of useless

checkpoints, a forced checkpoint is taken to break these

patterns [6, 21].

2.4 Message Logging Based Checkpointing
Message-logging protocols are popular for building systems

that can bear process crash failures. Message logging based

checkpointing can be used to offer fault tolerance in

distributed systems in which all inter-process communication

is through messages. Checkpoints are taken such that

construction of a consistent checkpoint at recovery is simple,

efficient, and fast and domino effect is avoided. Each

message received by a process is saved in message log on

stable storage. No coordination is required between the

checkpointing of different processes or between message

logging and checkpointing. The execution of each process is

assumed to be deterministic between received messages, and

all processes are assumed to execute on fail stop processes.

When a process crashes, a new process is created in its place.

The new process is given the appropriate recorded local state,

and then the logged messages are replayed in the order the

process originally received them. All message logging

protocols require that once a crashed process recovers, its

state needs to be consistent with the states of the other

processes [6, 22].

A good checkpointing algorithm for mobile distributed

systems should have low memory overheads on MHs, low

overheads on wireless channels and should avoid awakening

of an MH in doze mode operation. The disconnection of an

MH should not lead to infinite wait state. The algorithm

should be non-intrusive and should force minimum number of

processes to take their local checkpoints [3, 4]

Table 1 Comparison between checkpointing approaches

Checkpointing

Approaches

Advantages

Disadvantage

Uncoordinated

Checkpointing

 Eliminate

synchronizati

on overhead

 Lower run

time

overhead

during

execution.

 Domino effect

 Recovery from

failure is slow.

 Regular

iteration is

required to find

the consistent

global

checkpoint.

 Take useless

without any

coordination.

 Need to invoke

the garbage

collection

algorithm every

time to

eliminate the

useless

checkpoint.

Coordinated

Checkpointing

 Process

coordinates

the

checkpointin

g activity.

 Not

susceptible to

domino

effect.

 Maintain

only single

checkpoint

for each

process.

 Reduce

storage

overhead

 Eliminate the

need for

garbage

collection

algorithm.

 Large delay in

committing the

output

 Global

checkpoint is

needed before

sending the

message to the

outside world

process.

 Delay and

overhead in

taking new

global

checkpoint.

Communication

induced

checkpointing

 Avoid

domino

effect, while

allowing

processes to

take their

local

checkpoint

independentl

y.

 Eliminate

useless

checkpoints.

 Processes are

forced to take

additional

checkpoint to

advance the

global recovery

line.

Message

Logging based

Checkpointing

 Improve

efficiency

 Incorrect replay

of messages can

cause orphan

messages.

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

18

3. GUIDELINES FOR DESIGNING

CHECKPOINTING ALGORITHM FOR

MDS
A checkpoint algorithm for mobile distributed systems (MDS)

needs to handle many new issues like: mobility, low

bandwidth of wireless channels, and lack of stable storage on

mobile nodes, disconnections, limited battery power and high

failure rate of mobile nodes. These issues make conventional

checkpointing techniques unsuitable for such environments.

The objective of the research is to design checkpointing

schemes for mobile distributed systems with the following

features:

 The checkpointing scheme should be able to handle

frequent aborts. The loss of checkpointing effort,

when any process fails to take its checkpoint in

coordination with others, should be low.

 The synchronization message overhead should be

low.

 The checkpointing scheme should be applicable to

deterministic as well as non-deterministic events.

 If the scheme is blocking, then the blocking time

should be negligibly small. Otherwise, if the scheme

is non-blocking, the number of useless checkpoints

should be very low.

 The checkpointing scheme should be free from

domino effect.

 Processes should be able to take checkpoint

independently without any domino-effect.

4. REFERENCES
[1] Acharya A. and Badrinath B. R., “Checkpointing

Distributed Applications on Mobile Computers,”

Proceedings of the 3rd International Conference on

Parallel and Distributed Information Systems, pp. 73-80,

September 1994.

[2] Cao G. and Singhal M., “On coordinated checkpointing

in Distributed Systems”, IEEE Transactions on Parallel

and Distributed Systems, vol. 9, no.12, pp. 1213-1225,

Dec 1998.

[3] Cao G. and Singhal M., “On the Impossibility of Min-

process Non-blocking Checkpointing and an Efficient

Checkpointing Algorithm for Mobile Computing

Systems,” Proceedings of International Conference on

Parallel Processing, pp. 37-44, August 1998.

[4] Cao G. and Singhal M., “Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing

systems,” IEEE Transaction On Parallel and Distributed

Systems, vol. 12, no. 2, pp. 157-172, February 2001.

[5] Chandy K. M. and Lamport L., “Distributed Snapshots:

Determining Global State of Distributed Systems,” ACM

Transaction on Computing Systems, vol. 3, No. 1, pp.

63-75, February 1985.

[6] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B.,

“A Survey of Rollback-Recovery Protocols in Message-

Passing Systems,” ACM Computing Surveys, vol. 34,

no. 3, pp. 375-408, 2002.

[7] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The

Performance of Consistent Checkpointing,” Proceedings

of the 11th Symposium on Reliable Distributed Systems,

pp. 39-47, October 1992.

[8] Higaki H. and Takizawa M., “Checkpoint-recovery

Protocol for Reliable Mobile Systems,” Trans. of

Information processing Japan, vol. 40, no.1, pp. 236-244,

Jan. 1999.

[9] Koo R. and Toueg S., “Checkpointing and Roll-Back

Recovery for Distributed Systems,” IEEE Trans. on

Software Engineering, vol. 13, no. 1, pp. 23-31, January

1987.

[10] Neves N. and Fuchs W. K., “Adaptive Recovery for

Mobile Environments,” Communications of the ACM,

vol. 40, no. 1, pp. 68-74, January 1997.

[11] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta

“A Non-Intrusive Minimum Process Synchronous

Checkpointing Protocol for Mobile Distributed Systems”

Proceedings of IEEE ICPWC-2005, pp 491-95, January

2005.

[12] Pradhan D.K., Krishana P.P. and Vaidya N.H.,

“Recovery in Mobile Wireless Environment: Design and

Trade-off Analysis,” Proceedings 26th International

Symposium on Fault-Tolerant Computing, pp. 16-25,

1996.

[13] Prakash R. and Singhal M., “Low-Cost Checkpointing

and Failure Recovery in Mobile Computing Systems,”

IEEE Transaction On Parallel and Distributed Systems,

vol. 7, no. 10, pp. 1035-1048, October1996.

[14] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal

checkpointing for mobile distributed systems”

Proceedings. 19th IEEE International Conference on

Data Engineering, pp 686 – 88, 2003.

[15] Ni, W., S. Vrbsky and S. Ray, “Pitfalls in Distributed

Nonblocking Checkpointing”, Journal of Interconnection

Networks, Vol. 1 No. 5, pp. 47-78, March 2004.

[16] L. Lamport, “Time, clocks and ordering of events in a

distributed system” Comm. ACM, vol.21, no.7, pp. 558-

565, July 1978.

[17] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Non-

intrusive Hybrid Synchronous Checkpointing Protocol

for Mobile Systems”, IETE Journal of Research, Vol. 52

No. 2&3, 2006.

[18] Parveen Kumar, “A Low-Cost Hybrid Coordinated

Checkpointing Protocol for mobile distributed systems”,

Mobile Information Systems. pp 13-32, Vol. 4, No. 1,

2007.

[19] Lalit Kumar Awasthi, Parveen Kumar, “A Synchronous

Checkpointing Protocol for Mobile Distributed Systems:

Probabilistic Approach” International Journal of

Information and Computer Security, Vol.1, No.3 pp 298-

314.

[20] Sunil Kumar, R K Chauhan, Parveen Kumar, “A

Minimum-process Coordinated Checkpointing Protocol

for Mobile Computing Systems”, International Journal of

Foundations of Computer science,Vol 19, No. 4, pp

1015-1038 (2008).

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

19

[21] A.Tanenbaum and M. Van Steen, Distributed Systems:

Principles and Paradigms, Upper Saddle River, NJ,

Prentice-Hall, 2003.

[22] M. Singhal and N. Shivaratri, Advanced Concepts in

Operating Systems, New York, McGraw Hill, 1994.

[23] E.N. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson,

Asurvey of reollback-recovery protocols in message-

passing system, ACM Computing Surveys, 34(3), 2002,

375-408.

IJCATM : www.ijcaonline.org

