
International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

5

Recent Trends on Consistent Global Snapshot

Algorithms for Distributed Mobile Environments

Vijaya Kapoor

Shri Venkateshwara University
Gajraula, UP (INDIA)

Parveen Kumar

Amity University
Gurgaon, Haryana (INDIA)

ABSTRACT

Mobile computing allows omnipresent and incessant access to

computing resources while the users is on the move In the

recent years the mobility issues is one of the most significant

development and effect the converging areas of computing

and telecommunications The way to compute and

communicate is changing rapidly. Failure that are rare with

fixed hosts become common , host disconnection and mobility

makes the fault detection & message coordination difficult.

The various distributed applications of mobile / wireless

environments are e-commerce , national defense , emergency

& disaster management, telecommunications , the background

studies report that snapshot is the technique used to tolerate

failures in distributed system and thus well suited for mobile

environments. There are different approaches for failure free

executions of a nodes providing fault tolerance to the existing

distributed system without fault tolerance, the application

programs or software executing in a multiprocessor

environment in a distributed system could fail entirely if even

a single process executing part of it. An efficient recovery

mechanism for distributed mobile environment is required to

maintain the continuity of computation in the event of node

failure. During the study it has been analyzed , to meet the

requirement of mobile environment the recovery algorithm

should meet the low energy consumption, reduced storage

overhead having low communication & band width

constraints.

Keywords
Fault tolerance, Coordinated snapshot, Message logging and

Mobile Distributed Systems

1. INTRODUCTION
System with more than one processor are known as

multiprocessor systems the term distributed system , parallel

system and multiprocessor system are used interchangeable.

As the number of processor increasing the system failure

probability is also high , it has been found that over 80 % of

the failure in the system are transient & intermittent . parallel

& distributed systems comprises of computing and

communication & storage resources where execution speed,

storage capacity & communication band width , reliability &

resilience are critical issues. The fault causes can be due to

environmental inferences, software bugs , physical failure of

components , violation in security , operator error. Fault

tolerance in multiprocessor systems can be addressed at two

levels. At network level faults can be handled by using

efficient fault tolerant channel allocation algorithms and fault

tolerant location management .At operating system level,

Snapshot & recovery techniques are useful. While designing a

protocol having mobile hosts the limited &vulnerable MH

local storage, cost of location, energy consumption ,open

systems , low bandwidth & high channel contention,

voluntary disconnection /connection are the Constraints of

snapshot have to be Taken into account [2]. Frequency of

snapshot, contents of snapshot, methods of snapshot are the

aspects of snapshot . The frequency of snapshot is essential in

which the substantial computation will not lose, which

necessitates frequent snapshot and consequently significant

overhead. The number of snapshots initiated should be such

that the cost of information loss due to failure is small [2].

The content of snapshot includes code, data and stack

segments along the environment and the register contents. The

environment has the information about the various files

currently in use. The Methods of snapshot used in

multiprocessor systems should incorporate explicit

coordination unlike uni processor systems. Two overheads

such as coordination overhead, context saving overhead are

the overheads in Snapshot algorithms

In coordination overhead special messages & piggybacked

information with regular messages are used to obtain

coordination among processes while in context saving

overhead, the time taken to save the global context of a

computation is defined as context saving overhead.

2. RELATED WORK
Kamani p. [1] designed and implemented a new approach for

adding fault tolerance to distributed mobile computing

environment using a new general model based on the token

ring methodology . The methods used here are transparent and

add only the little overhead to the existing system . The

proposed algorithm out performs the existing fault tolerance

algorithm. The goal is to develop a non blocking coordinated

snapshot protocol well suitable for MCS. The snapshot

request is passed as a token from higher priority process to the

lower priority process. The token comprises of dependency

information of the current process. The processes which

receives the token, takes a snapshot & updated information is

stored in the token ,with the deletion of information not

required in future. When the token becomes empty , the

process informs it to the coordinator process by a special

trigger message . it is assumed that each process has a priority

value which is based on the nature of the application. Token

reaches from the last process to the initiator and it is end of

snapshot . Two versions of token ring DTRC & STRC are

used.

Sneha & Ramtek [3] presented a non blocking snapshot

coordination , a remote snapshot technique is preferred in

wireless environments in which there is a remote snapshot

server where snapshot data of mobile consumer device is kept

instead of the mobile consumer device[27]. The proposed

methods also deals with optimal CI to minimum power

consumption in wireless remote snapshot environments by

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

6

considering environmental parameters as the battery power is

most critical resource for mobile consumer device, it is

significant to identify optimal CI that reduces power

consumption . The proposed algorithm presented an

approximation method to the energy optimal CI to minimize

the expected energy expenditure using Poisson method for

mobile device.

Sarmistha Neogy[4] in the paper presented a proposal for

achieving fault tolerance in wireless as well as for mobile

computing system . The algorithm proposed used a

coordinated snapshot strategy with a well known technique

triple modular redundancy for wireless environments known

as WTMR where two MSSs and a MH will act as replicas and

second using snapshot to achieve rollback recovery from fault

. This approach causes 1)lowering of the network traffic 2)

tackles the situation of intermittent failure due to

disconnection, wireless channel saturation with traffic low

power of devices in wireless / mobile computing

environments 3) reducing power & communication overheads

using the proposed technique of the WTMR snapshot , an

architecture for a wireless system is possible without any

extra overhead added . The approximated cost of this scheme

remains low as compared with traditional coordinated

snapshot & approach taken by Byun & kim [5]

The total cost is c + (mss-1) *(cr + mss-1) * MH *M*Cr. It

can handle 2 faults simultaneously.

l.kumar[6] presented an efficient low cost synchronous min

process snapshot algorithm which fit into mobile environment

having following characteristic:

1. Maintains exact dependencies by direct dependencies &

transitive dependency

2. It piggybacks the message information onto normal

messages

3 To reduce searching cost, it maintain the information related

to updation of location of mobile host.

4 To reduce the useless snapshots , the trigger set is send after

taking forced snapshot.

5 To Maintaining record of multiple forced snapshot after

conversion of forced snapshot into permanent one.

The algorithm makes use of snapshot interval CI .As the

number of MHs increases , the searching cost is slightly

increasing 2 times as compared to Cao-Singhal algorithm. It

uses min set so, less number of MH of in active mode

consumes more power . In this algorithm , MHS take less

Number of snapshots nearest to minimum , which causes the

efficient resource utilization of mobile system , it requires

very minimum interaction between originator MH & others.

Algorithm use simple data structure due to all above said

features made this algorithm more suitable for mobile

computing environment

Parveen Kumar & Preeti Gupta [8] to optimize the

blocking of processes & minimum loss of snapshot effort the

algorithm proposed a mechanism which delay the processing

of selective message at the receiver end, only during the

snapshot period. Here min process algorithm similar to cao-

singhal , proposed scheme keeps track of direct dependency of

processes. Originator collects direct dependency vector ,

compute minimum set may receive some message which

causes addition of new members to already computed minset,

in order to keep the computed min set as it is The two

classification of message received during blocking

period.1)Message that change the dependency set of the

receiver process.2) Message that do not change the

dependency set of the receiver process. Solution to 1) type

message need to be delayed 2) type of problem is normal.

Helary [9] proposed a snapshot algorithm that uses the

concept of message waves. A wave is a flow of control

messages such that every process in the system is visited

exactly once by a control message and at least one process in

the system can determine when this flow of control messages

terminates. Wave sequences may be implemented by various

traversal structures such as a ring. On visited by the wave

control message, a process begins recording the local snapshot

Wang and Fuchs lazy snapshot coordination [10] proposed

a coordinated snapshot scheme in which they incorporated the

technique of lazy snapshot coordination into an uncoordinated

snapshot protocol for bounding rollback propagation.

Recovery line progression is made by performing

communication induced snapshot coordination only when

predetermined consistency criterion is violated. The notation

of laziness provides a tradeoff between extra snapshots during

normal execution and average rollback distance for recovery.

Higaki-Takizawa Hybrid Snapshot [22] proposed a hybrid

snapshot protocol for mobile computing system. It is a hybrid

of independent and coordinated snapshot. The mobile Hosts

take the snapshot independently whereas the fixed stations

take the coordinated snapshot. The messages sent and

received by Mobile Hosts are stored in corresponding MSS.

The algorithm has two demerits. First, using independent

snapshot protocol may cause the domino effect. Second,

coordinated and independent snapshot protocols perform

independently in mobile support stations and mobile hosts,

and do not negotiate with each other. Therefore, it is difficult

to obtain consistent global snapshots.

Rao and Naidu Snapshot Scheme with selective sender

based message logging [23] proposed a new snapshot

protocol combined with selective sender based message

logging .The protocol is free from the problem of lost

messages .The term „selective‟ means that messages are

logged only within specified interval known as active

snapshot interval, in this manner reducing message logging

overhead .All the processes take snapshots at the end of their

respective active snapshot intervals forming a consistent

global state Outside the active snapshot interval there is no

snapshot of process state. This protocol minimizes different

overheads i.e. snapshot overhead, recovery overhead,

blocking overhead. In this protocol there exists Pinitiator ,which

coordinates with all the processes to take a consistent global

snapshot. Pinitiator is responsible for invoking the snapshot

operation periodically .It sends control messages ,prepare

snapshot and take snapshot messages to all other processes

.Here the concept of active interval is introduced .The time

that elapses between two events sending „prepare snapshot

and „take snapshot‟ messages by Pinitiator to all the process is

referred to as an active interval of Pinitiator . Similarly ,the time

that elapses between two events of receiving „prepare

snapshot and „take snapshot‟ messages by any process is

referred to as an active interval of that process .The maximum

transmission delay incurred by any message to reach the

destination is assumed to be t . It is also assumed that

T>3t,Since snapshot interval is obviously greater than active

interval and length of active interval is bound to be at least

„3t‟ to survive the transmission delay of control messages and

to enable logging of computational messages. If any process

wants to send a message inside the active interval, To

continue with the process execution, initially system has to be

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

7

logged. The proposed protocol enables the system to handle

the lost messages. There are two counters maintained by each

process namely message received count (MRC) and message

send count (MSC). These counters are initialized to zero at the

start of active interval .The counts of MRC and MSC are

incremented only within the active interval .Outside the active

interval there will not be any change in their values. At time

K*T + 3*t ,the initiator sends „take‟ snapshot‟ signal to other

processes .Afterwards it takes the snapshot and exits from

active interval. In response to take snapshot, the rest of

process will take snapshot and exits from the respective active

intervals. These snapshots forms consistent global state .After

exiting from the active interval, all the processes follow their

normal operation .It implies that there is no snapshot and

logging of messages outside the active snapshot interval .In

case of any failure ,every process rolls back to its latest

snapshot and necessary messages will be replayed from stable

storage to reconstruct the previous state of the whole system

.If failure occurs after all processes exited from their

respective active intervals, then the application rolls back to

the latest consistent global state namely „g‟; else if failure

occurs before one of the processes exits from their respective

active intervals ,then the application rolls back to previous

global state namely „g-1‟.

Juang- Venkatesan [24] proposed an asynchronous snapshot

scheme for distributed systems. Since their algorithm is based

on asynchronous snapshot. The main issue in the recovery is

to find a consistent set of snapshots to which the system can

be restored. The recovery algorithm achieves this by making

each process keep track of both the number of messages it has

sent to other processes as well as the number of messages it

has received from other processes. Recovery may engage

numerous iterations of rollbacks by processes whenever a

process rolls back. It is obligatory for all other processes to

find out if any message sent by the rolled back process has

become an orphan message Orphan messages are discovered

by comparing the number of messages sent to and received

from adjoining processes. If the number of messages received

by processor P1 from process P1 is greater than the number of

message sent by process P2 to process P2 according to the

current states of the processes. Then one or more messages at

process P1 are orphan messages. In this case process P1 must

roll back to a state where the number of messages received

agrees with the number of messages sent.

Basu et al Mobility Based Scheme [25] proposed a snapshot

algorithm in which they took the mobility of the nodes as the

basis of the algorithms. They considered both location

distance between MSSs and mobility to take snapshot

decisions. They showed that the recovery probability

increases as the failure rate increases in a distributed mobile

system and the movement of mobile hosts does not affect the

recovery time much. Wireless media is vulnerable to different

types of attacks. There may be various malicious nodes trying

to enter into secured network. In this algorithm, an additional

attempt of incorporating security is made by authentication of

a Mobile Host when it enters into the network, by using public

key method.

Bidyut Gupta Shahram Rahimi and Ziping Liu [14] had

presented a non-intrusive coordinated snapshot algorithm

suitable for mobile environments. The merits make the

proposed algorithm appropriate for mobile distributed

computing systems are following merits: (a) The proposed

algorithm does not take any temporary snapshot and hence the

overhead of converting temporary snapshot to permanent

snapshot is eliminated.(b) The proposed algorithm does not

exploit mutable snapshots. Hence the overhead of converting

them to permanent ones is eliminated. (c) Their algorithm

allow any process to take zero snapshot. It uses very few

control messages and participating processes are interrupted

less number of times[14]. Algorithm Non-intrusive produces a

CGS(consistent global state) of the system. In first two steps

of algorithm for the initiator process Pi identifies all

application messages received from different processes that

might become orphan if it takes a snapshot by looking at its

dependency vector. The initiator then sends primary snapshot

requests to all those processes that have sent at least one

message to it asking them to take their respective snapshot.

Consider the pseudo code for any process Pj. Process Pj makes

certain that all processes from which it has received messages

also take snapshot so that there are refusal of orphan messages

that it has received In second else if block of the pseudo code

process Pj first takes its snapshot if needed then processes the

piggybacked application message[14] .Hence such a messages

cannot be orphan .Hence the algorithm generates a consistent

global state of the system.

Lai and Yang’s[17] global snapshot algorithm for non-FIFO

systems is based on two observations on the role of a marker

in a FIFO system. The first observation is that a marker

ensures that condition C2 is satisfied for LSi and LSj when the

snapshots are recorded at processes pi and pj respectively.

The Lai-Yang algorithm accomplish this role of a marker in a

non-FIFO system by using a coloring scheme on computation

messages that works as follows :Every process is initially

white and turns red while taking a snapshot. The

corresponding of the “marker sending rule” is executed when

a process turns red. Every message sent by a white (red)

process is colored white (red). Thus a white (red) message is

a message that was sent before (after) the sender of that

message recorded its confined snapshot. Every white process

takes its snapshot at its ease, but no later than the moment it

receives a red message.

Thus, when a white process receives a red message, it records

its local snap-shot before processing the message. This

ensures that no message sent by a process after recording its

local snapshot is processed by the destination process before

the destination records its confined snapshot. Thus, an

explicit marker message is not required in this algorithm and

the “marker” is piggybacked on computation messages using

a coloring scheme.

The second observation is that the marker informs process pj

of the value of [send (mij) send (mij) ∈ LSj} so that the state of

the channel Cij can be computed as transit (LSi, LSj). The Lai-

Yang algorithm fulfills this role of the marker in the following

way: Every white process records a history of all white

messages sent or received by it along each channel. When a

process twist red, it sends these histories along with its

snapshot to the initiator process that collects the global

snapshot. The originator process evaluates transit (LSi, LSj) to

figure out the state of a channel Cij as given below:

SCij=white messages sent by pi on Cij – white messages

received by pj on Cij ={mij} send (mij) ∈ LSi} – {mij} rec

(mij) ∈ LSj}Condition C2 holds because a red message is not

included in the snapshot of the recipient process and a channel

state is the difference of two sets of white messages.

Condition C1 holds because a white message mij is included

in the snapshot of process Pj if Pj receives mij before taking

its snapshot. Otherwise, Mij is included in the state of

channel

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

8

3. CONCLUSION
Different approaches of snapshot are reviewed, few with their

merits & demerits are described in table 1. It is reasonable to

say that stable storage latency is the major source of overhead,

as the latency of network communication decreases, network

communication overhead becomes a minor source of

overhead and It has been found that selective process

coordinated snapshot is a suitable approach to introduce the

concept of fault tolerance in mobile distributed system

transparently At last we conclude that for a consistent global

Snapshot, the algorithms has the following enviable features:

1. The time taken by snapshot algorithms should be selective

during failure free run.

2. There should be minimum Domino effect or Rollback

propagations.

3. Selective rollback should be possible.

4. Resources requirement for snapshot should be selective.

5 Recovery should be fast in event of failure .Availability of

consistent global state in stable storage expedite recovery.

Table 1. Analysis of few more Snapshot Algorithms

Ref. No year of

publication

Technique used Advantages &

disadvantages

[11],2001 A blocking

coordinated

snapshot scheme ,

issue related to

mobility

management

addressed

Solution to how

mobility can be

handled in blocking

coordinated scheme.

[12], 2001 Concept of

mutable snapshot

is used, neither

temporary or

Permanent but

can be converted

into permanent

when request for

taking snapshot

comes

Elimination of

avalanche effect.

[13] , 2007 When a process

has good

probability of

receiving

snapshot request ,

then induced

snapshot is taken

before processing

message, if

probability is not

good then process

buffers messages

till it takes

snapshot or

receive commit

message

1. Tentative

minimum set of

processes calculated

and made available

in beginning to all

the MSSs so as to

reduce blocking

time.

2.Reduced number

of useless snapshots

3.Selective

messages are

delayed at receiver

end so to allow

process to send

message during its

blocking period.

[14],2006 Proposed a single

phase non

blocking

coordinated

snapshot

approach for

mobile computing

environment

Disadvantages: It

does consider the

case of failure

during the snapshot

operation which

may result in

inconsistent state of

the processes.

[26],1996 The protocol uses

local timer which

is able to store

recoverable

consistent states

of the application

without having to

exchange

messages

Advantages: 1.The

first global state is

used to recover the

permanent and then

to recover transient

as well as soft

failures.

2. Provide QOS to

the current network.

[16], 1998 This algorithm is

based under the

chandy &

lamport‟s

assumption that

one consistent

global snapshot is

obtained for a set

of concurrent

snapshot

initiations

Advantages: 1. Total

number of snapshots

are minimized

2. Reuse of snapshot

in a consistent

global snapshot

3. Optimal

algorithm

4. REFERENCES
[1] Kanmani P. “ Fault Tolerance Using Token Ring

Checkpointing In Dmcs “ , 2014

[2] S. Kalaiselvi & V Rajaraman “ A Survey Of

Checkpointing Algorithms For Parallel & Distributed

Computers “ sadhana October 2000, Volume 25, Issue

5, pp 489-510

[3] Sneha & Ramtek “ An Optimal Checkpointing Interval ,

A Novel Checkpointing Approach For Mobile Consumer

Devices , IJARCSSE ,Volume 4, Issue 3, March 2014

ISSN: 2277 128X, 2014.

[4] Sarmistha Neogy “ Wtmr – A New Fault Tolerance

Technique For Wireless & Mobile Computing Systems

“Future Trends of Distributed Computing Systems, 2007.

ftdcs '07. 11th IEEE international workshop pp 130 –

137,ISSN 1071-0483

[5] Kyne-Sup BYUN, Sung_Hwa LIM, Jai-Hoon KIM,“

Two-Tier Checkpointing Algorithm Using MSS in

Wireless Networks”, IEICE Trans. Communications, Vol

E86-B, No. 7, pp. 2136-2142, July 2003.

International Journal of Computer Applications (0975 – 8887)

Innovations in Computing and Information Technology (Cognition 2015)

9

[6] L.Kumar , M.Misra,R.C Joshi “ Low Overhead Optimal

Checkpi For Mobile Distributed System “ IEEE

International Conference On Data Engineering pp 686-

888 , 2003 .

[7] Anil Kumar , Mukesh Kumar , Parveen Kumar “

Minimum Process Synchronous Checkpointing In

Mobile Distributed Systems “ IJCA, International

Journal of Computer Applications (0975 – 8887),

Volume 17– No.4, March 2011

[8] Parveen Kumar & Preeti Gupta “:A Mini Process Global

State Detection Scheme For Mobile Distributed System.

International Journal of Computer Applications (0975 –

8887) ,Volume 3 – No.10, July 2010

[9] Hélary j. M., mostefaoui a. And raynal m.,

“Communication-Induced Determination of Consistent

Snapshots,” Proceedings of the 28th International

Symposium on Fault-Tolerant Computing, pp. 208-217,

June 1998.

[10] Wang Y. and Fuchs, W.K., “Lazy Checkpoint

Coordination for Bounding Rollback Propagation,” Proc.

12th Symp. Reliable Distributed Systems, pp. 78-85, Oct.

1993.

[11] Suparna Biswas and Sarmistha Neogy : A Low Overhead

Checkpointing Scheme For Mobile Computing

Systems”, int. Conf. Advances computing and

communications , IEEE 2007 , pp: 700-705

[12] Cao G. and Singhal M., “Mutable Checkpoints: A New

Checkpointing Approach for Mobile Computing

systems,” IEEE Transaction On Parallel and Distributed

Systems, vol. 12, no. 2, pp. 157-172, February 2001.

[13] Cao G. and Singhal M., “Checkpointing With Mutable

Checkpoints”, Theoretical Computer Science, 290(2003),

pp. 1127-1148.

[14] Jayanta Datta “A Fast and Efficient Non-Blocking

Coordinated Movement-Based Check pointing

Approach for Distributed Systems” International Journal

Of Computational Engineering Research / ISSN: 2250–

3005, IJCER | Jan-Feb 2012 | Vol. 2 | Issue No.1 | 136-

142

[15] Y. Manable, “A Distributed Consistent Global

Checkpoint Algorithm with Minimum Number of

Checkpoints”, Proceedings of 13th International

Conference on Information Networking (ICOIN'98), pp.

549-555, January 1998

[16] B. Gupta, S. Rahimi, Z. Lui, “A New High Performance

Checkpointing Approach for Mobile Computing

Systems”,(IJCSNS), Vol. 6, No. 5, pp. 95-104, May

2006.

[17] H. Lai and T.H. Yang,“ On Distributed Snapshots”,

Information Processing Letters, vol. 25, pp. 153-158,

1987.

[18] Acharya A. and Badrinath B. R., “Checkpointing

Distributed Applications on Mobile Computers,”

Proceedings of the 3rd International Conference on

Parallel and Distributed Information Systems, pp. 73-80,

September 1994.

[19] Acharya A., “Structuring Distributed Algorithms And

Services For Networks With Mobile Hosts”, Ph.D.

Thesis, Rutgers University, 1995.

[20] Adnan Agbaria, William H. Sanders, “ Distributed

Snapshots for Mobile Computing Systems”, Proceedings

of the Second IEEE Annual Conference on Pervasive

Computing and Communications (Percom‟04), pp. 1-10,

2004.

[21] Badrinath B. R, Acharya A., T. Imielinski “Structuring

Distributed Algorithms for Mobile Hosts”, Proc. 14th Int.

Conf. Distributed Computing Systems, June 1994.

[22] Higaki H. and Takizawa M. “ Checkpointing Recovery

Protocol For Mobile Checkpointing “ IEEE 9th

International conference on database expert system

applications , 25-28 Aug 1998, pp 520 – 525,

[23] Rao, S., & Naidu, M.M.,“A New, Efficient Coordinated

Checkpointing Protocol Combined with Selective

Sender-Based Message Logging”, International

Conference on Computer Systems and

Applications.IEEE/ACS, 2008.

[24] Tony T-Y. Juang and S. Venkaesan “Jaug-Venkatesan

“CRASH RECOVERY WITH LITTLE OVERHEAD” IEEE,

Distributed Computing Systems, 1991., 11th

international conference,pp 454 – 461, isbn 0-8186-

2144-3

[25] Basu “A Mobility Based Metric for Clustering in Mobile

Ad Hoc 1Proc. IEEE ICDCS 2001 Workshop on

Wireless Networks and Mobile Computing, Phoenix,

AZ, April 2001.

[26] Neves & Fuchs “ Adaptive Recovery For Mobile

Environments “ in proceedings of the IEEE High-

Assurance Systems Engineering Workshop, October

1996 , pp 134 – 141.

[27] Sung-Hwa Lim “Power-Aware Optimal Checkpoint

Intervals For Mobile Consumer Devices” in:Consumer

Electronics, IEEE Transactions on (Volume:57 , Issue:

IJCATM : www.ijcaonline.org

