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ABSTRACT 

In this paper optimal control for two interacting conical tank 

process (TICTP) was designed. The optimal control is 

obtained by LQG solution with optimal kalman filter.  This 

paper describes the theatrical base and practical application of 

an optimal dynamic regulator using model based Linear 

Quadratic Gaussian (LQG) control design for nonlinear 

process. This LQG regulator consists of an optimal state-

feedback controller and an optimal state estimator. In this 

case, a performance criterion is minimized in order to 

maintain level of the water in both tanks. 
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1. INTRODUCTION 
Optimal control theory is emerging technique in advanced 

process control. In optimal control theory, the calculus 

variations and optimization techniques combined used to form 

path of controlled variable such that cost function like control 

energy and state fluctuation is minimized[1][2][3]. In general 

Model predictive control strategy is used mostly on higher 

level , the performance improvement of lower level PID loops 

gives improved performance in multivariable systems.  But 

Linear quadratic Gaussian control provides optimal and robust 

control strategy to Multivariable process[4][5].  Linear 

Quadratic Gaussian design is a optimal control theory which 

has many application in control engineering problem. This 

LQG technique widely used in Medical process controllers, in 

nuclear power plants and motor control systems.  In Linear 

Quadratic Regulator(LQR) model, the  resulting control law 

are linear with respect to state variable. The control law is 

easy to compute but the disadvantage in LQR is, it fails to 

perform well when the system is subjected to disturbances [6]. 

So the special case of controller is designed using separation 

principle [7]. The concept of Linear Quadratic regulators and 

Kalman estimator combined to form LQG control model for 

better servo and regulatory response. Linear Quadratic 

Regulator is optimal robust controller to disturbance rejection 

but for servo problem it may not track set point due to some 

model mismatch and error in the sensor output. So a Kalman 

filter used to minimize the asymptotic covariance of the 

estimation of error when the process encounter with 

disturbances [8][9][10].The state feedback gain matrix uses 

state as input from Kalman estimator not from real process. 

The optimal state feedback gain and optimal state estimator 

gain determined to form optimal LQG controller. The state 

feedback LQ-optimal gain is determined by Ricatti equation 

[11][12]. The main advantage of LQG control is that closed 

loop stability is guaranteed when the system is accurate. 

Cylindrical tanks used in many process industry for discharge 

of liquid. To control liquid level and flow in process tanks are 

still challenging problem in process industries. 

The paper is organized as follows. Section II presents the two 

interacting conical tank process modeling. LQG Controller 

design described in section III,IV. Simulation results and 

controller Performance analysis are shown and discussed in 

section V. Final conclusions are given in section VI. 

2. TWO INTERACTING CONICAL 

TANK PROCESS DESCRIPTION 

Fig 1: Schematic diagram of two interacting conical tank 

The proposed system consists of two conical tanks which are 

in the shape of an inverted cone fabricated from a sheet metal. 

The height of the process tank is 50cm and the top end, 

tapering end diameters are 40cm and 14cm. The two tanks are 

connected through an interacting pipe with valve (HV1). The 

interaction of process can be changed by position of this valve 

(HV1). It has a reservoir to store water and this is supplied 

through the pumps to the tanks. Provisions for water inflow 

and outflow are provided at the top and bottom of the tank 

respectively. Gate valves, one at the outflow of the tank1 and 

the other at the outflow of the tank2 are connected to maintain 

the level of water in the tanks. Variable Speed pump work as 

actuator and it is used to discharge the water from reservoir 

tank to process tanks. The speed of pump directly 

propositional to the input voltage. It consists of differential 

pressure transmitter for measuring the bottom pressure created 

by water level and it gives height in terms of milliamps.  

2.1. Mathematical Modelling 
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The nominal values of the parameters and variables are      

tabulated in table 1. 

Table 1. Nominal values of the parameters used 

Parameter              Description   Value 

       R Top Radius of conical tank 20 cm 

      H Maximum height of Tank1&2  50 cm 

1 2,U U  Input Voltage to pump1 & 2 0-10 V 

1 2,pp ppK K  Pump gain 75 3 . ecm V S c  

β
1
 Valve Co-efficient of MV1 50 cm2/s 

β
12

 Valve  co-efficient of Mv12 35cm2/s 

β
2
 Valve  co-efficient of Mv2 50cm2/s 

𝑎1 , 𝑎12 , 𝑎2 Cross section  Area of pipe 1.2272 𝑐𝑚2 

 

2.2. Open Loop data  
The open loop data was generated in the conical tank system 

by varying the inflow rate F1 in tank 1 and noting down the 

respective level h1 and h2 and is tabulated in Table 2. The I/O 

characteristics and linearized region of the two conical tank 

process is shown (see Figure 2). 

 

Fig 2a: U1 Vs h1                 Fig.2b: U1  Vs h2 

 

           Fig2c: U2 Vs h1                  Fig.2d: U2 Vs h2 

     Fig 2: I/O characteristics of the conical tank process 

Thus the piecewise Linearization method is used to separate 

the whole non-linear region into various regions. The 

characteristics are divided into different region. The operating 

points are found out for each region.    

 

  

Table 2. Operating conditions and the conventional state 

space and transfer function model  of the interacting 

conical tank process 

Region Operati

ng  

points 

State space Transfer function 

matrix G(s) 

     I 

h1=0-5 

h2=0-4 

U1s=2.2 

U2s=1.1 

h1s=2.5 

h2s=2.1 

6.9 4.3

6.4 10.8

7.7 0

0 11.5

1 0

 

 

0 0
;

0 1 0 0

A

B

C D
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 
  
 

   
    
   

 7.704  83.08 49.64

2 217.73  47.07 17.73  47.07

49.64 11.51  79.89

2 217.73  47.07 17.73  47.07
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    II 

h1=5-15 

h2=4-12  

U1s =4.5 

U2s =2.1 

h1s=10.1 

h2s=8.1 

0.22 0.13

0.21 0.35

0.49 0

0 0.75

1 0 0 0
;

0 1 0 0

 

A

B

C D

 
  

 

 
  
 

   
    
   

 
0.49  0.17 0.10

2 20.568 0.048 0.568  0.048

0.10 0.75 0.16

2 20.568  0.0486 0.568  0.048

s

s s s s

s

s s s s

 
 

    
 
 
     

 

   III 

h1=15-

25 

h2=12-

20  

U1s=7 

U2s =2 

h1s=20.9 

h2s=13.8 

0.02 0.016
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0 0.26

1 0 0 0
;

0 1 0
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3. MULTI LOOP CONTROLLER 

DESIGN 
The most attractive advantages of multiloop control system is 

simple controller structure and easiness to handle loop failure. 

The Variable pairing is selected by Relative gain array 

method. The influence between inputs on outputs is calculated 

and the high influence input and output pair is chosen for 

control. The input1 (voltage applied to pump1) is paired with 

output1 (height of tank1) and input2 (voltage applied to 

pump1) is paired with output2 (height of tank2). 

 
                    Fig 3: Multiloop Control Scheme 

PI controller transfer function is  
( )

p ik s k
Gc s

s

 
  
 

 

The second order transfer function is reduced into first order 

plus dead time and diagonal transfer function is tuned using 

Ziegler Nichols method.  
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Table.3  CDM based PI and ZN based PI values for 

TICTP 
Conical Transfer  Function 

FOPDT 
ZN based PI 

Loop1 Loop2 


























165.24

727.4

129.66

576.2

129.66

576.2

122.51

227.5

11

11

S

e

S

e

S

e

S

e

ss

ss

 Kp=8.827 

Ki=2.758 

Kp=4.711 

Ki=1.535 

4. LINEAR QUADRATIC GAUSSIAN 

CONTROLLER DESIGN 
Linear-quadratic-Gaussian (LQG) control is a modern state-

space technique which uses a state-space model of the plant. 

The model of process will not be a perfect replica of real 

process. The real time system is corrupted by noise and 

disturbance. The state space model of system which is 

affected  by  process  noise  „w‟  and measurement  noise  „v‟  is 

given below, 

 
Fig4 : Block diagram of LQG Regulator 

 

      wGuBxAx                   (3) 

vwHuDxCy                  (4) 

 

Assume w and v  are white noises.LQG regulator consist of 

kalman state estimator and optimal feedback gain. The rank of 

controllability and observability matrix of system is same as  

number of state of process. So the system is fully observable 

and controllable.  Estimator can be used for estimate all the 

states.  

The performance of LQG control is measured by performance 

index, 

  dtuRuxQxuJ TT





0

)(                (5) 

Minimum values of J(u) represents minimum effect of 

controller  energy  „u‟  and  minimization  of  state  variable 

changes in process. The selection of Q and R matrix is logical 

and meaningful. The Q and R matrixes selected for minimum 

value of performance index j(u) which means that the 

minimization of square of manipulated input and 

minimization of square of state variables fluctuations. In 

MIMO process, Influences between each input and output 

variables varies. The weightage for each manipulated variable 

varies based on the impact of output variables. The weighting 

matrices Q,R are fixed for minimizing the J(u). Q,R are the 

controller design parameters , large Q penalizes transients of x 

, large R penalizes usage of control action „u‟.  

The state feedback gain is fixed for the minimum value of 

J(u).  This  minimization  of  gain  matrix  „K‟  find  by  solving 

Riccati equation[11][12]. The regulator response of this linear 

quadratic regulator will be never affected by disturbance. But 

the setpoint tracking is not possible in LQR controller. The 

law  of  LQR  controller  is  “u=-kx”  that  reduce  the  state 

fluctuation. Normally this gain is called state feedback gain or 

LQ-optimal gain.  Control action is based on the state of 

process, if there is error in process state measurement due to 

model mismatch and noise, then controller will take action 

only for error measurement. To avoid this issue, kalman 

estimator is used to estimate the state of process.To form the 

LQG regulator, simply connect the Kalman filter and LQ-

optimal gain K as shown (see Figure 5).   

                       
Fig 5: Linear quadratic Gaussian controller 

 
State cannot be fully measurable in real time system, so the 

states are estimated based on the output. This regulator has 

state-space equation is   

uBxAx  ˆ̂                                              (6) 

Estate estimated error xxe ˆ ,  

Dynamic equation of error is             

AexAxAe  ˆ                                                    (7) 

The error goes to zero asymptotically when the State matrix A 

is stable. If the state matrix A is unstable then error become 

uncontrollable and estimated states x̂  grows further apart 

from process state x. So correction term L is introduced to 

provide direct corrective action to minimize the model error. 

)ˆ(ˆˆ yyLuBxAx                             (8) 

where 0)0(ˆ x     

xCy ˆˆ                                                   (9) 

But in real time process, states are generally corrupted by  „w‟ 

is process noise and „v‟ is measurement noise. State space 

model of noise corrupted system is model in equation 6,7. 

Now error dynamic of observer changes due to corrupted 

white noise. 

vLweLCAe

xCvxCLuBxAwuBxAe





)(

)ˆ(()(




     (10)        

The error estimation will not go to zero because of process 

noise „w‟ and measurement noise „v‟. So LQG technique, the 

output-feedback problem reduced by the estimated state. 

Assume the measurement noise v and process noise w are 

uncorrelated zero mean Gaussian white noise. Kalman filter is 

robust filter and very good optimal estimator when the system 

affected by Gaussian white noise. Specifically, it minimizes 

the asymptotic covariance of the estimation error xx ˆ .     

                 
 T

t
xxxxE )ˆ()ˆ(lim 

              (11) 

The optimal Kalman gain L minimizes 2
)(teE   is 

1*  VPCL . where P is the unique positive- semi definite 

solution of the ARE 

          01**   WPCVCPPAAP                (12) 
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Kalman filter is equivalent to designing an LQR controller on 

the dual system (A*,C*,B*,D*) with Q = W, R = V. The 

system is fully observable and controllable. So, this estimated 

state given to the kalman gain L. 

5. DESIGN OF LQG CONTROLLER 

FOR TICTP 
 Steps for Designing Linear Quadratic Gaussian Regulatory, 

i. Check for controllability and observability of the 

system. 

ii. Choose Q and R such that Q = MTM, with (A,M) 

detectable, and R = RT > 0 

iii. This equation is the matrix algebraic Riccati 

equation (MARE), whose solution P is needed to 

compute the optimal feedback gain K. 

iv. Solve the Riccati equation   PA + ATP + Q – PBR-

1BTP = 0, And compute K = R-1BTP,Simulate the 

initial response of 
.

( )x A BF x   for different 

initial conditions. 

v. If the transient response specifications and/or the 

magnitude constraints are not met, and again step 1 

is considered to re-choose the value of Q and R.   

 

5.1. Checking of Controllability and 

Observability  
The controllability of matrix depends on A and B matrix and 

observability of system depends on matrix A and C matrix. 

The system is said to be fully observable if all the states of 

system can be externally measured.   

A system is controllable if condition W is satisfied 

W:  rank [B AB …….An-1 B] = n          (13) 

Therefore the value of     
                      0.114 0 0.003 0.004

0 0.26 0.004 0.020
W

 
  

 

                                     

And rank (W) = 2, Finally the system satisfies the condition 

W, therefore the system is controllable. 

A system is observable if condition M is satisfied 

 M: rank 

1

.
n

C

CA
n

CA 

 
 
  
 
 
 

                       

(14)

  

 

Therefore the value of 
1 0

0 1

0.0298 0.0162

0.0375 0.0760

M

 
 
 
 
 

   

 

And rank (M) = 2; The system satisfies the condition M, 

therefore the system is observable.  

Here the system is both controllable and observable. 

Therefore the design of LQG controller is possible. Since the 

third region of TICTP is considered for the design of LQG 

controller. Similarly it will be designed for rest of the region. 

The state space for third region is   

0.0298 0.0162 0.1140 0
;

0.0375 0.0760 0 0.2629

1 0 0 0
;

0 1 0 0

A B

C D

   
    

   

   
    
   

                      (15) 

1 0

0 1
nQ

 
  
 

 ; Equal weightage given to state h1 and h2 of 

the tank. And 1 0

0 1
nR

 
  
 

 fixed for minimizing the 

controller energy and state variation. 

1 0

0 1
nQ

 
  
 

; 1 0

0 1
nR

 
  
 

                               (16) 

The row size of QN specifies the length of w and NN is set 

to 0 when omitted. By means of kalman filter, the estimated 

states are found

                  

 

0.119 0.0005

0.0208 0.275

0.089 0.0167

0.0167 0.1994

1 0 0 0
;

0 1 0 0

A

B

C D

  
  

 

 
  
 

   
    
   





 
                (17) 

Kalman returns the estimator gain L and the steady-state error 

covariance P (solution of the associated Riccati equation). 

 
1

10 , 0,

( ), ( )

T

T T

T T

L PC R

AP PA PC R CP Q P

Q E ww R E vv







    

 

           (18) 

From the above equation A,B,C,D,R,Q can be substituted and 

can find the value of P, With the help of all those values, the 

state feedback „L‟ can be easily found and can be used for 

designing an LQG controller for TICTP.     

                   0.0891 0.0167

0.0167 0.1994
P

 
  
 

  
The state feedback gain will be   

                          0.089 0.017

0.017 0.199
L

 
  
 

 

6. ANALYSIS 
Two interacting conical tank system was analyzed by 

developing simulation model. The interaction of this process 

is highly nonlinear. So piecewise linearization method is used 

to separate the whole non-linear region into various linear 

regions. The characteristics are divided into different region. 

The operating points are found out for each region.   Linear 

state space format is obtained for four different regions by 

using jacobian matrix method.  

The combination of state estimator and state feedback LQ 

gain will be LQG controller for TICTP. Thus the calculated 

values are used for obtaining the proper LQG controller which 

helps to reject disturbance and to track set point accordingly. 

According to the process interaction, Q and R values are 

chosen. Since in TICTP, the interaction is equal Q and R 

matrix chosen as [1 0; 0 1] and respective gain value is used 

in state feedback. For third linear region Linear Quadratic 

Gaussian regulatory was designed.              

The response of disturbance rejection at steady sate is shown 

(see Figure 6) and performance validation between LQG and 

PI is tabulated in table.4. The disturbance is applied to study 

the regulatory performance. At 300sec and 400sec positive 

disturbance is applied to both tanks. The disturbance is 

rejected quickly by LQG controller.   
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Fig 6: Regulatory response of LQG controller 

Table.4 Performance Indices for Regulatory Response of 

LQG and PI controller 

Control 

Strategy 

IAE ISE ITAE 

PI Loop1 237.1 1816 9772 

Loop2 113.4 1024 3349 

LQG Loop1 146.37 1173 2683 

Loop2 81.21 877.5 1395 

 

The servo and regulatory response of LQG and PI controller is 

shown (see Figure 4). The small overshoot can be eliminated 

by proper selection of integral gain. For this simulation 

response integral gains chosen by trial and error method. The 

LQG controller response is very smooth and servo tracking of 

process variable is good. Initially the set point for h1 and h2 

are about 24cm and 14cm respectively. At the time of 500s, 

the height of the tank1 and tank2 are 20cm and 18cm changed 

respectively, the controller keeps on tracking the changed 

setpoint, and disturbances applied at 400sec, 800 sec to check 

the behavior of the controller. The LQG controller tracks the 

setpoint and rejects the disturbance effectively. The 

performance of LQG controller is compared with PI controller 

and tabulated in table.5. The disturbance rejection of LQG is 

guaranteed.                                                                                                                                                                                                                                                                   

 
 

   Fig 7 : Servo and Regulatory response of LQG controller 

 

Table.5 Performance Indices for Servo and Regulatory 

Response of LQG and PI controller 

Control 

Strategy 

IAE ISE ITAE 

PI Loop1 336.2 3398 28680 

Loop2 110.2 752.9 13030 

LQG Loop1 256 1318 18920 

Loop2 76.49 494.8 9912 

 

 

7. CONCLUSION 
A Linear Quadratic Gaussian (LQG) control design for two 

interacting conical tank system has been investigated to 

achieve robust properties. The Linear Quadratic Regulator 

(LQR) designed by minimizing a performance criterion based 

on comfort and controller energy considerations; and than a 

Kalman filter (KF) is used to estimate the state of the system. 

However, the objective of this paper has been to examine the 

use of optimal state-feedback controllers in TICTP. The 

integrator is added for servo tracking, integral constant is 

based on trial and error method. There is no standard method 

available for selection of Q and R. Here, based on the impact 

of states on process output, the Q and R matrix selected. The 

LQG controller performance is compared with ZN tuned PI 

controller. This paper has shown the dynamic behaviour of 

nonlinear multivariable system. The simulation results for 

variety of input processes shows that the method adopted in 

this research work gives better controller performance.  
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