
2nd International conference on Computing Communication and Sensor Network (CCSN-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

38

Recovery of Failures in Transaction Oriented Composite

Grid Service

Dharmendra Prasad Mahato1, Lokendra Singh Umrao2, Ravi Shankar Singh3

1,2,3

Department of Computer Science and Engineering, Indian Institute of Technology (BHU)-Varanasi, India

Abstract
Transaction Oriented Composite Grid service is a group of sub

services to be executed in Grid environment when transaction

management is used. Since Grid services are loosely coupled and

dynamic in nature, the transaction management becomes tough

task in this environment. As the number of services increase, the

chances of failures also increase due to different types of faults

occurring in the system. Therefore fault tolerant execution of

these tasks is required to maintain the reliability, availability,

dependability of the system. In this paper we have implemented

coordinated check-pointing approach to tolerate the faults so that

resiliency, reliability, availability, and dependability can be

enhanced. For recovery of the failed processes we have compared

both local node recovery and replicated node recovery by

simulating in CPN tool. Here we have considered three types of

faults such as hardware faults, communication link faults, and

software faults. All the faults have been modelled dynamically in

the simulation. The results show that the local node recovery is

better than replicated node recovery when the number of services

is minimum but in the case of large number of services the

replicated node recovery works better. Our results show that

using local node recovery we can decrease the failures by 38.86%

and when we use replicated nodes recovery we get that results

decreasing by 31.34%.

Keywords
Transaction Management, Fault tolerance, reliability, availability,

resiliency, dependability, CPN (Colored Petri Nets) tool, local

recovery, replicated recovery.

1. INTRODUCTION

Grid computing has become the next-generation parallel and

distributed computing methodology to provide a service-oriented

infrastructure that leverages standardized protocols and services

to enable pervasive access with coordinated sharing of

geographically distributed hardware, software and information

resources for solving various kinds of large-scale parallel

applications in the wide area network. However, it is a big

challenge to make service execution in grid systems in a reliable

manner [18], [11], [26].

A. Composite Grid Service

In service oriented computing applications, different re-sources in

grid systems are encapsulated abstractly as service. A grid service

is a computational unit that exists at a high abstraction level,

usually closely related to functionality for service consumers [18].

Most of the time single atomic service can not satisfy service

consumer’s requests; therefore, a new composite service which is

collection of all available qualified grid services is built [20]. But

running a composite grid service is not an easy task as the

resources and applications for execution in grid environment are

dynamic and loosely coupled [15].

B Transaction Management in Grid Environment

The interoperation of services often gets affected from

different faults like hardware faults, software faults,

communication faults, byzantine faults, service expiry faults [5].

Hence selection of transactional grid services will guarantee

reliable composition execution [2], [20]. If transactional

composite grid services are successfully executed, the grid

system will be in a consistent position even instead of fault-

occurrence. But, co-ordination transaction for composite grid

service is difficult, due to

1) Transaction co-ordination in composite grid service is

often time consuming owing to interaction amongst users and

latency.

2) Grid services are autonomous hence locking of needed

resources is challenging.

3) Transaction always suffers from missing messages as

communication is unreliable.

4) Services in grid environment are loosely coupled.

5) If transaction is implemented, the reliability is ensured

but execution suffers from some faults [2], [19].

C Reliability of Grid Service

 QoS-aware-grid service is affected when transaction-aware grid

service is implemented. Hence both QoS-aware and transaction-

aware grid service composition is required. Research has shown

that the grid system, composed of thousands of heterogeneous

resources located at disjoined domains, is very prone to failures

due to its extreme complexity. Moreover, the likelihood of failure

occurrence is often increased by the fact that many grid services

requested by grid users will perform time-consuming tasks that

may require several days or even months of computation.

Therefore, it is very crucial to assure the quality and reliability of

grid service so as to guarantee the correct outcomes of requested

services to grid users. The main attributes which are really

affected by the occurrence of faults are reliability, dependability,

confidentiality, latency, availability, integrity, safety, throughput,

and maintainability. Reliability completely depends on latency,

throughput and availability factors. Dependability which is meant

as trust on the system to execute the services correctly and

successfully depends on reliability and availability factors [3], [7].

Hence we can notice that reliability is the important factor which

is to be enhanced. As one of the important measures of quality of

service (QoS), grid service reliability is considered to be one of

the most critical and important issues in grid systems. With any

application requirement, a corresponding service combined with

the desired operations is created. Under the control of the

resource management system (RMS), the service is supposed to

execute certain task in the form of software programs. Grid

service reliability is defined as the probability that all programs

involved in the considered service are executed successfully.

Recently, grid service reliability has attracted substantial research

and attention [17].

D Fault Tolerant Execution of Grid Service

The faults which occur during the execution of the trans-action

oriented grid services are Byzantine faults caused by many types

2nd International conference on Computing Communication and Sensor Network (CCSN-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

39

of faults such as hardware faults, communication link faults, and

software faults. Therefore, for efficient execution of these

services, fault tolerant mechanism is required by tolerating these

Byzantine faults. Fault tolerance in grid environment is a

necessary requirement so that that the system can continue even

in the occurrence of faults [22].

Therefore, Co-ordinated Check-pointing fault tolerant

mechanism which is well suited in this scenario must be required

to enhance the reliability with efficient resource utilization [4],

[9].

Basically the Co-ordinated check-pointing mechanism which

is the commonly used mechanism for fault tolerance stores the

information of the current application state, and then it is used for

resuming the execution in case of failure [11], [13], [14], [24].

E Star Topology

How computational grid executes transaction oriented

composite grid services are as follows:

The Open Grid Services Architecture (OGSA), widely

adopted in industry and research, can develop a grid from a

computing grid, data grid, or other dedicated grids to a service

grid. We can say that a grid consists of a distributed server where

all applications are provided in packages as services. Users

submit their jobs to the grid client as service requests and the

clients receives those service requests and decides sequence

according to the scheduling rules and sends the results to the

scheduler [1], [5].

1. Scheduler agent decides which one processor is to be

assigned for particular service request.

2. Now processors assign services by dividing them to

multiple sub-services and distributing them to sub-processors.

3. Thereafter, transaction management is used for reliable

execution of distributed sub-services.

4. Results (failed or successful) of the jobs are submitted to

users upon successful completion of the jobs by monitor. The

monitor agent keeps the status of progress of every service and

then sends these messages to the client, and scheduler agent.

When sub-services are completed, the results are merged and sent

to the client.

All the activities from distribution of services to different sub

services to integration of those sub services after execution are

following star topology.

F Recovery of Failed Services

In grid system there are two recoveries which can be achieved

with the help of the information taken during check-pointing, 1)

Local faults recovery; 2) Migration faults recovery [2]. Migration

fault recovery: When failures occur at a grid node, the check-

pointing information is migrated to other node at which the

execution of sub-service is to be restarted. Local fault recovery:

When sub-service is resumed on the same node where fault has

occurred after recovery. This type of recovery is known as local

fault recovery. It is better than migration fault recovery because it

can save the migration time. But in the case of maximum number

of services the replicated or migration recovery is better than

local recovery [14], [1].

2. PROBLEM STATEMENT

How computational grid executes transaction oriented composite

grid services are as follows:

i. Users submit their jobs to the grid client as service requests and

the clients receives those service requests and decides sequence

according to the scheduling rules and sends the results to the

scheduler.

ii. Scheduler agent decides which one processor is to be assigned

for particular service request.

iii. Now processors assign services by dividing them to multiple

sub-services and distributing them to sub-processors of

processors.

iv. Thereafter, transaction management is used for reliable

execution of distributed sub-services.

v. Results (failed or successful) of the jobs are submitted to users

upon successful completion of the jobs by monitor. The monitor

keeps the status of the progress of every service and then sends

these messages to the client, and scheduler agent. When sub-

services are completed, the results are merged and sent to the

client.

But, such a computational transactional oriented grid

environment consists of two major draw backs:

a. If a fault occurs at a grid resource, the whole job is roll backed

or aborted to maintain the ACID properties (Atomicity,

Consistency, Isolation, and Durability) of transaction. This leads

to inefficient use of resources as most of the successful executed

sub-services are also roll backed. [10]

b. In grid environments, the resources accomplish the norm of

deadline limitation, but they have an inclination to failure. In this

situation, the scheduler selects the same resource that the grid

resource has promised to meet the requirements of the user.

For the first problem, a job check-pointing strategy has been

proposed to tolerate the faults, because it can restart the partially

completed job from the last checkpoint. For the second problem,

the check-pointing strategy should be made adaptive.

Thus, the checkpoint can be introduced whenever it is necessary.

The application can only be restarted from the last known state, if

the checkpoint is available. To increase the availability of

checkpoint, Co-ordinated Check point Scheme can be used.

Using this scheme, the current application state can be taken at

any time. Simulation experiments show that the proposed fault

tolerance mechanism is able to tolerate the faults by taking

appropriate measures. [1]

3. METHODOLOGY

The Co-ordinated Checkpointing proposed here considers fault

tolerance in transaction oriented grid environment to optimize

user-centric metrics like execution time and jobs completed

within deadline even in the presence of faults. In general, a fault

in grid environment occurs when a resource is not able to

accomplish its job in a given time limit. When a fault like this

occurs, the information about fault occurrence at the grid

resource is updated. This information of fault occurrence is used

while making a job check-pointing before allocating job to the

grid resource [25]. Generally when a fault occurs at a grid

resource, the service whose sub service executes at this resource

is roll backed or is aborted. Hence the resource utilization is very

much affected. Using Co-ordinated Checkpointing approach the

sub-service which faces failure is not roll-backed but is again

rescheduled for the execution so that better resource utilization

can be guaranteed [20], [1].

4. EXPERIMENT AND

IMPLEMENTATION

Here we have used Coloured Petri Nets tool for the simulation of

our approach. CPN is a language for modelling and validation of

system in which concurrency, communication, and

synchronization play a major role. This language makes it

possible to organize a model as a set of modules, and it includes a

time concept for representing the time taken to execute events in

the modelled system. Using CPN, information can be modelled

by tokens and types of information can be modelled by the token

colours. First of all Null Hypothesis has been modelled in which

the transaction management works without fault tolerance

2nd International conference on Computing Communication and Sensor Network (CCSN-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

40

mechanism. Then Alternate Hypothesis has been modelled with

fault tolerance mechanism where number of failed process

becomes less compared to the first model. Here the model

consists of three participants agents: clients, processors, sub

processors and two control agents: scheduler, and monitor. We

assume that there are 100 clients, 100 processors, and 10 sub

processors for every processor in a grid environment. Here the

control agents are used to schedule, dispatch, and monitor grid

services. At first service requests are sent to the client agent from

the users [27], [28].

end

Job

message2
client

Work_status

service
requirement

Job

message2

dispatcher

Work_status

dispatched

service

Work

sub_servicesub_Work Transacton

sub_Work_status

Transaction
status

sub_Work_status

monitor
record

Work_status

request

Job

aborted

Job

CLIENTCLIENTCLIENT

````MONITORMONITOR

SCHEDULERSCHEDULERSCHEDULER PROCESSORPROCESSORPROCESSOR
TRANSACTION 

MANAGER
TM2TM2

DATAGENDATAGENDATAGEN

PROCESSOR_XPROCESSOR_XPROCESSOR_X

((((c,sit),str,tsi,at,wt,pt),p),st)

((((c,sit),str,tsi,at,wt,pt),p),st)

((c,sit),str,tsi,at,wt,pt)

((((c,sit),str,tsi,at,wt,pt),p),st)

((((c,sit),str,tsi,at,wt,pt),p),st)
((((c,sit),str,tsi,at,wt,pt),p),st)

assign(((c,sit),str,tsi,at,wt,pt),p)

((c,sit),str,tsi,at,wt,pt)

((c,sit),str,tsi,at,wt,pt)

((((((c,sit),str,ts i,at,wt,pt),p),s,pod_it),proctime),ps)

((((((c,sit),str,tsi,at,wt,pt),p),s,pod_it),proctime),ps)

((c,sit),str,tsi,at,wt,pt)

((c,sit),str,tsi,at,wt,pt)

((((c,sit),str,tsi,at,wt,pt),p),s,pod_it)

((((((c,sit),str,tsi,at,wt,pt),p),s,pod_it),proctime),ps)

((((c,sit),str,tsi,at,wt,pt),p),st)

((((((c,sit),str,tsi,at,wt,pt),p),s,pod_it),proctime),ps)

 
Fig.1.CPNGRID 

 
The service requests are then transferred to the scheduler. The 

scheduler agent receives the service request and decides its 

sequence according to the schedule rules and dispatches these 

results to processor agent. Also the scheduler agent decides 

which one processor to execute the service request. 

dispatched 
service

In WorkIn

Transaction 
status

In

sub_Work_status

In
monitor
record

Out

Work_status

Out

sub_service

Out

sub_Work

Out

sub_Work

Work_status

receive0
Transaction 

start
TM1TM1

Transaction
complete

TM4TM4

(((c,sit),str,tsi,at,wt,pt),p)

assign(((c,sit),str,tsi,at,wt,pt),p)

initialize()

((((c,sit),str,tsi,at,wt,pt),p),st)

((((c,sit),str,tsi,at,wt,pt),p),received_order)

if  ps=rollback
then 1`((((c,sit),str,tsi,at,wt,pt),p),s,pod_it)
else empty

((((((c,sit),str,tsi,at,wt,pt),p),s,pod_it),proctime),ps)

((((c,sit),str,tsi,at,wt,pt),p),received_order)

 
Fig.2.Loacal Recovery 

 
For the execution of the service requests of the clients, sub 

service requests are transferred by processor agent to sub 

processor agent. Information to the client is sent that the monitor 

has accepted requests of the service. Thereafter, after tracking the 

progress status of service, the monitor agent sends these 

messages to the client and the scheduler agent. Fig.1 shows the 

Grid infrastructure in CPN. Fig.2 represents the implementation 

of Local node recovery and Fig.3 represents the implementation 

of Replicated node recovery in CPN. 

dispatched 

service

In WorkIn

Transaction 

status

In

sub_Work_status

In
monitor

record
Out

Work_status

Out

sub_service

Out

sub_Work

Out

sub_Work

Work_status

sub_Work

receive0
Transaction 

start
TM1TM1

Transaction

complete
TM4TM4

(((c,sit),str,tsi,at,wt,pt),p)

assign(((c,sit),str,tsi,at,wt,pt),p)

initialize()

((((c,sit),str,ts i,at,wt,pt),p),st)

((((c,sit),str,ts i,at,wt,pt),p),received_order)

((((((c,sit),str,tsi,at,wt,pt),p),s,pod_it),proctime),ps)

((((c,sit),str,ts i,at,wt,pt),p),st)

if  ps=rollback

then 1`((((c,sit),str,tsi,at,wt,pt),p),s,pod_it)
else empty

((((c,sit),str,tsi,at,wt,pt),p),not_complete)

((((c,sit),str,tsi,at,wt,pt),p),s,pod_it)

Fig.3.Replicated Recovery 

 
For ensuring reliable execution of services in grid environment, 

transaction management is needed. In general, when transaction 

management is used in distributed grid environment, roll back or 

abort of even one sub service due to failure occurrence on link or 

node causes the roll back and abort of whole service to fulfil 

ACID properties of transactions. This leads to less utilization of 

resources. 

After the completion of sub services, the results are merged and 

sent to the client. After getting the delivery, the client replies and 

sends acknowledgement to the processor [21]. 

5. RESULTS 

We have compared the results of the three models; the first 

without fault tolerance mechanism, second with fault tolerance 

mechanism tolerating hardware fault and communication faults, 

and third with fault tolerant mechanism tolerating hardware faults, 

communication faults, and software faults. We have compared 

the results when recovery is done on local nodes and replicated 

nodes. 

Here Fig.4 shows number of failed services of null and alternate 

hypotheses against time. 

 

0

20

40

60

80

100

120

140

100 200 250 300 350 400 450 500 550 600

Fa
ile

d 
Se

rv
ic

es

Time

Null Alternate-local Alternate-replicated

 
Fig.4. Time Vs Failed Services  

 
Here Fig.5 shows how loads vary on different scenarios after 

fault tolerance mechanism is implemented. 

 



2nd International conference on Computing Communication and Sensor Network (CCSN-2013)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

41 

0

50

100

150

200

250

300

350

100 200 250 300 350 400 450 500 550 600

Lo
ad

s

Time 

Null Alternate-local Alternate-replicated

 
Fig.5. Time Vs Loads  

 
The Fig.6 indicates the successful services against time in 

different scenarios after fault tolerance implementation. 

The results show that the local node recovery is better than 

replicated node recovery when the number of services is less but 

in the case of large number of services the replicated node 

recovery works better. Our results show that using local node 

recovery we can decrease the failures by 38.86% and when we 

use replicated nodes recovery we get that results decreasing by 

31.34%. 

 

0

50

100

150

200

250

300

350

100 200 250 300 350 400 450 500 550 600

Su
cc

es
sfu

l S
er

vic
es

Time

Null Alternate-local Alternate-replicated

 
Fig.6. Time Vs Successful services  

6. CONCLUSION 

This paper analyses fault tolerance mechanism in grid system and 

presents the modelling of composite grid service reliability 

considering fault recovery when transaction management is used. 

Under these constraints, grid service reliability is modelled and 

analysed. Although the modelling and analysis of grid service 

reliability in our work are based on some simplified assumptions, 

our work addresses the important issue of adopting fault tolerance 

mechanism in grid system, and the models developed could be of 

practical use. 

As for the implementation of fault recovery in grid resources, it 

can be achieved by embedding fault recovery module in grid 

clients located at grid nodes. In the module, there are some 

options, such as the allowed life times of grid subtasks and the 

allowed numbers of recoveries performed. By those options, 

resources providers can be free to choose appropriate fault 

recovery strategies according to the local situations. Yet more in-

depth research on grid service reliability modelling and analysis 

is needed. For example, in realistic grid system, some precedence 

constraints on the order of subtask execution may be imposed and 

the usage amount of grid resources may be dynamic during the 

execution of grid subtask. 

Here in the simulation we have seen that the recovery can be 

achieved by using both of the recovery methods either local 

recovery or replicated recovery. We have seen that local node 

recovery is better than replicated recovery, but in minimum 

number of services executing in the environment. For maximum 

number of services it is better to use replicated recovery. 

During the simulation we have also seen that the load on the 

network increases when we use checkpointing mechanism. In our 

future work we will work on load balancing when checkpointing 

mechanism is used in transaction oriented composite grid service.                  

REFERENCES 

[1]  Guo, Suchang, Hong-Zhong Huang, and Yu Liu. "Modeling 

and Analysis of Grid Service Reliability Considering Fault 

Recovery." New Generation Computing 29.4 (2011): 345-

364. 

[2] Bohm, Matthias and Habich, Dirk and Lehner, Wolfgang 

and Wloka, Uwe “An advanced transaction model for 

recovery processing of inte-gration processes”, ADBIS 

(local proceedings), pp.90–105, 2008. 

[3] Bolosky, W. J., Douceur, J. R., Ely, D. and Theimer, M., 

“Feasibility of a Serverless Distributed File System 

Deployed on an Existing Set of Desktop PCs”, in Proc. of 

the ACM International Conference on Measurement and 

Modeling of Computer Systems 2000, ACM Press, pp. 34-

43, 2000. M. R. Yudith Cardinale, “Fault tolerant execution 

of transactional composite web services: An approach,” 

Services Computing, IEEE Transactions on, vol. 5, pp. 158 

–164, jan.-april 2011. 

[4] Affaan, M. and Ansari, M. A., Grid and Cooperative 

Computing, 2006. GCC 2006. Fifth International 

Conference, “Distributed Fault Management for 

Computational Grids”, 2006, pp.363–368. 

[5] Dai, Y. S., Levitin, G. and Wang, X. L., “Optimal Task 

Partition and Distribution in Grid Service System with 

Common Cause Failures”, Future Generation Computer 

Systems, 23, 2, pp. 209-218, 2007. 

[6]   Yuan-Shun Dai and Levitin, G., Reliability, IEEE 

Transactions on, “Reliability and performance of tree-

structured grid services”, 2006, 55, 2, pp.337-349.  

[7]    Dai, Y. S., Pan, Y. and Zou, X. K., “A Hierarchical 

Modeling and Analysis for Grid Service Reliability”, IEEE 

Transactions on Coers, 56, 5, pp. 681-691, 2007.  

[8]    Dai, Y. S., Xie, M. and Poh, K. L., “Reliability of Grid 

Service Systems”, Computers and Industrial Engineering, 50, 

1, pp. 130-147, 2006.  

[9]    Jin Liang and Tong WeiQin and Tang JianQuan and Wang 

Bo, Industrial Informatics, 2003. INDIN 2003. Proceedings. 

IEEE International Conference on, “A fault-tolerance 

mechanism in grid”, 2003, pp.457–461. 

[10]   Foster, I., “The Grid: a New Infrastructure for 21st Century 

Science”, Physics Today, 55, 2, pp. 42-47, 2002.  

[11]    Foster, Ian, “The grid: A new infrastructure for 21st 

century science”, Grid Computing: Making the Global 

Infrastructure a Reality, pp.51–63, 2003, John Wiley & Sons, 

Chichester.  

[12]   Shi, Xuanhua and Pazat, Jean-Louis and Rodriguez, Eric 

and Jin, Hai and Jiang, Hongbo, “Adapting grid applications 

to safety using fault-tolerant methods: Design, 

implementation and evaluations”, Future Gener. Comput. 

Syst., February, 2010, 26, 2, 2010, 0167-739X, pp.236– 244, 



2nd International conference on Computing Communication and Sensor Network (CCSN-2013)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

42 

9, acmid:1630314, Elsevier Science Publishers B. V., 

Amsterdam, The Netherlands, The Netherlands. 

[13]    Hwang, Soonwook and Kesselman, Carl, Journal of Grid 

Computing, 1, 3, “A Flexible Framework for Fault 

Tolerance in the Grid”, Kluwer Academic Publishers, 

pp.251–272, English2003.  

[14]   Kovcs, Jzsef and Kacsuk, Pter, Grid Computing, 3165, 

Lecture Notes in Computer Science, Dikaiakos, MariosD., 

“A Migration Framework for Executing Parallel Programs in 

the Grid”, Springer Berlin Heidelberg, pp.80–89. 

[15]    Bubak, Marian and Funika, Wdzimierz and Bali, Bartosz 

and Wismller, Roland, Parallel Processing and Applied 

Mathematics, 2328, Lecture Notes in Computer Science, 

Wyrzykowski, Roman and Dongarra, Jack and Paprzycki, 

Marcin and Waniewski, Jerzy, “A Concept of Grid 

Application Monitoring”, Springer Berlin Heidelberg, 

pp.307–314, En-glish2002.  

[16]     Foster, I. and Kesselman, C. and Nick, J.M. and Tuecke, 

S.,  Computer, “Grid services for distributed system 

integration”, 2002, 35, 6, pp.37–46, 0018–9162,1997.  

[17] Abdelsalam Heddaya and Abdelsalam Helal, “Reliability, 

Availability,Dependability and Performability: A User-

centered View”, 1997.  

[18]   Mache, Jens, “Hands-on grid computing with Globus 

Toolkit 4”, J. Com-put.Sci. Coll., December 2006, 22, 2, 

pp.99–100, 2, acmid:1181921, Consortium for Computing 

Sciences in Colleges, USA. 

[19]    An Liu and Qing Li and Liusheng Huang and Mingjun 

Xiao, “FACTS: A Framework for Fault-Tolerant 

Composition of Transactional Web Services”, IEEE 

Transactions on Services Computing, 3, 1, 1939-1374, 2010, 

pp.46-59 ,IEEE Computer Society, Los Alamitos, CA, USA. 

[20]  Cardinale, Yudith and Rukoz, Marta, “Fault Tolerant 

Execution of Transactional CompositeWeb Services: An 

Approach”, UBICOMM 2011, The Fifth International 

Conference on Mobile Ubiquitous Computing, Systems, 

Services and Technologies, pp.158–164, 2011. 

[21]  Chen, Jun and Gu, Yuesheng and Liu, Yanpei, Grid Service 

Concurrency Control Protocol, Journal of Networks, 7, 4, 

707–714, 2012. Acmid: 1692817, Springer-Verlag, Berlin, 

Heidelberg. 

[22]   Haider, Sajjad and Ansari, Naveed Riaz and Akbar, 

Muhammad and Perwez, Mohammad Raza and Ghori, 

Khawaja Moyeez Ullah, “Fault Tolerance in Distributed 

Paradigms”, Proc. of Fifth International Conference on 

Computer Communication and Management, IACSIT Press, 

Singapore, 2011.       

[23]   Wang, Dexiang and Kumar, Arvindhan and Sivakumar, 

Madhan and McNair, Janise Y., “A fault-tolerant backbone 

network architecture targeting time-critical communication 

for avionic WDM LANs”, Proceedings of the 2009 IEEE 

international conference on Communications, ICC’09, 2009, 

978-1-4244-3434-3, Dresden, Germany, pp.2596–2600, 5, 

acmid:1817752, IEEE Press, Piscataway, NJ, USA. 

[24]   Lopes, Rafael Fernandes and da Silva e Silva, Francisco 

Jose, ”Fault tolerance in a mobile agent based computational 

grid”, Cluster Computin and the Grid, 2006. CCGRID 06. 

Sixth IEEE International Symposium on, 2, pp.8–pp, 2006, 

IEEE. 

[25]   Kov´acs, J´ozsef and Kacsuk, Peter and Januszewski, 

Radoslaw and Jankowski, Gracjan, ”Application and 

middleware transparent checkpointing with TCKPT on 

ClusterGrids”, Future Generation Computer Systems, 26, 3, 

pp.498–503, 2010, Elsevier. 

[26]  Krpska, Elbieta and Kielmann, Thilo and Sirvent, Ral and 

Badia, RosaM., Achievements in European Research on 

Grid Systems, Gorlatch, Sergei and Bubak, Marian and Priol, 

Thierry, ”A Service for Reliable Execution of Grid 

Applications”, Springer US, pp.179–192,2008. 

[27]   Lai, Hong Feng. "Modeling grid workflow by coloured grid 

service net." Advances in Grid and Pervasive Computing. 

Springer Berlin Heidelberg, 2010. 204-213. 

[28]    Ma, Hua. "An Approach on Grid Services Transaction 

Management for Grid Workflow." Information Engineering 

and Computer Science, 2009. ICIECS 2009. International 

Conference on. IEEE, 2009. 

 


