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ABSTRACT 

A novel method of generating lower order system is being 

introduced which grasps the advantages of Particle Swarm 

Optimization (PSO) technique and Modified Truncation (MT) 

Method. The proposed combination of PSO and MT is applied 

to original fourth and sixth order Linear Time Invariant (LTI) 

systems. The denominator polynomial is reduced using MT and 

numerator term using PSO. The step responses of the resultant 

lower order system and the original system are compared and 

their performances are justified. 

Keywords— Lower order system, Particle Swarm Optimization, 

Modified Truncation, Linear Time Invariant System.  

1. INTRODUCTION  

The rapidly increasing system complexity along with 

miniaturization in sizes, has resulted in great demand for faster 

simulation process during the design validation stage [1]. Inspite 

of having high speed processors, lowering the system order is 

one way, which is generally practiced in systems and control 

engineering field and is under active research. This further ends 

up as a necessary procedure for simulating large complex 

systems. Currently a variety of order reduction algorithms are 

being used [2-9] but none can be judged as the universally best 

as it depends upon how well it satisfies the application 

specifications. Moreover, the best reduction method should also 

preserve the vital dynamic characteristics of the system under 

consideration; simplify the best available model to suit the 

purpose with less error as far as possible. Here, nature inspired 

approach which has proved to be fruitful is roped in to meet the 

requirements. Particle Swarm Optimization (PSO) in 

combination with Modified Truncation (MT) being a 

conventional method is proposed for lowering the system order 

effectively [10]. 

In the recent past, evolutionary techniques have been used in 

almost all fields successfully and have become popular. These 

techniques have proved to be effective in developing lower order 

approximations for systems having large dimension and 

controller design of the same [11-14]. The advantage of these 

optimization methods is that they help in the elimination 

/optimizing some of the state variables from the original or a 

transformed system representation, a task which cannot be 

accomplished easily. Finally, this results in reduction of storage 

and computation time without affecting the vital properties of 

the original system. This ensures that the resultant lower order 

system is viable for use. In spite of the current popular 

optimization methods, there is a great vehemence for the 

advancement of the so called global optimization methods [15]. 

Active research is going on to develop a universal optimization 

method that can be applied to all multifaceted problems with 

equal efficiency.  

PSO, a subset of evolutionary computation technique is being 

used widely for quite some time. This technique has upper hand 

over GA in terms of fast convergence; simplicity, requires no 

rigid first guess algorithm, ease of implementation and 

exploration of majority of problem space are some of the 

additional features [13]. Also, it is uncomplicated to code and 

understand its most basic form. Hence, it is found to be useful in 

solving mixed integer optimization problems that are of typical 

complex engineering system [13].In this paper, the benefits of 

PSO and Modified Truncation method is used to generate the 

reduced order system [16]. The purpose of using PSO is to 

support in searching the best values among the available ones to 

suit the requirements. The proposed method turned out to be 

comparable with other conventional techniques. 

2. PARTICLE SWARM OPTIMIZATION 

(PSO) 

PSO, a subset of evolutionary computation has been popular in 

academia and industry, mainly because of its intuitiveness, 

handles both discrete and continuous variables. PSO works well 

with any dimension problem and finding the optimum for single 

objective and multi-objective functions (nonlinear and linear) 

even though the problem of being stuck in local minima exists. 

PSO is similar to Genetic Algorithms due to the stochastic 

population based nature, but is easier to implement with the 

same. Further, this stochastic population based method comes 

with a simple memory component. In conclusion, PSO has 

similar or better results than GA [17-18]. 

In 1995, Kennedy and Eberhart introduced PSO algorithm to the 

world in terms of social and cognitive behavior [19]. Till now, 

many researchers are benefited by utilizing the same to solve 

various problems belonging to varied disciplines; fairly simple 

computations and sharing of information within the algorithm as 

it derives its internal communications from the social behavior 

of individuals are some of the major attractions. These 

individuals referred to particles are flown through the multi-

dimensional search space with each particle representing a 

possible solution to the multi-dimensional optimization problem 

[20]. Each solution’s fitness is based on a performance function 

related to the optimization problem being solved. 

The PSO process is kicked off by randomly initializing the 

particle’s position and velocity within the entire search range. 

Each candidate solution (particle’s position) is expressed as a 

position within the dimensional space of the problem. The 

particles will move into the solution space under the influence of 

the information obtained from iteration-to-iteration as well as 

particle-to-particle. Between iteration-to-iteration, the best 

solution visited so far by a particle, is stored in its memory as 

pbest [21]. Likewise, the particle-to-particle information ensures 

that, the best solution visited by any particle is stored in its 

memory and experiences an attraction towards this solution, 

called gbest. The pbest and gbest are updated for each particle, 

after every iterations, till a better or more dominating solution 

(in terms of fitness) is found. These information’s are called as 

social and cognitive components and this whole process 
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continues till the desired result is found within the computational 

limit.  

     The heart of the PSO algorithm is the velocity equation and 

expresses individual particle’s velocity as a balance between 

attraction to its own personal best position and the current global 

best position among all particles. The velocity of each particle is 

updated using the velocity update equation given by   

1 1 2 2( ) ( )id id id id gd idv v c r p x c r p x    
                               

(1)                                  

and the position is updated using  

id id idx x v 
                                                                       (2) 

Where,  i = 1, 2,…, S represents the particle index, S is the size 

of the swarm, Vi = (vi1, vi2,…,vin)
T and Pi = (pi1, pi2, …,pin)

T is the 

associated velocity and previously best visited position of ith the 

particle, ‘g’ is the  index of the best particle in the swarm, c1 and 

c2 are constants, called cognitive and social scaling parameters 

respectively (usually, c1= c2; r1, r2 are random numbers drawn 

from a uniform distribution). 

Equations (1) and (2) define the classical version of PSO 

algorithm. Later, the concept of an inertia weight was developed 

to enhance control exploration and exploitation; introduced in 

the literature (1998) and the resulting velocity update equation 

[22,23] is given by 

1 1 2 2* ( ) ( )id id id id gd idv w v c r p x c r p x    
                      

(3)   

The initial value of w is set to 0.9 and reduced linearly to 0.4, 

allowing initial exploration followed by acceleration toward an 

improved global optimum. This is the difference between local 

and global searching and is one of the reasons, the algorithm is 

so resistant to getting stuck in local minima [23].The flowchart 

showing the process of PSO is as shown in Fig. 1. 

3. STATEMENT OF PROBLEM  

        Consider a nth order linear time invariant single input 

single output (LTI-SISO) system described by the transfer 

function 
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Where aj’s and bj’s are scalar constants. The objective is to find 

the kth (k<n) order reduced model R(s), comprising of scalar 

constants ci’s and di’s represented in the form of  
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4. GENERATION OF REDUCED ORDER 

MODELS  

The following section describes the procedure to find out the 

denominator and numerator polynomials of the reduced order 

model. 

A. Denominator Polynomials 

          The denominator polynomial D(s) of the original system 

G(s) can be rewritten as 

2 3

1 2 3 4 1( ) ... n

nD s b b s b s b s b s     
                                   

(6)
 

The direct truncation of D(s), (n-k) times gives the rth order 

model that tends to approximate the poles and zeros with a small 

modulus rather than those with large modulus. This results in 

good approximation for systems dominated by the poles lying 

near the imaginary axis. However the same method may perform 

badly for the dominant poles with large magnitudes. To 

overcome this drawback we use reciprocal transformation 

[16,24]. This technique helps in reversing the order of the 

denominator coefficients and thereby the small magnitude poles 

of D(s) of will become large magnitude poles of        and vice 

versa. 
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(7)
 

This transformation enables that some dominant poles having 

small magnitude and some with large magnitude roots may be 

retained in the reduced denominator. This ensures good time 

response matching in both transient and steady state regions. The 

proposed modification consists of truncation of D(s). Truncate k1 

times to obtain Dk1(s). Similarly truncate         k2 times to obtain 

   
    . The reduced denominator Dk(s) is then obtained as 

  1 2

* * * 2 * 3 *

1 2 3 4 1

( ) ( ). ( )

...

k k k

k

k

D s D s D s

d d s d s d s d s



     
                          

(8)  

  which is normalized to give  

Fig 1.  Optimization process 
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2 3

1 2 3 4 1( ) ... k

k kD s d d s d s d s d s     
                        

(9) 

Where, dk+1 =1, Dk2(s) is reciprocal of    
     and k = k1 + k2. 

To illustrate the proposed method second order models are 

obtained for some problems taken from literature. The general 

form of second order model is taken as 

2 1

2

2 1

( )
c s c

R s
s d s d




                                                                (10) 

Where d2,d1 are obtained from (8).  

B. Numerator Polynomial  

      Once the denominator polynomial is found, then the 

numerator coefficients c1, c2 are found by using the PSO 

algorithm by minimizing the fitness function fk given by 

 
21

0

( ) ( )
M

k r

i

f y i t y i t




                                                      (11)              

y(it) and yr(it) are the unit step responses of the higher order 

and the reduced order models at time t=t. Usually time T is 

taken as 10 sec and t =0.1 sec. The parameter settings used are 

the initial population size (100 feasible solutions), the number of 

iterations is 50. Further the steady state error between the 

response of the original and the reduced system can be nullified 

as in any general case. 

5. NUMERICAL EXAMPLES 

Ex 1: Consider a 4th order system contrived by Shamash [25] 

3 2

4 3 2

81.691 506.649 99.843 5
( )

105.2 521.01 101.05 5

s s s
G s

s s s s

  


     

Consider the denominator term  

4 3 2( ) 105.2 521.01 101.05 5D s s s s s    
 

The reciprocal of D(s) is 

4 3 2( ) 5 101.05 521.01 105.2 1D s s s s s      

By modified truncation the following reduced denominators are 

found for various values of k1 and k2  

2

1 2

2

1 2

2

1 2

521.01 101.05 5 ; 2, 0

105.2 521.01 ; 0, 2

5.25 5.205 ; 1, 110

s s k k

s s k k

k ks s

   

   

  
 

 Considering the denominator obtained for k1=0 and k2=2, and 

using BBBC algorithm, the numerator polynomial of the 

reduced system will be 

79.75s + 521.01 

The reduced second order system is then given by 

2

79.75s + 521.01
( )

105.2s + 521.01
R s

s



 

The reduced second order system obtained by [18] 

2

25.241561s + 5.2034
( )

26.4979s + 5.2034
CAUERR s

s



 

 

                        Fig 2 Comparison of step responses   

The step responses of the original system G(s), proposed system 

R(s) and Rcauer(s) are shown in figure 2 and are comparable. It is 

observed that the proposed method performs much better than 

R(s).     

 

Ex 2: Consider another 6th order system having transfer function 

[26]  

5 4 3 2

6 5 4 3 2

( )

1014 14069 69140 140100 1000000

222 14541 248420 1454100 2220000 1000000

G s

s s s s s

s s s s s s



    

     

 

Consider the denominator term  

6 5 4 3 2( ) 222 14541 248420 1454100 2220000 1000000D s s s s s s s      

 

The reciprocal of  D(s) is 

6 5 4 3 2( ) 1000000 2220000 1454100 248420 14541 222 1D s s s s s s s      

By modified truncation the following reduced denominators are 

found for various values of k1 and k2 

3 2

1 2

3 2

1 2

3 2

1 2

3 2

1 2

5.853 8.9365 4.0254 ; 3, 0

222 4541 248420 ; 0, 31

222.45 14641 6550 ; 1, 2

223.53 339.62 152.67 ; 2, 1

s s s k k

k ks s s

s s s k k

s s s k k

    

   

    

    

 

Considering the denominator obtained for k1=2, k2=1 and using 

the BBBC optimization algorithm, the numerator polynomial of 

the reduced system will be 

29.518s  + 23.08s + 152.7  

Therefore the third order reduced model obtained will be 

2

3 2

9.61 23.1 152.7
( )

+223.53  339.62s + 152.7

s s
R s

s s

 


  

According to the method [10], the reduced third order model is  

2

3 2

4.3638 31.0845 490.077
( )

+56.554  736.8139s + 490.07747
DP

s s
R s

s s

 


  

Figure 3 shows the step responses of the original system G(s), 

proposed reduced system R(s) and the reduced system using 

dominant pole[10] RDP(s). It is seen that the responses of the 

G(s) and R(s) are matching both in steady and transient states, 

whereas  the response of RDP(S) performs weakly. 
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                       Fig 3 Comparison of step responses   

 

Ex 1: Consider a fourth-order system [10] described by the 

transfer function as 

3 2

4 3 2

7 24 24
( )

10 35 50 24

s s s
G s

s s s s

  


     

Consider the denominator term  

4 3 2( ) 10 35 50 24D s s s s s    
 

The reciprocal of D(s) is 

4 3 2( ) 24 50 35 10 1D s s s s s    
 

By modified truncation the following reduced denominators are 

found for various values of k1 and k2  
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; 0, 210 35
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  

   
 

 Considering the denominator obtained for k1=2 and k2=0, and 

using BBBC algorithm, the numerator polynomial of the 

reduced system will be 

0.7241s + 0.6857
 

The reduced second order system is then given by 

2

0.7241s + 0.6857
( )

1.42857s + 0.6857
R s

s


  

The reduced second order system obtained by [10] 

2

0.9315s + 1.6092
( )

2.75612s + 1.6092
DPR s

s


  

Figure 4 shows the step responses of the original system G(s), 

the proposed reduced system R(s) and the reduced system using 

dominant pole[10] RDP(s). It is seen that the responses are 

matching both in steady and transient states.  

 

 

Fig 4 Comparison of step responses   

6. CONCLUSIONS 

A new method of reducing the order of the original system 

is discussed. The task is accomplished using the mixed method 

(PSO and modified truncation method). The denominator of the 

reduced method is obtained by the modified truncation method 

and the numerator of the reduced system is generated using PSO. 

The application of the proposed method is justified by 

comparing the step responses in the above examples. It is 

observed that, the step response of the original and the proposed 

reduced system are closely matching and the results are 

better/comparable to that of the other methods. Further, the 

proposed method holds good for multiple input and multiple 

output and discrete system. Various combinations of 

conventional technique and PSO can also be tried for lowering 

the order of the system. 

7. REFERENCES 

[1]   Dia Abu-Al-Nadi, Othman MK Alsmadi, Zaer S Abo-

Hammour,” Reduced order modeling of linear mimo 

systems using particle swarm optimization”, The Seventh 

International Conference on Autonomic and Autonomous 

Systems ICAS 2011,. ISBN: 978-1-61208-134-2, pp. 62-66, 

IARIA, 2011. 

[2] Obinata, G., and Anderson, B.D.O., Model Reduction for 

Control System Design, London, Springer-Verlag, 2001. 

[3] M. S. Mahmoud and M. G. Singh, Large Scale Systems 

Modelling, Pergamon Press, International Series on 

Systems and Control 1st ed., Vol. 3, 1981. 

[4] M. Jamshidi, Large Scale Systems Modelling and Control 

Series, New York, Amsterdam, Oxford, North Holland, 

Vol. 9, 1983. 

[5] R. Prasad and J. Pal, “Use of continued fraction expansion 

for stable reduction of linear multivariable systems”, 

Journal of Institution of Engineers, India, IE(I) Journal – 

EL, Vol. 72, pp. 43-47, June 1991. 

[6] R. Prasad, A. K. Mittal and S. P. Sharma, “A mixed method 

for the reduction of multi-variable systems”, Journal of 

Institution of Engineers, India, IE(I) Journal – EL, Vol. 85, 

pp. 177-181, March 2005. 

[7] Antonio Lepschy and Umberto Viaro,” A Note on the 

Model Reduction Problem”, IEEE Transactions On 

Automatic Conixol, Vol. Ac-28, No. 4, April 1983. 

[8] R. Genesio and M. Milanese,“A note on the derivation and 

use of reduced order models”, IEEE Trans. Automat. 

Control, Vol. AC-21, No. 1, pp. 118-122, February 1976. 

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 
Step Response

Time (sec)

A
m

p
li
tu

d
e

G(s)

R(s)

RDP(s)

Step Response

Time (sec)

A
m

p
li
tu

d
e

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

G(s)

R(s) proposed

RDP(s)



Special Issue of International Journal of Computer Applications (0975 – 8887) 

International Conference on Computing, Communication and Sensor Network (CCSN) 2012 

21 

[9] A. C. Antoulas, D. C. Sorensen,  S. Gugercin ,”A survey of 

model reduction methods for large-scale systems”, 

Contemporary Mathematics, Vol. 280, pp. 193-219, 2001.   

[10] Boby Philip, Jayanta Pal, “An Evolutionary Computation 

Based Approach for Reduced Order Modelling of Linear 

Systems”, IEEE International Conference on 

Computational Intelligence and Computing Research 

(ICCIC), 2010, Coimbatore 28-29 Dec. 2010. 

[11] Dia Abu-Al-Nadi, Othman MK Alsmadi and   Zaer S.Abo-

Hammour,”Reduced order modeling of linear MIMO 

systems using particle swarm optimization”, The Seventh 

International Conference on Autonomic and Autonomous 

Systems(ICAS 2011),2011. 

[12] S.N. Sivanandam and S.N.Deepa,”A Comparative Study 

Using Genetic Algorithm and Particle Swarm Optimization 

for Lower Order System Modelling ”, International Journal 

of the Computer, the Internet and Management Vol. 17. 

No.3 pp 1 -10 Sept - Dec, 2009. 

[13] S. R. Desai, and Rajendra Prasad,” Design of PID 

Controller using Particle Swarm Optimized Reduced Order 

Model”, Eighth Control Instrumentation System 

Conference (An International Conference) CISCON-2011, 

Manipal, Nov. 3- 6, 2011. 

[14] S. R. Desai and Rajendra Prasad,”Genetically Optimized 

Model Order   Reduction for PID Controller “, 

International Conference on System Dynamics and Control 

–ICSDC 2010. 

[15]  http://www.mat.univie.ac.at/~neum/glopt.html 

[16] Prasad R., Pant A. K. and Pal. J.,”Model Order Reduction 

using Modified Truncation”, National System Conference, 

REC Kurukshetra, Dec.22-24,1987. 

[17] Hassan, R., Cohanim, B., de Weck, O., “A Comparison of 

Particle Swarm Optimization and the Genetic Algorithm”, 

46th  IAA/ASME/ASCE/AHS/ASC Structures, Structural 

Dynamics & Materials Conference, 18-21 April 2005, 

[18]  M. Clerc, “The swarm and the queen: towards a 

deterministic and adaptive particle swarm optimization”, in 

Proc. 1999 ICEC, Washington, DC, 1999, pp. 1951-1957. 

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization”, 

in Proc. IEEE International Conference Neural Networks, 

vol. 4, 1995, pp. 1942,1948. 

[20]  Kennedy, J., Eberhart, R., “Swarm Intelligence”, Academic 

Press, ISBN 1-55860-595-9, 2001. 

[21] Majid Bahrepour, Elham Mahdipour, Raman Cheloi, and 

Mahdi Yaghoobi," SUPER-SAPSO: A new sa-based pso 

algorithm", Applications of Soft Computing, AISC 58, pp. 

423- 430,2009. 

[22] Y. Shi and R. C. Eberhart, “A modified particle swarm 

optimizer”, Proc. IEEE International Conference on 

Evolutionary Computation, Piscataway, NJ, IEEE Press, pp. 

69–73, 1998. 

[23] Jagdish C. Bansal, Kusum Deep, Kalyan Veeramachaneni, 

Lisa Osadciw,“Information Sharing Strategy among 

Particles in Particle Swarm Optimization Using Laplacian 

Operator”, IEEE Swarm Intelligence Symposium, pp. 30-

36, 2009.  

[24]  Prasad Rajendra,“Analysis and design of control Systems 

using  reduced order models ”, Ph. D Thesis, University of  

Roor kee,   Roorkee,India, 1989. 

[25] Shamash Y.,”Viability of methods for generating stable 

reduced order models”,IEEE. Trans. On Automatic Control, 

vol. AC-26, No. 6, pp. 1285-1286,1981.  

[26]  S. Mukherjee, and R.N. Mishra, “Order reduction of linear 

systems using an error minimization technique”, Journal of 

Franklin Inst., Vol. 323,No. 1, pp. 23-32, 1987. 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 


