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ABSTRACT— Failures of software are mainly due to the 

faulty project management practices, which includes effort 

estimation. Continuous changing scenarios of software 

development technology makes effort estimation more 

challenging. Ability of ANN(Artificial Neural Network) to  model 

a complex set of relationship between the dependent variable 

(effort) and the independent variables (cost drivers) makes it as a  

potential tool  for estimation. This paper presents  a performance 

analysis of different ANNs in effort estimation. We have simulated 

four types of ANN created by MATLAB10 NNTool using NASA 

dataset.  
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1.  INTRODUCTION  

Software estimates are the basis for project bidding, budgeting and 

planning. These are critical practices in the software industry, 

because poor budgeting and planning often has dramatic 

consequences. When budgets and plans are too pessimistic, 

business opportunities can be lost, while over-optimism may be 

followed by significant losses [1].  
 Software estimation can be modeled as the three stages, 1st 

stage involves size estimation, 2nd stage includes effort estimation, 
and time estimation, followed by the 3rd stage as cost estimation, 
and staffing estimation.  Figure 1 shows the interaction between 
these modules in a typical software estimation process in Software 
Development Life Cycle. 

According to the last research reported by the Brazilian 
Ministry of Science and Technology-MCT, in 2001, only 29% of 
the companies accomplished size estimation and 45.7% 
accomplished software effort estimate [2], so effort estimation has 
motivated considerable research in recent years. 

 

 

 

 

 

 

 
Figure. 1.  Sequence of estimates in Software Development Life Cycle 

 

Software effort estimation is the process of predicting the most 

realistic use of effort required to develop or maintain software. 

Effort estimates are used to calculate effort in person-months (PM) 

for the Software Development work elements of the Work 

Breakdown Structure (WBS). 

 Classifications of estimating methods based on that of Boehm are 
algorithmic, expert judgment, analogy, Parkinson, price-to–win, 
top-down and bottom-up. COCOMO and Function Point Analysis 
(FPA) comes under algorithmic method. Software effort estimation 
using artificial neural networks  is grouped within the analogy based 
method. 

Artificial Neural Network (ANN) is a massively parallel 
adaptive network of simple nonlinear computing elements called 
Neurons, which are intended to abstract and model some of the 
functionality of the human nervous system in an attempt to partially 
capture some of its computational strengths [3,12,13]. An artificial 
neural network comprises of eight basic components (i)neurons, 
(ii)activation function, (iii)signal function, (iv)pattern of 
connectivity, (v)activity aggregation rule, (vi) activation rule, (vii) 
learning rule and (viii)environment [10]. 
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Figure. 2.  Architecture of an artificial neuron 
 

In mathematical notation, any neuron-k can be represented as 
follows: 

 

 𝑢𝑘 =  𝑤𝑘𝑗 𝑥𝑗
𝑚
𝑗=1           

and
         

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘) 

 
where x1 ,x2, …,xm are the input signals , wk1,wk2,….,wkm are 

the synaptic weights of the corresponding neuron, uk is the linear 
combiner output, bk is the bias, φ() is the activation function  and  yk 
is the output signal of  the  neuron. 

 After an ANN is created it must go through the process of 

learning or training. The process of modifying the weights in the 

connections between network layers with the objective of 

achieving the expected output is called training a network. There 

are two approaches for training– supervised and unsupervised 

[12,13]. In supervised training, both the inputs and the outputs are 

provided. The network then processes the inputs, compares its 

resulting outputs against the desired outputs and error is calculated. 

In unsupervised training, the network is provided with inputs but 

not with desired outputs. The system itself must then decide what 

features it will use to group the input data [3]. 
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Depending upon the architecture the ANN is of two types. A 
feed-forward ANN, is the architecture in which the network has no 
loops. But feed-back (recurrent) ANN is an architecture in which 
loops occurs in the network[12,13]. An ANN can be a single-layer 
perceptron or a multi-layer perceptron. In single layer perceptron 
consists of a single layer of output nodes, the inputs neurons are 
connected directly to the outputs neurons via a series of weights. 
But in multi layer perceptron an additional layer of neurons present 
between input and output layers. That layer is called hidden layer.  
Any number of hidden layers can be added in an ANN depending 
upon the problem domain and accuracy expected. In this paper we 
have used multiple layer feed forward ANN for simulation. 

 

2. ANN  IN  EFFORT  ESTIATION 

After the extensive research over last 25 years, still the software 
community faces challenges when it comes to effective resource 
prediction. Some techniques, including FPA, COCOMO model and 
original regression model, are not effective, because they are not 
suitable for all types of software. Therefore other techniques like 
machine learning, exploratory data analysis comes into existence 
[2].  

 

Artificial Neural Network is used in effort estimation due to its 

ability to learn from previous data. It is also able to model complex 

relationships between the dependent (effort) and independent 

variables (cost drivers). In addition, it has the ability to generalize 

from the training data set thus enabling it to produce acceptable 

result for previously unseen data.  

Most of the work in the application of neural network to effort 

estimation made use of feed-forward multi-layer Perceptron, Back-

propagation algorithm and sigmoid function. However many 

researchers refuse to use them because of their shortcoming of 

being the ―black boxes‖ that is, determining why an ANN makes a 

particular decision is a difficult task. But then also many different 

models of neural nets have been proposed for solving many 

complex real life problems [4]. The 7 steps for effort estimation 

using ANN can be summarized as follows:  

Steps in effort estimation 

1. Data Collection:      Collect data for previously  

developed projects like LOC, method used , and other 

characteristics. 

2. Division of dataset: Divide the number of data into two 

parts – training set & validation set. 

3. ANN Design: Design the neural network with number of 

neurons in input layers same as the number of 

characteristics of the project. 

4. Training: Feed the training set first to train the neural 

network. 

5. Validation: After training is over then validate the ANN 

with  the validation set data. 

6. Testing: Finally test the created ANN by feeding test 

dataset. 

7. Error calculation: Check the performance of the  ANN. If 

satisfactory then stop, else again go to step (3) ,make 

some changes to the network parameters and proceed. 

 
Once the ANN is ready, simulation with the ANN  can be 

conducted with  the parameter of any new project, as show in fig.3 
and it will output the estimated effort for that project. 
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Figure. 3.  Diagram of feed-forward multilayer ANN used in this paper 

3. RELATED  WORKS 
Many researchers used their different ANN and different dataset, 

to predict the effort more correctly. G. E. Wittig, et al.[5] used a 

dataset of 15 commercial systems, and used feed-forward back-

propagation multilayer neural network for their experiment. ANN 

used in this paper are with numbers of hidden layers varying from 

1-6 , but found the best performance for only one hidden layer with 

sigmoid function. It has been observed that for smaller system the 

error was 1% and for larger systems error was 14.2% of the actual 

effort. In a paper by Ali Idri, et al. [4] uses COCOMO-81 dataset 

and three layered back-propagation ANN, applying 13 cost drivers 

as inputs and development effort taken as output.  The ANN used 

are with 13 neurons in hidden layer and experimented for 300,000 

iterations to find the average MRE = 1.50%. 

F. Barcelos Tronto, et al.[2], also used COCOMO-81 dataset, 

with  only one input, i.e TOTKDSI (thousands of delivered source 

instructions). All the input data were normalized to [0, 1] range. 

Here a feed-forward multilayer back-propagation ANN was used 

with the 1-9-4-1 architecture. The performance in MMRE found 

was 420, where as that of COCOMO and FPA was 610 and 103 

respectively.   

Jaswinder Kaur, et al.[6] implemented a back-propagation ANN 

of 2-2-1 architecture on NASA dataset consist of 18 projects. Input 

was KDLOC and development methodology and effort was the 

output. He got result MMRE as 11.78. 

Roheet Bhatnagar, et al.[7] used MATLAB NN toolbox for 

effort prediction. He had used a dataset proposed by Lopez-Martin, 

which consists of 41 projects data. He has designed a 3-3-1 neural 

network, applied the Dhama Coupling (DC), McCabe Complexity 

(MC) and Lines of Code (LOC) as inputs. Development time was 

the only one output. The results of the experiment indicate that the 

percentage of error during training, validation and testing was 

between +14.05 to -25.60, +12.76 to -18.89 and +13.66 to -15.75 

respectively. 

K.K. Aggarwal , et al.[8] had investigated for finding the best 
training algorithm. Here ISBSG repository data was used on a 4-15-
1 feed-forward ANN. Four inputs were taken-FP, FP standard, 
language and maximum team size. SLOC was the only output. The 
various training algorithm for ANN has been used and concluded 
that ‗trainbr‘ is the best algorithm. ‗traingd‘ was found to be the 
next best algorithm.  

TABLE I.  Dataset And Ann used 

Author 
Learning 

Algorithm 
Dataset 

No. of 

Projects 

No. of 

Inputs 

ANN 

Configuration 
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I.F. Barcelos 

Tronto [2] 

Back-

propagation 
COCOMO 63 1 [1-9-4-1] 

G. E. Wittig[5] 
Back-

propagation 

Commercial 

Systems 
15 - [23-4-1] 

Ali Idri [4] 
Back-

propagation 
COCOMO 63 13 [13-13-1] 

Jaswinder Kaur[6] 
Back-

propagation 
NASA 18 2 [2-2-1] 

Mrinal Kanti 

Ghose[9] 

Back-

propagation 

Lopez-

Martin 
41 3 [3-3-1] 

A.R. 

Venkatachalam[14] 

Back-

propagation 
COCOMO 63 22 [22-45-2] 

 
Reviewing the extensive research  in effort estimation using 

ANN, as show in table-I, it is found that many of the researchers are 
using Feed-forward Back-propagation ANN for their simulation. 
Multi-layer ANN can be used with any number of hidden layers, 
but ANN with only one or two hidden layers also gives good 
results. All the inputs applied to the ANN were normalized to [0,1] 
range. In MATLAB10 NNtool , if we are constructing any ANN 
,than  it‘s inputs need not to be normalized. Depending upon the 
type of software project dataset, different ANN training algorithm 
gives different results. Among all training algorithms ‗trainlm‘ 
gives satisfactory results in all types of datasets. 

 
Levenberg-Marquardt (trainlm) function is the fastest training 

function for small Neural networks. It require more memory and 
computation time, so it is less efficient for large network (with 
thousands of weights) [11]. In this study we have used ―trainlm‖ 
algorithm for 4 different neural networks. 

4.    PERFORMANCE CRITERIA 
A. Mean Magnitude Relative Error(MMRE) 

MMRE is frequently used to evaluate the performance of any 

estimation technique. It measures the percentage of the absolute 

values of the relative errors, averaged over the N items in the 

"Test" set and can be written as[6]: 
 

𝑀𝑀𝑅𝐸 =
1

𝑁
  (𝑦𝑖 − 𝑦 𝑖 𝑦𝑖 

𝑁

𝑖=1
 

 

where 𝑦𝑖  represents the ith value of the actual effort and 𝑦 𝑖  is the 

estimated effort. 

B. Root Mean Square  Error(RMSE) 

RMSSE is another frequently used performance criteria which 

measures the difference between values predicted by a model or 

estimator and the values actually observed from the thing being 

modeled or estimated. It is just the square root of the mean square 

error, as shown in equation given below [6]: 
 

𝑅𝑀𝑆𝐸 =  
1

𝑁
 (𝑦𝑖 − 𝑦 𝑖)

2

𝑁

𝑖=1

 

 

C. Balance Relative Error(BRE) 

BRE  is another evaluation criteria for accuracy[9]: 

 

𝐵𝑅𝐸 % = 100 ∗  (𝑦𝑖 − 𝑦 𝑖 min⁡ (𝑦𝑖 , 𝑦 𝑖) 

D. Pred(l)  

Pred(l) is a proportion of a given level l in the accuracy[9]: 

 

𝑃𝑟𝑒𝑑 𝑙 = 𝑘 𝑁  

where N is the total number of observations and k is the number 

of observations with MRE less than or equal to l.  

5.    EXPERIMENT 

Data Preparation  

We have used NASA public dataset for this experiment. This 

dataset consists of 60 projects data. In this dataset 17 attributes 

were there, but we have considered only four attributes, as show in 

table-II. Here CPLX means product complexity, PCAP means 

programmer capability and KLOC means thousand of source lines 

of code. The values for CPLX and PCAP were in fuzzy format, so 

for the experiment we have to convert it into numeric format as: 1- 

very high, 2- high, 3-  normal, 4- extra high, 5- low. 

ANN  Preparation  

In this experiment we have created four different types of neural 

network and compare their performance. Cascade, Elman and 

Feed-forward are three back-propagation neural networks and one 

recurrent neural network is used. MATLAB10 NN tool is used for 

this experiment. For all the neural networks 3-5-1 architecture is 

used, i.e. 3 neurons in input layer, 5 neurons in hidden layer and 1 

neuron in output layer. Training algorithm used is ‗trainlm‘. For 

training the dataset is divided into three divisions-for training 

48(80%), for validation 6(10%) and for testing 6(10%). Stopping 

criteria was set by number of epochs as 1000 and goal as 0.00. 

TABLE II.  Dataset of Nasa Projects 

Project No. CPLX PCAP KSLOC EFFORT 

1 1 1 70 278 

2 2 1 227 1181 

3 2 2 177.9 1248 

4 2 3 115.8 480 

5 2 3 29.5 120 

6 2 3 19.7 60 

7 2 3 66.6 300 

8 2 3 5.5 18 

9 2 3 10.4 50 

10 2 3 14 60 

11 2 3 16 114 

12 2 3 6.5 42 

13 2 3 13 60 

14 2 3 8 42 

15 2 2 90 450 

16 2 3 15 90 

17 2 2 38 210 

18 3 2 10 48 

19 2 3 161.1 815 

20 2 3 48.5 239 
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21 2 3 32.6 170 

22 2 3 12.8 62 

23 2 3 15.4 70 

24 2 3 16.3 82 

25 2 3 35.5 192 

26 2 3 25.9 117.6 

27 2 3 24.6 117.6 

28 2 3 7.7 31.2 

29 2 3 9.7 25.2 

30 2 3 2.2 8.4 

31 2 3 3.5 10.8 

32 2 3 8.2 36 

33 2 3 66.6 352.8 

34 2 1 150 324 

35 2 3 100 360 

36 2 2 100 215 

37 2 1 100 360 

38 2 2 15 48 

39 2 3 32.5 60 

40 2 2 31.5 60 

41 2 2 6 24 

42 2 3 11.3 36 

43 2 1 20 72 

44 2 2 20 48 

45 2 2 7.5 72 

46 2 2 302 2400 

47 2 3 370 3240 

48 2 3 219 2120 

49 2 3 50 370 

50 2 2 101 750 

51 3 1 190 420 

52 2 3 47.5 252 

53 4 3 21 107 

54 3 1 423 2300 

55 3 2 79 400 

56 5 3 284.7 973 

57 5 3 282.1 1368 

58 2 2 78 571.4 

59 2 2 11.4 98.8 

60 2 2 19.3 155 

E. Cascade Neural Network 

Cascade NN is a feed-forward neural network where the first 

layer will get signal from input. Each subsequent layer will receive 

signal from the input and all previous layers. 

 

 
Figure 4.  The Cascade ANN using  MATLAB 

F. Feed-Forward  Neural Network 

In a feed-forward neural network the first layer will get signal 

from input. Each subsequent layer will receive signal from its 

previous layer only. 
 

 
Figure 5.  The Feed-Forward  ANN using  MATLAB 

G. Recurrent & Elman  Neural Network 

Recurrent neural networks are the neural networks where the 

connections between the neurons form a directed cycle. Unlike 

Feed-forward neural network, it can use its internal memory for 

processing of the input.  

 

Elman NN is a special type of recurrent neural network where 

an additional set of ―context units‖ is connected with the input 

layer. These are also connected with the hidden layer with 

connection weight one.  
 

 
Figure 6.   The Recurrent / Elman ANN designed with MATLAB 

 

6.    SIMULATION AND RESULTS 
All the networks were trained for 10 iterations and the most 

accurate results were considered. Table-III  summarizes the 

development effort estimates as obtained with different neural 

networks. Fig.-7 and Table-IV presents a performance comparison 

of different neural networks. 
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TABLE III.  Estimated Effort by Different Ann 

Project 

No. 

Actual 

Effort 

Cascade 

Forward 
ANN 

Elman 

ANN 

Feed 

Forward 
ANN 

Recurrent 

ANN 

51 420 403.6 779.9 465.1 436.8 

52 252 278.1 336.6 194.6 190.7 

53 107 142.3 48.8 118.0 95.8 

54 2300 2303.8 2338.4 2313.4 2303.8 

55 400 390.6 229.9 363.7 279.7 

56 973 1019.9 1100.0 1159.0 1198.9 

57 1368 992.5 1077.4 1137.3 1173.3 

58 571.4 405.5 342.8 242.6 393.8 

59 98.8 109.2 25.5 54.0 84.2 

60 155 127.9 53.7 78.0 111.2 

 

 
Figure 7.  Effort Estimation Bar-chart 

TABLE IV.  COMPARISON OF RESULTS 

Performance 

Criteria 

ANN used 

Cascade 

Forward 

ANN 

Elman 
ANN 

Feed 

Forward 

ANN 

Recurrent 
ANN 

MMRE % 4.98 43.16 5.35 6.91 

RMSE 131.85 184.10 145.19 118.85 

Mean BRE % 0.16 0.89 0.41 0.23 

Pred(0.20) % 70 20 50 60 

 
Feed-forward NN gives the next best results and Elman NN 

gives the worst result No estimation method is full-proof or 

hundred percent accurate. We have tried to explore one such 

method using artificial neural network. 

7.    CONCLUSION 

Estimation is one of the crucial tasks in software project 

management. This simulation with NASA dataset has been carried 

out using Matlab 10 NN tool box. All for ANN are trained using 

―trainlm” algorithm. The results from our simulation shows that 

Cascade feed- forward neural network give the best performance, 

among the four ANN. We have experimented with four attributes 

of the NASA public dataset and further investigation can be done 

with other attributes.   
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