
IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

13

Software Effort Estimation with Different Artificial Neural

Network

Jagannath Singh
Department of Computer Sc. and Engineering

National Institute of Technology Rourkela

Rourkela, India

Bibhudatta Sahoo
Department of Computer Sc. and Engineering

National Institute of Technology Rourkela

Rourkela, India

ABSTRACT— Failures of software are mainly due to the

faulty project management practices, which includes effort

estimation. Continuous changing scenarios of software

development technology makes effort estimation more

challenging. Ability of ANN(Artificial Neural Network) to model

a complex set of relationship between the dependent variable

(effort) and the independent variables (cost drivers) makes it as a

potential tool for estimation. This paper presents a performance

analysis of different ANNs in effort estimation. We have simulated

four types of ANN created by MATLAB10 NNTool using NASA

dataset.

Keywords- Effort Estimation, Artificial Neural Network,

NNtool, MMRE

1. INTRODUCTION

Software estimates are the basis for project bidding, budgeting and

planning. These are critical practices in the software industry,

because poor budgeting and planning often has dramatic

consequences. When budgets and plans are too pessimistic,

business opportunities can be lost, while over-optimism may be

followed by significant losses [1].
 Software estimation can be modeled as the three stages, 1st

stage involves size estimation, 2nd stage includes effort estimation,
and time estimation, followed by the 3rd stage as cost estimation,
and staffing estimation. Figure 1 shows the interaction between
these modules in a typical software estimation process in Software
Development Life Cycle.

According to the last research reported by the Brazilian
Ministry of Science and Technology-MCT, in 2001, only 29% of
the companies accomplished size estimation and 45.7%
accomplished software effort estimate [2], so effort estimation has
motivated considerable research in recent years.

Figure. 1. Sequence of estimates in Software Development Life Cycle

Software effort estimation is the process of predicting the most

realistic use of effort required to develop or maintain software.

Effort estimates are used to calculate effort in person-months (PM)

for the Software Development work elements of the Work

Breakdown Structure (WBS).

 Classifications of estimating methods based on that of Boehm are
algorithmic, expert judgment, analogy, Parkinson, price-to–win,
top-down and bottom-up. COCOMO and Function Point Analysis
(FPA) comes under algorithmic method. Software effort estimation
using artificial neural networks is grouped within the analogy based
method.

Artificial Neural Network (ANN) is a massively parallel
adaptive network of simple nonlinear computing elements called
Neurons, which are intended to abstract and model some of the
functionality of the human nervous system in an attempt to partially
capture some of its computational strengths [3,12,13]. An artificial
neural network comprises of eight basic components (i)neurons,
(ii)activation function, (iii)signal function, (iv)pattern of
connectivity, (v)activity aggregation rule, (vi) activation rule, (vii)
learning rule and (viii)environment [10].

x1 bk

 Activation function

x2 Uk Output(Yk)

.. .. Aggregation Rule

xm

Figure. 2. Architecture of an artificial neuron

In mathematical notation, any neuron-k can be represented as
follows:

 𝑢𝑘 = 𝑤𝑘𝑗 𝑥𝑗
𝑚
𝑗=1

and

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘)

where x1 ,x2, …,xm are the input signals , wk1,wk2,….,wkm are

the synaptic weights of the corresponding neuron, uk is the linear
combiner output, bk is the bias, φ() is the activation function and yk
is the output signal of the neuron.

 After an ANN is created it must go through the process of

learning or training. The process of modifying the weights in the

connections between network layers with the objective of

achieving the expected output is called training a network. There

are two approaches for training– supervised and unsupervised

[12,13]. In supervised training, both the inputs and the outputs are

provided. The network then processes the inputs, compares its

resulting outputs against the desired outputs and error is calculated.

In unsupervised training, the network is provided with inputs but

not with desired outputs. The system itself must then decide what

features it will use to group the input data [3].

Size

Estimation

Effort

Estimation

Time

Estimation

Cost

Estimation

Staffing

Estimation

Wk2

Wkm

∑

Wk1

𝜑(.)

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

14

Depending upon the architecture the ANN is of two types. A
feed-forward ANN, is the architecture in which the network has no
loops. But feed-back (recurrent) ANN is an architecture in which
loops occurs in the network[12,13]. An ANN can be a single-layer
perceptron or a multi-layer perceptron. In single layer perceptron
consists of a single layer of output nodes, the inputs neurons are
connected directly to the outputs neurons via a series of weights.
But in multi layer perceptron an additional layer of neurons present
between input and output layers. That layer is called hidden layer.
Any number of hidden layers can be added in an ANN depending
upon the problem domain and accuracy expected. In this paper we
have used multiple layer feed forward ANN for simulation.

2. ANN IN EFFORT ESTIATION

After the extensive research over last 25 years, still the software
community faces challenges when it comes to effective resource
prediction. Some techniques, including FPA, COCOMO model and
original regression model, are not effective, because they are not
suitable for all types of software. Therefore other techniques like
machine learning, exploratory data analysis comes into existence
[2].

Artificial Neural Network is used in effort estimation due to its

ability to learn from previous data. It is also able to model complex

relationships between the dependent (effort) and independent

variables (cost drivers). In addition, it has the ability to generalize

from the training data set thus enabling it to produce acceptable

result for previously unseen data.

Most of the work in the application of neural network to effort

estimation made use of feed-forward multi-layer Perceptron, Back-

propagation algorithm and sigmoid function. However many

researchers refuse to use them because of their shortcoming of

being the ―black boxes‖ that is, determining why an ANN makes a

particular decision is a difficult task. But then also many different

models of neural nets have been proposed for solving many

complex real life problems [4]. The 7 steps for effort estimation

using ANN can be summarized as follows:

Steps in effort estimation

1. Data Collection: Collect data for previously

developed projects like LOC, method used , and other

characteristics.

2. Division of dataset: Divide the number of data into two

parts – training set & validation set.

3. ANN Design: Design the neural network with number of

neurons in input layers same as the number of

characteristics of the project.

4. Training: Feed the training set first to train the neural

network.

5. Validation: After training is over then validate the ANN

with the validation set data.

6. Testing: Finally test the created ANN by feeding test

dataset.

7. Error calculation: Check the performance of the ANN. If

satisfactory then stop, else again go to step (3) ,make

some changes to the network parameters and proceed.

Once the ANN is ready, simulation with the ANN can be

conducted with the parameter of any new project, as show in fig.3
and it will output the estimated effort for that project.

 Input layer Hidden layer Output layer

 CPLX
 EFFORT

 PCAP

 KSLOC

Figure. 3. Diagram of feed-forward multilayer ANN used in this paper

3. RELATED WORKS
Many researchers used their different ANN and different dataset,

to predict the effort more correctly. G. E. Wittig, et al.[5] used a

dataset of 15 commercial systems, and used feed-forward back-

propagation multilayer neural network for their experiment. ANN

used in this paper are with numbers of hidden layers varying from

1-6 , but found the best performance for only one hidden layer with

sigmoid function. It has been observed that for smaller system the

error was 1% and for larger systems error was 14.2% of the actual

effort. In a paper by Ali Idri, et al. [4] uses COCOMO-81 dataset

and three layered back-propagation ANN, applying 13 cost drivers

as inputs and development effort taken as output. The ANN used

are with 13 neurons in hidden layer and experimented for 300,000

iterations to find the average MRE = 1.50%.

F. Barcelos Tronto, et al.[2], also used COCOMO-81 dataset,

with only one input, i.e TOTKDSI (thousands of delivered source

instructions). All the input data were normalized to [0, 1] range.

Here a feed-forward multilayer back-propagation ANN was used

with the 1-9-4-1 architecture. The performance in MMRE found

was 420, where as that of COCOMO and FPA was 610 and 103

respectively.

Jaswinder Kaur, et al.[6] implemented a back-propagation ANN

of 2-2-1 architecture on NASA dataset consist of 18 projects. Input

was KDLOC and development methodology and effort was the

output. He got result MMRE as 11.78.

Roheet Bhatnagar, et al.[7] used MATLAB NN toolbox for

effort prediction. He had used a dataset proposed by Lopez-Martin,

which consists of 41 projects data. He has designed a 3-3-1 neural

network, applied the Dhama Coupling (DC), McCabe Complexity

(MC) and Lines of Code (LOC) as inputs. Development time was

the only one output. The results of the experiment indicate that the

percentage of error during training, validation and testing was

between +14.05 to -25.60, +12.76 to -18.89 and +13.66 to -15.75

respectively.

K.K. Aggarwal , et al.[8] had investigated for finding the best
training algorithm. Here ISBSG repository data was used on a 4-15-
1 feed-forward ANN. Four inputs were taken-FP, FP standard,
language and maximum team size. SLOC was the only output. The
various training algorithm for ANN has been used and concluded
that ‗trainbr‘ is the best algorithm. ‗traingd‘ was found to be the
next best algorithm.

TABLE I. Dataset And Ann used

Author
Learning

Algorithm
Dataset

No. of

Projects

No. of

Inputs

ANN

Configuration

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

15

I.F. Barcelos

Tronto [2]

Back-

propagation
COCOMO 63 1 [1-9-4-1]

G. E. Wittig[5]
Back-

propagation

Commercial

Systems
15 - [23-4-1]

Ali Idri [4]
Back-

propagation
COCOMO 63 13 [13-13-1]

Jaswinder Kaur[6]
Back-

propagation
NASA 18 2 [2-2-1]

Mrinal Kanti

Ghose[9]

Back-

propagation

Lopez-

Martin
41 3 [3-3-1]

A.R.

Venkatachalam[14]

Back-

propagation
COCOMO 63 22 [22-45-2]

Reviewing the extensive research in effort estimation using

ANN, as show in table-I, it is found that many of the researchers are
using Feed-forward Back-propagation ANN for their simulation.
Multi-layer ANN can be used with any number of hidden layers,
but ANN with only one or two hidden layers also gives good
results. All the inputs applied to the ANN were normalized to [0,1]
range. In MATLAB10 NNtool , if we are constructing any ANN
,than it‘s inputs need not to be normalized. Depending upon the
type of software project dataset, different ANN training algorithm
gives different results. Among all training algorithms ‗trainlm‘
gives satisfactory results in all types of datasets.

Levenberg-Marquardt (trainlm) function is the fastest training

function for small Neural networks. It require more memory and
computation time, so it is less efficient for large network (with
thousands of weights) [11]. In this study we have used ―trainlm‖
algorithm for 4 different neural networks.

4. PERFORMANCE CRITERIA
A. Mean Magnitude Relative Error(MMRE)

MMRE is frequently used to evaluate the performance of any

estimation technique. It measures the percentage of the absolute

values of the relative errors, averaged over the N items in the

"Test" set and can be written as[6]:

𝑀𝑀𝑅𝐸 =
1

𝑁
 (𝑦𝑖 − 𝑦 𝑖 𝑦𝑖

𝑁

𝑖=1

where 𝑦𝑖 represents the ith value of the actual effort and 𝑦 𝑖 is the

estimated effort.

B. Root Mean Square Error(RMSE)

RMSSE is another frequently used performance criteria which

measures the difference between values predicted by a model or

estimator and the values actually observed from the thing being

modeled or estimated. It is just the square root of the mean square

error, as shown in equation given below [6]:

𝑅𝑀𝑆𝐸 =
1

𝑁
 (𝑦𝑖 − 𝑦 𝑖)

2

𝑁

𝑖=1

C. Balance Relative Error(BRE)

BRE is another evaluation criteria for accuracy[9]:

𝐵𝑅𝐸 % = 100 ∗ (𝑦𝑖 − 𝑦 𝑖 min⁡ (𝑦𝑖 , 𝑦 𝑖)

D. Pred(l)

Pred(l) is a proportion of a given level l in the accuracy[9]:

𝑃𝑟𝑒𝑑 𝑙 = 𝑘 𝑁

where N is the total number of observations and k is the number

of observations with MRE less than or equal to l.

5. EXPERIMENT

Data Preparation

We have used NASA public dataset for this experiment. This

dataset consists of 60 projects data. In this dataset 17 attributes

were there, but we have considered only four attributes, as show in

table-II. Here CPLX means product complexity, PCAP means

programmer capability and KLOC means thousand of source lines

of code. The values for CPLX and PCAP were in fuzzy format, so

for the experiment we have to convert it into numeric format as: 1-

very high, 2- high, 3- normal, 4- extra high, 5- low.

ANN Preparation

In this experiment we have created four different types of neural

network and compare their performance. Cascade, Elman and

Feed-forward are three back-propagation neural networks and one

recurrent neural network is used. MATLAB10 NN tool is used for

this experiment. For all the neural networks 3-5-1 architecture is

used, i.e. 3 neurons in input layer, 5 neurons in hidden layer and 1

neuron in output layer. Training algorithm used is ‗trainlm‘. For

training the dataset is divided into three divisions-for training

48(80%), for validation 6(10%) and for testing 6(10%). Stopping

criteria was set by number of epochs as 1000 and goal as 0.00.

TABLE II. Dataset of Nasa Projects

Project No. CPLX PCAP KSLOC EFFORT

1 1 1 70 278

2 2 1 227 1181

3 2 2 177.9 1248

4 2 3 115.8 480

5 2 3 29.5 120

6 2 3 19.7 60

7 2 3 66.6 300

8 2 3 5.5 18

9 2 3 10.4 50

10 2 3 14 60

11 2 3 16 114

12 2 3 6.5 42

13 2 3 13 60

14 2 3 8 42

15 2 2 90 450

16 2 3 15 90

17 2 2 38 210

18 3 2 10 48

19 2 3 161.1 815

20 2 3 48.5 239

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

16

21 2 3 32.6 170

22 2 3 12.8 62

23 2 3 15.4 70

24 2 3 16.3 82

25 2 3 35.5 192

26 2 3 25.9 117.6

27 2 3 24.6 117.6

28 2 3 7.7 31.2

29 2 3 9.7 25.2

30 2 3 2.2 8.4

31 2 3 3.5 10.8

32 2 3 8.2 36

33 2 3 66.6 352.8

34 2 1 150 324

35 2 3 100 360

36 2 2 100 215

37 2 1 100 360

38 2 2 15 48

39 2 3 32.5 60

40 2 2 31.5 60

41 2 2 6 24

42 2 3 11.3 36

43 2 1 20 72

44 2 2 20 48

45 2 2 7.5 72

46 2 2 302 2400

47 2 3 370 3240

48 2 3 219 2120

49 2 3 50 370

50 2 2 101 750

51 3 1 190 420

52 2 3 47.5 252

53 4 3 21 107

54 3 1 423 2300

55 3 2 79 400

56 5 3 284.7 973

57 5 3 282.1 1368

58 2 2 78 571.4

59 2 2 11.4 98.8

60 2 2 19.3 155

E. Cascade Neural Network

Cascade NN is a feed-forward neural network where the first

layer will get signal from input. Each subsequent layer will receive

signal from the input and all previous layers.

Figure 4. The Cascade ANN using MATLAB

F. Feed-Forward Neural Network

In a feed-forward neural network the first layer will get signal

from input. Each subsequent layer will receive signal from its

previous layer only.

Figure 5. The Feed-Forward ANN using MATLAB

G. Recurrent & Elman Neural Network

Recurrent neural networks are the neural networks where the

connections between the neurons form a directed cycle. Unlike

Feed-forward neural network, it can use its internal memory for

processing of the input.

Elman NN is a special type of recurrent neural network where

an additional set of ―context units‖ is connected with the input

layer. These are also connected with the hidden layer with

connection weight one.

Figure 6. The Recurrent / Elman ANN designed with MATLAB

6. SIMULATION AND RESULTS
All the networks were trained for 10 iterations and the most

accurate results were considered. Table-III summarizes the

development effort estimates as obtained with different neural

networks. Fig.-7 and Table-IV presents a performance comparison

of different neural networks.

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

17

TABLE III. Estimated Effort by Different Ann

Project

No.

Actual

Effort

Cascade

Forward
ANN

Elman

ANN

Feed

Forward
ANN

Recurrent

ANN

51 420 403.6 779.9 465.1 436.8

52 252 278.1 336.6 194.6 190.7

53 107 142.3 48.8 118.0 95.8

54 2300 2303.8 2338.4 2313.4 2303.8

55 400 390.6 229.9 363.7 279.7

56 973 1019.9 1100.0 1159.0 1198.9

57 1368 992.5 1077.4 1137.3 1173.3

58 571.4 405.5 342.8 242.6 393.8

59 98.8 109.2 25.5 54.0 84.2

60 155 127.9 53.7 78.0 111.2

Figure 7. Effort Estimation Bar-chart

TABLE IV. COMPARISON OF RESULTS

Performance

Criteria

ANN used

Cascade

Forward

ANN

Elman
ANN

Feed

Forward

ANN

Recurrent
ANN

MMRE % 4.98 43.16 5.35 6.91

RMSE 131.85 184.10 145.19 118.85

Mean BRE % 0.16 0.89 0.41 0.23

Pred(0.20) % 70 20 50 60

Feed-forward NN gives the next best results and Elman NN

gives the worst result No estimation method is full-proof or

hundred percent accurate. We have tried to explore one such

method using artificial neural network.

7. CONCLUSION

Estimation is one of the crucial tasks in software project

management. This simulation with NASA dataset has been carried

out using Matlab 10 NN tool box. All for ANN are trained using

―trainlm” algorithm. The results from our simulation shows that

Cascade feed- forward neural network give the best performance,

among the four ANN. We have experimented with four attributes

of the NASA public dataset and further investigation can be done

with other attributes.

8. REFERENCES

[1] Stein Grimstad, Magne Jorgensen, Kjetil Molokken-Ostvold

,‖Software effort estimation terminology: The tower of

Babe‖l, Elsevier, 2005.

[2] I.F. Barcelos Tronto, J.D. Simoes da Silva, N. Sant. Anna ,

―Comparison of Artificial Neural Network and Regression

Models in Software Effort Estimation‖, INPE ePrint, Vol.1,

2006.

[3] Simon Haykin, ―Neural Networks: A Comprehensive

Foundation‖, Second Edition, Prentice Hall, 1998.

[4] Ali Idri and Taghi M. Khoshgoftaar& Alain Abran,‖Can

Neural Networks be easily Interpreted in Software Cost

Estimation‖, IEEE Transaction, 2002, page:1162-1167.

[5] G.E. Wittig and G.R Finnic, ―Using Artificial Neural

Networks and Function Points to estimate 4GL software

development effort‖, AJIS,1994, page:87-94.

[6] JaswinderKaur, Satwinder Singh, Dr. Karanjeet Singh

Kahlon, PourushBassi,―Neural Network-A Novel Technique

for Software Effort Estimation‖, International Journal of

Computer Theory and Engineering, Vol. 2, No. 1 February,

2010, page:17-19.

[7] Roheet Bhatnagar, Vandana Bhattacharjee and Mrinal Kanti

Ghose, ―Software Development Effort Estimation –Neural

Network Vs. Regression Modeling Approach‖, International

Journal of Engineering Science and Technology,Vol. 2(7),

2010,page: 2950-2956.

[8] K.K. Aggarwal, Yogesh Singh, Pravin Chandra and

Manimala Puri, ―Evaluation of various training algorithms in

a neural network model for software engineering

applications‖ , ACM SIGSOFT Software Engineering , July

2005, Volume 30 Number 4 , page: 1-4.

[9] Mrinal Kanti Ghose, Roheet Bhatnagar and Vandana

Bhattacharjee , ―Comparing Some Neural Network Models

for Software Development Effort Prediction‖ , IEEE, 2011.

[10] Satish Kumar, ―Neural Networks: A Classroom Approach‖,

Tata McGraw-Hill, 2004.

[11] Howard Demuth and Mark Beale, ―Neural Network Toolbox-

For use with MATLAB‖,User‘s Guide,Version-4,Page-5.28.

[12] N.K.Bose and P.Liang, ―Neural Network Fundamentals with

Graphs, Algorithms and Applications‖, Tata McGraw Hill

Edition,1998.

[13] B. Yegnanarayana, ―Artificial Neural Networks‖, Prentice

Hall of India, 2003.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

E
ff

o
rt

 (
in

 P
M
)

Project No.

Effort Estimation using ANN

Actual

Cascade ANN

Elman ANN

Feed-Forward ANN

Recurrent ANN

