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ABSTRACT 
Data mining can extract important knowledge from large data 

collections – but sometimes these collections are split among 

various parties. Privacy concerns may prevent the parties from 

directly sharing the data, and some types of information about 

the data. This paper addresses secure mining of association 

rules over horizontally partitioned data. The methods 

incorporate cryptographic techniques to minimize the 

information shared, while adding little overhead to the mining 

task. 

 

Index Terms—Data Mining, Security, Privacy 

1. INTRODUCTION 
Data mining technology has emerged as a means of identifying 

patterns and trends from large quantities of data. Data mining 

and data warehousing go hand-in-hand: most tools operate by 

gathering all data into a central site, then running an algorithm 

against that data. However, privacy concerns can prevent 

building a centralized warehouse – data may be distributed 

among several custodians, none of which are allowed to 

transfer their data to another site. This paper addresses the 

problem of computing association rules within such a scenario. 

We assume homogeneous databases: All sites have the same 

schema, but each site has information on different entities. The 

goal is to produce association rules that hold globally, while 

limiting the information shared about each site. Computing 

association rules without disclosing individual transactions is 

straightforward. We can compute the global support and 

confidence of an association rule AB ) C knowing only the 

local supports of AB and ABC, and the size of each database:  

                             

                           ∑s
i=1support_countABC(i) 

           SupportAB=>C= 

   ∑s
i=1database_size(i) 

 

   ∑s
i=1support_countAB (i) 

           SupportAB= 

   ∑s
i=1database_size (i) 

 

Where s is Sites 

 

Note that this doesn‟t require sharing any individual 

transactions. We can easily extend an algorithm such as a-

priori [1] to the distributed case using the following lemma: If 

a rule has support > k% globally, it must have support > k% on 

at least one of the individual sites. A distributed algorithm for 

this would work as follows: Request that each site send all 

rules with support at least k. For each rule returned, request 

that all sites send the count of their transactions that support the 

rule, and the total count of all transactions at the site. From 

this, we can compute the global support of each rule and from 

the lemma) be certain that all rules with support at least k have 

been found. More thorough studies of distributed association 

rule mining can be found in [2], [3].The above approach 

protects individual data privacy, but it does require that each 

site disclose what rules it supports, and how much it supports 

each potential global rule. What if this information is sensitive? 

For example, suppose the Centers for Disease Control (CDC), 

a public agency, would like to mine health records to try to find 

ways to reduce the proliferation of antibiotic resistant bacteria. 

Insurance companies have data on patient diseases and 

prescriptions. 

 

 
 

Mining this data would allow the discovery of rules such as 

Augmenting & Summer) Infection Fall, i.e., people taking 

Augmenting in the summer seems to have recurring infections. 

The problem is that insurance companies will be concerned 

about sharing this data. Not only must the privacy of patient 

records be maintained, but insurers will be unwilling to release 

rules pertaining only to them. Imagine a rule indicating a high 

rate of complications with a particular medical procedure. If 

this rule doesn‟t hold globally, the insurer would like to know 

this – they can then try to pinpoint the problem with their 

policies and improve patient care. If the fact that the insurer‟s 

data supports this rule is revealed (say, under a Freedom of 

Information Act request to the CDC), the insurerer could be 

exposed to significant public relations or liability problems. 

This potential risk could exceed their own perception of the 

benefit of participating in the CDC study. This paper presents a 
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solution that preserves such secrets – the parties learn (almost) 

nothing beyond the global results. The solution is efficient: The 

additional cost relative to previous non-secure techniques is 

O(number of candidate itemsets _ sites) encryptions, and a 

constant increase in the number of 

 messages. The method presented in this paper assumes three 

or more parties. In the two-party case, knowing a rule is 

supported globally and not supported at one‟s own site reveals 

that the other site supports the rule. Thus, much of the 

knowledge we try to protect is revealed even with a completely 

secure method for computing the global results. We discuss the 

two party case further in Section V. By the same argument, we 

assume no collusion, as colluding parties can reduce this to the 

two-party case. 

 

1.1. Private Association Rule Mining 

Overview 
Our method follows the basic approach  except that values are 

passed between the local data mining sites rather than to a 

centralized combiner. The two phases are discovering 

candidate itemsets (those that are frequent on one or more 

sites), and determining which of the candidate itemsets meet 

the global support/confidence thresholds. The first phase 

(Figure 1) uses commutative encryption. Each party encrypts 

its own frequent itemsets (e.g., Site 1encrypts itemset C). The 

encrypted itemsets are then passed to other parties, until all 

parties have encrypted all itemsets. These are passed to a 

common party to eliminate duplicates, and to begin decryption. 

(In the figure, the full set of itemsets is shown to the left of Site 

1, after Site 1 decrypts.) This set is then passed to each party, 

and each party decrypts each itemset. The final result is the 

common itemsets (C and D in the figure). In the second phase 

(Figure 2), each of the locally supported itemsets is tested to 

see if it is supported globally. In the figure, the itemset ABC is 

known to be supported at one or more sites, and each computes 

their local support. The first site chooses a random value R, and 

adds to R the amount by which its support for ABC exceeds the 

minimum support threshold. This value is passed to site 2, 

which adds the amount by which its support exceeds the 

threshold (note that this may be negative, as shown in the 

figure.) This is passed to site three, which again adds its excess 

support. The resulting value (18) is tested using a secure 

comparison to see if it exceeds the Random value (17). If so, 

itemset ABC is supported globally. This gives a brief, 

oversimplified idea of how the method works. Before going 

into the details, we give background and definitions of relevant 

data mining and security techniques.  

 

 

2. BACKGROUND AND RELATED 

WORK 
There are several fields where related work is occurring. We 

first describe other work in privacy-preserving data mining, 

then go into detail on specific background work on which this 

paper builds. Previous work in privacy-preserving data mining 

has addressed two issues. In one, the aim is preserving 

customer privacy by distorting the data values [4]. The idea is 

that the distorted data does not reveal private information, and 

thus is “safe” to use for mining. The key result is that the 

distorted data, and information on the distribution of the 

random data used to distort the data, can be used to generate an 

pproximation to the original data distribution, without 

revealing the original data values. The distribution is used to 

improve mining results over mining the distorted data directly, 

primarily through selection of split points to “bin” continuous 

data. Later refinement of this approach tightened the bounds on 

what private information is disclosed, by showing that the 

ability to reconstruct the distribution can be used to tighten 

estimates of original values based on the distorted data [5]. 

More recently, the data distortion approach has been applied to 

boolean association rules [6], [7]. Again, the idea is to modify 

data values such that reconstruction of the values for any 

individual transaction is difficult, but the rules learned on the 

distorted data are still valid.  

One interesting feature of this work is a flexible definition of 

privacy; e.g., the ability to correctly guess a value of „1‟ from 

the distorted data can be considered a greater threat to privacy 

than correctly learning a „0‟. The data distortion approach 

addresses a different problem from our work. The assumption 

with distortion is that the values must be kept private from 

whoever is doing the mining. We instead assume that some 

parties are allowed to see some of the data, just that no one is 

allowed to see all the data. In return, we are able to get exact, 

rather than approximate, results. The other approach uses 

cryptographic tools to build decision trees. [8] In this work, the 

goal is to securely build an ID3 decision tree where the training 

set is distributed between two parties. The basic idea is that 

finding the attribute that maximizes information gain is 

equivalent to finding the attribute that minimizes the 

conditional entropy. The conditional entropy for an attribute 

for two parties can be written as a sum of the expression of the 

form (v1 + v2) × log(v1 + v2). The authors give a way to 

securely calculate the expression (v1 + v2) × log(v1 + v2) and 

show how to use this function for building the ID3 securely. 

This approach treats privacy preserving data mining as a 

special case of secure multi-party computation [9] and not only 

aims for preserving individual privacy but also tries to preserve 

leakage of any information other than the final result. We 

follow this approach, but address a different problem 

(association rules), and emphasize the efficiency of the 

resulting algorithms. A particular difference is that we 

recognize that some kinds of information can be exchanged 

without violating security policies; secure multiparty 

computation forbids leakage of any information other than the 

final result. The ability to share non-sensitive data enables 

highly efficient solutions.The problem of privately computing 

association rules in vertically partitioned distributed data has 

also been addressed [10]. The vertically partitioned problem 

occurs when each transaction is split across multiple sites, with 

each site having a different set of attributes for the entire set of 

transactions.With horizontal  partitioning each site has a set of 
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complete transactions. In relational terms, with horizontal 

partioning the relation to be mined is the union of the relations 

at the sites. In vertical partitioning, the relations at the 

individual sites must be joined to get the relation to be mined. 

The change in the way the data is distributed makes this a 

much different problem from the one we address here, resulting 

in a very different solution. 

2.1 Mining of Association Rules 
The association rules mining problem can be defined as  

follows: [1] Let I = {i1, i2, . . . , in} be a set of items. Let DB 

be a set of transactions, where each transaction T is an  itemset 

such that T _ I. Given an itemset X _ I, a transaction T contains 

X if and only if X _ T . An association rule is an implication of 

the form X ) Y where X _ I, Y _ I and X \Y = ;. The rule X ) Y  

has support s in the transaction database DB if s% of 

transactions in DB contain X[Y . The association rule holds in 

the transaction database DB with confidence c if c% of 

transactions in DB that contain X also contains Y. An itemset 

X with k items called k-itemset. The problem of mining 

association rules is to find all rules whose support and 

confidence are higher than certain user specified minimum 

support and confidence. In this simplified definition of the 

association rules, missing Items, negatives and quantities are 

not considered. In this respect, transaction database DB can be 

seen as 0/1 matrix where each column is an item and each row 

is a transaction. In this paper, we use this view of association 

rules. 

 

2.1.1 Distributed Mining of Association Rules:  
The above problem of mining association rules can be 

extended to distributed environments. Let us assume that a 

transaction database DB is horizontally partitioned among n 

sites (namely S1, S2, .  , Sn) where DB = DB1 [ DB2 [ . . . [ 

DBn and DBi resides at side Si (1 _ i _ n). The itemset X has 

local support count of X.supi at site Si if X.supi of the 

transactions contains X. The global support count of X is given 

as X.sup = Pn i=1 X.supi. An itemset X is globally supported if 

X.sup _ s × (Pni=1 |DBi|). Global confidence of a rule X ) Y 

can be given as {X [ Y }  .sup/X.sup. The set of large itemsets 

L(k) consists of all k-itemsets that are globally supported. The 

set of locally large  itemsets LLi(k) consists of all k-itemsets 

supported locally at site Si. GLi(k) = L(k) \LLi(k) is the set of 

globally large k-itemsets 

locally supported at site Si. The aim of distributed association 

rule mining is to find the sets L(k) for all k > 1 and the support 

counts for these itemsets, and from this compute association 

rules with the specified minimum support and confidence.The 

procedure for distributed mining of association rules  is 

summary as follows.  

1) Candidate Sets Generation: Generate candidate sets  

CGi(k) based on GLi(k−1), itemsets that are supported by the 

Si at the (k-1)-th iteration, using the classic apriori candidate 

generation algorithm. Each site generates candidates based on 

the  intersection of globally large (k-1) itemsets and locally 

large (k-1) itemsets. 

2) Local Pruning: For each X 2 CGi (k), scan the database 

DBi at Si to compute X.supi. If X is locally large Si, it is 

included in the LLi (k) set. It is clear that if X is supported 

globally, it will be supported in one site. 

3) Support Count Exchange: LLi (k) are broadcast, and each 

site computes the local support for the items in [iLLi (k).  

4) Broadcast Mining Results: Each site broadcasts the local 

support for itemsets in [iLLi(k). From this, each site is able to 

compute L(k). 

The details of the above algorithm can be found in [2]. 

2.2 Secure Multi-party Computation 

Substantial work has been done on secure multi-party 

computation. The key result is that a wide class of 

computations can be computed securely under reasonable 

assumptions. We give a brief overview of this work, 

concentrating on material that is used later in the paper. The 

definitions given here are from Goldreich. For simplicity, we 

concentrate on the two-party case. Extending the definitions to 

the multi-party case is straightforward.  

 

2.2.1 Security in semi-honest model 
A semi-honest party follows the rules of the protocol using its 

correct input, but is free to  later use what it sees during 

execution of the protocol to compromise security. This is 

somewhat realistic in the real world because parties who want 

to mine data for their mutual benefit will follow the protocol to 

get correct results. Also, a protocol  that is buried in large, 

complex software cannot be easily altered. A formal definition 

of private two-party computation in the semi-honest model is 

given below. Computing a function privately is equivalent to 

computing it securely.  

 

3. SECURE ASSOCIATION RULE 

MINING 
We will now use the tools described above to construct a 

distributed association rule mining algorithm that preserves the 

privacy of individual site results. The algorithm given is for 

three or more parties – the difficulty with the two-party case is 

discussed in Section V. 

 

3.1 Problem Definition 
Let 3 be the number of sites. Each site has a private transaction 

database DBi. We are given support threshold s. The goal is to 

discover all association rules satisfying the thresholds. We 

further desire that disclosure be limited: No site should be able 

to know contents of a transaction at any other site, what rules 

are supported by any other site, or the specific value of support 

for any rule at any other site, unless that information is 

revealed by knowledge of one‟s own data and the final result. 

E.g., if a rule is supported globally but not at one‟s own site, 

we can deduce that at least one other site supports the rule.  

 

3.2 Method 
Our method follows the general approach of the FDM 

algorithm [2], with special protocols replacing the broadcasts 

of LLi(k) and the support count of items in LL(k). We first 

give a method for finding the union of locally supported 

itemsets without revealing the originator of the particular 

itemset. We then provide a method for securely testing if the 

support count exceeds the threshold.  

3.2.1 Secure union of locally large itemset 

In the FDM algorithm, step 3 reveals the large itemsets 

supported by each site. To accomplish this without revealing 

what each site supports, we instead exchange locally large 

itemsets in a way that obscures the source of each itemset.We 

assume a secure commutative encryption algorithm with 

negligible collision probability.  
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The main idea is that each site encrypts the locally supported 

itemsets, along with enough “fake” itemsets to hide the actual 

number supported. Each site then encrypts the itemsets from 

other sites. In Phases 2 and 3, the sets of encrypted itemsets are 

merged. Since Equation 3 holds, duplicates in the locally 

supported itemsets will be duplicates in the encrypted itemsets, 

and can be deleted. The reason this occurs in two phases is that 

if a site knows which fully encrypted itemsets come from 

which sites, it can compute the size of the intersection between 

any set of sites. While generally innocuous, if it has this 

information for itself, it can guess at the itemsets supported by 

other sites. Permuting the order after encryption in Phase 1 

prevents knowing exactly which itemsets match, however 

separately merging itemsets from odd and even sites in Phase 2 

prevents any site from knowing the fully encrypted values of 

its own itemsets.1 Phase 4 decrypts the merged frequent 

itemsets. Commutativity of encryption allows us to decrypt all 

itemsets in the same order regardless of the order they were 

encrypted in, preventing sites from tracking the source of each 

itemset. The detailed algorithm is given in Protocol 1. In the 

protocol F represents the data that can be used as fake itemsets. 

|LLei(k)| represents the set of the encrypted k itemsets at site i. 

Ei is the encryption and Di is the decryption by site i. 1An 

alternative would be to use an anonymizing protocol [16] to 

send all fully encrypted itemsets to Site 0, thus preventing Site 

0 from knowing which were its own itemsets. The separate 

odd/even merging is lower cost and achieves sufficient security 

for practical purposes. 

Clearly, Protocol 1 finds the union without revealing which 

itemset belongs to which site. It is not, however, secure under 

the definitions of secure multi-party computation. It reveals the 

number of itemsets having common support between sites, e.g., 

sites 3, 5, and 9 all support some itemset. It does not reveal 

which itemsets these are, but a truly secure computation (as 

good as giving all input to a “trusted party”) could not reveal 

even this count. Allowing innocuous information leakage (the 

number of itemsets having common support) allows an 

algorithm that is sufficiently secure with much lower cost than  

a fully secure approach. If we deem leakage of the number of 

commonly supported itemsets as acceptable, we can prove that 

this method is secure under the definitions of secure multi-

party computation. The idea behind the proof is to show that 

given the result, the leaked information, and a site‟s own input, 

a site can simulate everything else seen during the protocol. 

Since the simulation generates everything seen during 

execution of the protocol, the site clearly learns nothing new 

from the protocol beyond the input provided to the simulator. 

One key is that the simulator does not need to generate exactly 

what is seen in any particular run of the protocol. The exact 

content of messages passed during the protocol is dependent on 

the random choice of keys; the  simulator must generate an 

equivalent distribution, based on ran dom choices made by the 

simulator, to the distribution of messages seen in real 

executions of the protocol. A formal proof that this proof 

technique shows that a protocol preserves privacy can be found 

in [9]. We use this approach to prove that Protocol 1 reveals 

only the union of locally large itemsets and a clearly bounded 

set of innocuous information. 

3.3 Theorem 
 

3.3.1: Protocol 1 privately computes the union of the locally 

large itemsets assuming no collusion, revealing at most the 

result [N i=1LLi(k) and: 

1) Size of intersection of locally supported itemsets between 

any subset of odd numbered sites, 

2) Size of intersection of locally supported itemsets between 

any subset of even numbered sites, and 

3) Number of itemsets supported by at least one odd and one 

even site. 

Proof: Phase 0: Since no communication occurs in Phase 0, 

each site can simulate its view by running the algorithm on its 

own input. 

Phase 1: At the first step, each site sees LLei−1(k). The size of 

this set is the size of the global candidate set CG(k), which is 

known to each site. Assuming the security of encryption, each 

item in this set is computationally indistinguishable from a 

number chosen from a uniform distribution. A site can 

therefore simulate the set using a uniform random number 

Generator. This same argument holds for each subsequent 

round.  

Phase 2: In Phase 2, site 0 gets the fully encrypted sets of 

itemsets from the other even sites. Assuming that each site 

knows the source of a received message, site 0 will know 

which fully encrypted set LLe(k) contains encrypted itemsets 

from which (odd) site. Equal itemsets will now be equal in 

encrypted form. Thus, site 0 learns if any odd sites had locally 

supported itemsets in common. We can still build a simulator 

for this view, using the information in point 1 above. If there 

are k itemsets known to be common among all bN/2c odd sites 

(from point 1), generate k random numbers and put them into 

the simulated LLei(k). Repeat for each bN/2c−1 subset,etc., 

down to 2 subsets of the odd sites. Then fill each LLei(k) with 

randomly chosen values until it reaches size |CGi(k)|.The 

generated sets will have exactly the same combinations of 

common items as the real sets, and since the values of the items 

in the real sets are computationally indistinguishable from a 

uniform distribution, their simulation matches the real values. 

The same argument holds for site 1, using information from 

point 2 to generate the simulator. 

Phase 3: Site 1 eliminates duplicates from the LLei(k) to 

generate RuleSet1. We now demonstrate that Site 0 can 

simulate RuleSet1. First, the size of RuleSet1 can be simulated 

knowing point 2. There may be itemsets in common between 

RuleSet0 and RuleSet1. These can be simulated using point 3: 

If there are k items in common between even and odd sites, site 

0 selects k random items from RuleSet0 and inserts them into 

RuleSet1. RuleSet1 is then filled with randomly generated 

values. Since the encryption guarantees that the values are 

computationally indistinguishable from a uniform distribution, 

and the set sizes |RuleSet0|, |RuleSet1|,and |RuleSet0\RuleSet1| 

(and   thus |RuleSet|) are identical in the simulation and real 

execution, this phase is secure.  

Phase 4: Each site sees only the encrypted items after 

decryption by the preceding site. Some of these may be 

identical to items seen in Phase 2, but since all items must be in 

the union, this reveals nothing. The simulator for site i is built 

as follows: take the values generated in Phase 2 step N − 1 − i, 

and place them in the RuleSet. Then insert random values in 

RuleSet up to the proper size . The values we have not seen 

before are computationally indistinguishable from data from a 

uniform distribution, and the simulator includes the values we 

have seen (and knew would be there), so the simulated view is 

computationally indistinguishable from the real values.The 

simulator for site N − 1 is different, since it learns RuleSet(k). 

To simulate what it sees in Phase 4, site N – 1 takes each item 

in RuleSet(k), the final result, and encrypts it with EN−1. 

These are placed in RuleSet. RuleSet is then filled with items 

chosen from F, also encrypted with EN−1.Since the choice of 
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items from F is random in both the real and simulated 

execution, and the real items exactly match in the real and 

simulation, the RuleSet site N − 1 receives in Phase 4 is 

computationally indistinguishable from the real execution. 

Therefore, we can conclude that above protocol is privacy 

preserving in the semi-honest model with the stated 

assumptions. The information disclosed by points 1-3 could be 

relaxed to the number of itemsets support by 1 site, 2 sites... N 

sites if we assume anonymous message transmission. The 

number of jointly supported itemsets can also be masked by 

allowing sites to inject itemsets that are not really supported 

locally. These fake itemsets will simply fail to be globally 

supported, and will be filtered from the final result when global 

support is calculated as shown in the next section. The jointly 

supported itemsets “l eak” then becomes an upper bound rather 

than exact, at an increased cost in the number of candidates that 

must be checked for global support. While not truly 

zeroknowledge, it reduces the confidence (and usefulness) of 

the leaked knowledge of the number of jointly supported 

itemsets. In practical terms, revealing the size (but not content) 

of intersections between sites is likely to be of little concern. 

2) Testing support threshold without revealing support count: 

Protocol 1 gives the full set of locally large itemsets LL(k). We 

still need to determine which of these itemsets are supported 

globally. Step 4 of the FDM algorithm forces each site to 

reveal its own support count for every itemset in LL(k). All we 

need to know is for each itemset X 2 LL(k), is X.sup _ s% × 

|DB|? The following allows us to reduce this to a comparison 

against a sum of local values (the excess support at each site):  

X.sup _ s _ |DB| = s _ (Xni=1|DBi|)Xni=1 

X.supi _ s _ (Xni=1|DBi|)Xni=1 

(X.supi − s _ |DBi|) _ 0 

PTherefore, checking for support is equivalent to checking if 

ni=1(X.supi − s _ |DBi|) _ 0. The challenge is to do this without 

revealing X.supi or |DBi|. An algorithm for this is given in 

Protocol 2.The first site generates a  random number xr for 

each itemset X, adds that number to its (X.supi − s _ |DBi|), 

and sends it to the next site. (All arithmetic is modm _ 2 _ 

|DB|, for reasons that will become apparent later.) The random 

number masks the actual excess support, so the second site 

learns nothing about the first site‟s actual database size or 

support. The second site adds its excess support and sends the 

value on. The random value now hides both support counts. 

The last site in the change now has  

Pni=1(X.supi − s _ |DBi|) + xr(mod m). 

Since the total database size |DB| _ m/2, negative summation 

will be mapped to some number that is bigger then or equal to 

m/2. (−k = m − k mod m.) The last site needs to test if this sum 

minus xr (mod m) is less then m/2. This can be done securely 

using Yao‟s generic method [11]. Clearly this algorithm is 

secure as long as there is no collusion, as no site can 

distinguish what it receives from a random number. 

Alternatively, the first site can simply send xr to the last site. 

The last site learns the actual excess support, but does not learn 

the support values for any single site. In addition, if we 

consider the excess support to be a valid part of the global 

result, this method is still secure. 

 

 

 

Theorem 3.2: Protocol 2 privately computes globally supported 

itemsets in the semi-honest model.  

Proof: To show that Protocol 2 is secure under the semi-honest 

model, we have to show that a polynomial time simulator can 

simulate the view of the parties during the execution of the 

protocol, based on their local inputs and the global result. We 

also use the general composition theorem for semi-honest 

computation [9]. The theorem says that if g securely reduces to 

f, and f is computed securely, then the computation of f(g) is 

secure. 

 

4. EXPERIMENTAL SETUP AND 

IMPLEMENTATION 
We have done mining on shop data bases. This consists of the 

binary transactions. The table in the database consists of the 

attributes like Mouse, Keyboard, Pen drive, Card reader, 

Headphones and Speakers. We have mined the database using 

apriori algorithm. After conducting the apriori algortithms the 

support counts which are generated at each individual sites are 

encrypted using DES Algorithm.The encrypted counts will be 

sent to all the other sites. The other sites will not know  the 

count because of encryption.After sending all the counts to all 

the sites the sites will know the total support count but not 

individual support count 

 

5. CONCLUSION 
This paper is a implementation version of Privacy-preserving 

Distributed Mining of Association Rules on Horizontally 

Partitioned Data Using DES Algorithm. This paper mainly 

addressed the implementation. Privacy-preserving Distributed 

Mining of Association Rules on Horizontally Partitioned Data 

Privacy-preserving Distributed Mining of Association Rules on 

Horizontally Partitioned Data can be implemented using other 

secure multy party computation.  
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