
IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

32

Privacy-preserving in Distributed Mining of

Horizontal Partitioned Data using DES Algorithm

G.Padma

M.Tech (SE)
Kakatiya Institute of Tech &

Sciences, India

G.K.Shailaja

Assoc. Prof (IT)
Kakatiya Institute of Tech &

Sciences, India

Rajesham Gajula
Asst.Prof (CSE)

Jayamukhi Institute of Technogical
Sciences, India

ABSTRACT
Data mining can extract important knowledge from large data

collections – but sometimes these collections are split among

various parties. Privacy concerns may prevent the parties from

directly sharing the data, and some types of information about

the data. This paper addresses secure mining of association

rules over horizontally partitioned data. The methods

incorporate cryptographic techniques to minimize the

information shared, while adding little overhead to the mining

task.

Index Terms—Data Mining, Security, Privacy

1. INTRODUCTION
Data mining technology has emerged as a means of identifying

patterns and trends from large quantities of data. Data mining

and data warehousing go hand-in-hand: most tools operate by

gathering all data into a central site, then running an algorithm

against that data. However, privacy concerns can prevent

building a centralized warehouse – data may be distributed

among several custodians, none of which are allowed to

transfer their data to another site. This paper addresses the

problem of computing association rules within such a scenario.

We assume homogeneous databases: All sites have the same

schema, but each site has information on different entities. The

goal is to produce association rules that hold globally, while

limiting the information shared about each site. Computing

association rules without disclosing individual transactions is

straightforward. We can compute the global support and

confidence of an association rule AB) C knowing only the

local supports of AB and ABC, and the size of each database:

 ∑s
i=1support_countABC(i)

 SupportAB=>C=

 ∑s
i=1database_size(i)

 ∑s
i=1support_countAB (i)

 SupportAB=

 ∑s
i=1database_size (i)

Where s is Sites

Note that this doesn‟t require sharing any individual

transactions. We can easily extend an algorithm such as a-

priori [1] to the distributed case using the following lemma: If

a rule has support > k% globally, it must have support > k% on

at least one of the individual sites. A distributed algorithm for

this would work as follows: Request that each site send all

rules with support at least k. For each rule returned, request

that all sites send the count of their transactions that support the

rule, and the total count of all transactions at the site. From

this, we can compute the global support of each rule and from

the lemma) be certain that all rules with support at least k have

been found. More thorough studies of distributed association

rule mining can be found in [2], [3].The above approach

protects individual data privacy, but it does require that each

site disclose what rules it supports, and how much it supports

each potential global rule. What if this information is sensitive?

For example, suppose the Centers for Disease Control (CDC),

a public agency, would like to mine health records to try to find

ways to reduce the proliferation of antibiotic resistant bacteria.

Insurance companies have data on patient diseases and

prescriptions.

Mining this data would allow the discovery of rules such as

Augmenting & Summer) Infection Fall, i.e., people taking

Augmenting in the summer seems to have recurring infections.

The problem is that insurance companies will be concerned

about sharing this data. Not only must the privacy of patient

records be maintained, but insurers will be unwilling to release

rules pertaining only to them. Imagine a rule indicating a high

rate of complications with a particular medical procedure. If

this rule doesn‟t hold globally, the insurer would like to know

this – they can then try to pinpoint the problem with their

policies and improve patient care. If the fact that the insurer‟s

data supports this rule is revealed (say, under a Freedom of

Information Act request to the CDC), the insurerer could be

exposed to significant public relations or liability problems.

This potential risk could exceed their own perception of the

benefit of participating in the CDC study. This paper presents a

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

33

solution that preserves such secrets – the parties learn (almost)

nothing beyond the global results. The solution is efficient: The

additional cost relative to previous non-secure techniques is

O(number of candidate itemsets _ sites) encryptions, and a

constant increase in the number of

 messages. The method presented in this paper assumes three

or more parties. In the two-party case, knowing a rule is

supported globally and not supported at one‟s own site reveals

that the other site supports the rule. Thus, much of the

knowledge we try to protect is revealed even with a completely

secure method for computing the global results. We discuss the

two party case further in Section V. By the same argument, we

assume no collusion, as colluding parties can reduce this to the

two-party case.

1.1. Private Association Rule Mining

Overview
Our method follows the basic approach except that values are

passed between the local data mining sites rather than to a

centralized combiner. The two phases are discovering

candidate itemsets (those that are frequent on one or more

sites), and determining which of the candidate itemsets meet

the global support/confidence thresholds. The first phase

(Figure 1) uses commutative encryption. Each party encrypts

its own frequent itemsets (e.g., Site 1encrypts itemset C). The

encrypted itemsets are then passed to other parties, until all

parties have encrypted all itemsets. These are passed to a

common party to eliminate duplicates, and to begin decryption.

(In the figure, the full set of itemsets is shown to the left of Site

1, after Site 1 decrypts.) This set is then passed to each party,

and each party decrypts each itemset. The final result is the

common itemsets (C and D in the figure). In the second phase

(Figure 2), each of the locally supported itemsets is tested to

see if it is supported globally. In the figure, the itemset ABC is

known to be supported at one or more sites, and each computes

their local support. The first site chooses a random value R, and

adds to R the amount by which its support for ABC exceeds the

minimum support threshold. This value is passed to site 2,

which adds the amount by which its support exceeds the

threshold (note that this may be negative, as shown in the

figure.) This is passed to site three, which again adds its excess

support. The resulting value (18) is tested using a secure

comparison to see if it exceeds the Random value (17). If so,

itemset ABC is supported globally. This gives a brief,

oversimplified idea of how the method works. Before going

into the details, we give background and definitions of relevant

data mining and security techniques.

2. BACKGROUND AND RELATED

WORK
There are several fields where related work is occurring. We

first describe other work in privacy-preserving data mining,

then go into detail on specific background work on which this

paper builds. Previous work in privacy-preserving data mining

has addressed two issues. In one, the aim is preserving

customer privacy by distorting the data values [4]. The idea is

that the distorted data does not reveal private information, and

thus is “safe” to use for mining. The key result is that the

distorted data, and information on the distribution of the

random data used to distort the data, can be used to generate an

pproximation to the original data distribution, without

revealing the original data values. The distribution is used to

improve mining results over mining the distorted data directly,

primarily through selection of split points to “bin” continuous

data. Later refinement of this approach tightened the bounds on

what private information is disclosed, by showing that the

ability to reconstruct the distribution can be used to tighten

estimates of original values based on the distorted data [5].

More recently, the data distortion approach has been applied to

boolean association rules [6], [7]. Again, the idea is to modify

data values such that reconstruction of the values for any

individual transaction is difficult, but the rules learned on the

distorted data are still valid.

One interesting feature of this work is a flexible definition of

privacy; e.g., the ability to correctly guess a value of „1‟ from

the distorted data can be considered a greater threat to privacy

than correctly learning a „0‟. The data distortion approach

addresses a different problem from our work. The assumption

with distortion is that the values must be kept private from

whoever is doing the mining. We instead assume that some

parties are allowed to see some of the data, just that no one is

allowed to see all the data. In return, we are able to get exact,

rather than approximate, results. The other approach uses

cryptographic tools to build decision trees. [8] In this work, the

goal is to securely build an ID3 decision tree where the training

set is distributed between two parties. The basic idea is that

finding the attribute that maximizes information gain is

equivalent to finding the attribute that minimizes the

conditional entropy. The conditional entropy for an attribute

for two parties can be written as a sum of the expression of the

form (v1 + v2) × log(v1 + v2). The authors give a way to

securely calculate the expression (v1 + v2) × log(v1 + v2) and

show how to use this function for building the ID3 securely.

This approach treats privacy preserving data mining as a

special case of secure multi-party computation [9] and not only

aims for preserving individual privacy but also tries to preserve

leakage of any information other than the final result. We

follow this approach, but address a different problem

(association rules), and emphasize the efficiency of the

resulting algorithms. A particular difference is that we

recognize that some kinds of information can be exchanged

without violating security policies; secure multiparty

computation forbids leakage of any information other than the

final result. The ability to share non-sensitive data enables

highly efficient solutions.The problem of privately computing

association rules in vertically partitioned distributed data has

also been addressed [10]. The vertically partitioned problem

occurs when each transaction is split across multiple sites, with

each site having a different set of attributes for the entire set of

transactions.With horizontal partitioning each site has a set of

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

34

complete transactions. In relational terms, with horizontal

partioning the relation to be mined is the union of the relations

at the sites. In vertical partitioning, the relations at the

individual sites must be joined to get the relation to be mined.

The change in the way the data is distributed makes this a

much different problem from the one we address here, resulting

in a very different solution.

2.1 Mining of Association Rules
The association rules mining problem can be defined as

follows: [1] Let I = {i1, i2, . . . , in} be a set of items. Let DB

be a set of transactions, where each transaction T is an itemset

such that T _ I. Given an itemset X _ I, a transaction T contains

X if and only if X _ T . An association rule is an implication of

the form X) Y where X _ I, Y _ I and X \Y = ;. The rule X) Y

has support s in the transaction database DB if s% of

transactions in DB contain X[Y . The association rule holds in

the transaction database DB with confidence c if c% of

transactions in DB that contain X also contains Y. An itemset

X with k items called k-itemset. The problem of mining

association rules is to find all rules whose support and

confidence are higher than certain user specified minimum

support and confidence. In this simplified definition of the

association rules, missing Items, negatives and quantities are

not considered. In this respect, transaction database DB can be

seen as 0/1 matrix where each column is an item and each row

is a transaction. In this paper, we use this view of association

rules.

2.1.1 Distributed Mining of Association Rules:
The above problem of mining association rules can be

extended to distributed environments. Let us assume that a

transaction database DB is horizontally partitioned among n

sites (namely S1, S2, . , Sn) where DB = DB1 [DB2 [. . . [

DBn and DBi resides at side Si (1 _ i _ n). The itemset X has

local support count of X.supi at site Si if X.supi of the

transactions contains X. The global support count of X is given

as X.sup = Pn i=1 X.supi. An itemset X is globally supported if

X.sup _ s × (Pni=1 |DBi|). Global confidence of a rule X) Y

can be given as {X [Y } .sup/X.sup. The set of large itemsets

L(k) consists of all k-itemsets that are globally supported. The

set of locally large itemsets LLi(k) consists of all k-itemsets

supported locally at site Si. GLi(k) = L(k) \LLi(k) is the set of

globally large k-itemsets

locally supported at site Si. The aim of distributed association

rule mining is to find the sets L(k) for all k > 1 and the support

counts for these itemsets, and from this compute association

rules with the specified minimum support and confidence.The

procedure for distributed mining of association rules is

summary as follows.

1) Candidate Sets Generation: Generate candidate sets

CGi(k) based on GLi(k−1), itemsets that are supported by the

Si at the (k-1)-th iteration, using the classic apriori candidate

generation algorithm. Each site generates candidates based on

the intersection of globally large (k-1) itemsets and locally

large (k-1) itemsets.

2) Local Pruning: For each X 2 CGi (k), scan the database

DBi at Si to compute X.supi. If X is locally large Si, it is

included in the LLi (k) set. It is clear that if X is supported

globally, it will be supported in one site.

3) Support Count Exchange: LLi (k) are broadcast, and each

site computes the local support for the items in [iLLi (k).

4) Broadcast Mining Results: Each site broadcasts the local

support for itemsets in [iLLi(k). From this, each site is able to

compute L(k).

The details of the above algorithm can be found in [2].

2.2 Secure Multi-party Computation

Substantial work has been done on secure multi-party

computation. The key result is that a wide class of

computations can be computed securely under reasonable

assumptions. We give a brief overview of this work,

concentrating on material that is used later in the paper. The

definitions given here are from Goldreich. For simplicity, we

concentrate on the two-party case. Extending the definitions to

the multi-party case is straightforward.

2.2.1 Security in semi-honest model
A semi-honest party follows the rules of the protocol using its

correct input, but is free to later use what it sees during

execution of the protocol to compromise security. This is

somewhat realistic in the real world because parties who want

to mine data for their mutual benefit will follow the protocol to

get correct results. Also, a protocol that is buried in large,

complex software cannot be easily altered. A formal definition

of private two-party computation in the semi-honest model is

given below. Computing a function privately is equivalent to

computing it securely.

3. SECURE ASSOCIATION RULE

MINING
We will now use the tools described above to construct a

distributed association rule mining algorithm that preserves the

privacy of individual site results. The algorithm given is for

three or more parties – the difficulty with the two-party case is

discussed in Section V.

3.1 Problem Definition
Let 3 be the number of sites. Each site has a private transaction

database DBi. We are given support threshold s. The goal is to

discover all association rules satisfying the thresholds. We

further desire that disclosure be limited: No site should be able

to know contents of a transaction at any other site, what rules

are supported by any other site, or the specific value of support

for any rule at any other site, unless that information is

revealed by knowledge of one‟s own data and the final result.

E.g., if a rule is supported globally but not at one‟s own site,

we can deduce that at least one other site supports the rule.

3.2 Method
Our method follows the general approach of the FDM

algorithm [2], with special protocols replacing the broadcasts

of LLi(k) and the support count of items in LL(k). We first

give a method for finding the union of locally supported

itemsets without revealing the originator of the particular

itemset. We then provide a method for securely testing if the

support count exceeds the threshold.

3.2.1 Secure union of locally large itemset

In the FDM algorithm, step 3 reveals the large itemsets

supported by each site. To accomplish this without revealing

what each site supports, we instead exchange locally large

itemsets in a way that obscures the source of each itemset.We

assume a secure commutative encryption algorithm with

negligible collision probability.

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

35

The main idea is that each site encrypts the locally supported

itemsets, along with enough “fake” itemsets to hide the actual

number supported. Each site then encrypts the itemsets from

other sites. In Phases 2 and 3, the sets of encrypted itemsets are

merged. Since Equation 3 holds, duplicates in the locally

supported itemsets will be duplicates in the encrypted itemsets,

and can be deleted. The reason this occurs in two phases is that

if a site knows which fully encrypted itemsets come from

which sites, it can compute the size of the intersection between

any set of sites. While generally innocuous, if it has this

information for itself, it can guess at the itemsets supported by

other sites. Permuting the order after encryption in Phase 1

prevents knowing exactly which itemsets match, however

separately merging itemsets from odd and even sites in Phase 2

prevents any site from knowing the fully encrypted values of

its own itemsets.1 Phase 4 decrypts the merged frequent

itemsets. Commutativity of encryption allows us to decrypt all

itemsets in the same order regardless of the order they were

encrypted in, preventing sites from tracking the source of each

itemset. The detailed algorithm is given in Protocol 1. In the

protocol F represents the data that can be used as fake itemsets.

|LLei(k)| represents the set of the encrypted k itemsets at site i.

Ei is the encryption and Di is the decryption by site i. 1An

alternative would be to use an anonymizing protocol [16] to

send all fully encrypted itemsets to Site 0, thus preventing Site

0 from knowing which were its own itemsets. The separate

odd/even merging is lower cost and achieves sufficient security

for practical purposes.

Clearly, Protocol 1 finds the union without revealing which

itemset belongs to which site. It is not, however, secure under

the definitions of secure multi-party computation. It reveals the

number of itemsets having common support between sites, e.g.,

sites 3, 5, and 9 all support some itemset. It does not reveal

which itemsets these are, but a truly secure computation (as

good as giving all input to a “trusted party”) could not reveal

even this count. Allowing innocuous information leakage (the

number of itemsets having common support) allows an

algorithm that is sufficiently secure with much lower cost than

a fully secure approach. If we deem leakage of the number of

commonly supported itemsets as acceptable, we can prove that

this method is secure under the definitions of secure multi-

party computation. The idea behind the proof is to show that

given the result, the leaked information, and a site‟s own input,

a site can simulate everything else seen during the protocol.

Since the simulation generates everything seen during

execution of the protocol, the site clearly learns nothing new

from the protocol beyond the input provided to the simulator.

One key is that the simulator does not need to generate exactly

what is seen in any particular run of the protocol. The exact

content of messages passed during the protocol is dependent on

the random choice of keys; the simulator must generate an

equivalent distribution, based on ran dom choices made by the

simulator, to the distribution of messages seen in real

executions of the protocol. A formal proof that this proof

technique shows that a protocol preserves privacy can be found

in [9]. We use this approach to prove that Protocol 1 reveals

only the union of locally large itemsets and a clearly bounded

set of innocuous information.

3.3 Theorem

3.3.1: Protocol 1 privately computes the union of the locally

large itemsets assuming no collusion, revealing at most the

result [N i=1LLi(k) and:

1) Size of intersection of locally supported itemsets between

any subset of odd numbered sites,

2) Size of intersection of locally supported itemsets between

any subset of even numbered sites, and

3) Number of itemsets supported by at least one odd and one

even site.

Proof: Phase 0: Since no communication occurs in Phase 0,

each site can simulate its view by running the algorithm on its

own input.

Phase 1: At the first step, each site sees LLei−1(k). The size of

this set is the size of the global candidate set CG(k), which is

known to each site. Assuming the security of encryption, each

item in this set is computationally indistinguishable from a

number chosen from a uniform distribution. A site can

therefore simulate the set using a uniform random number

Generator. This same argument holds for each subsequent

round.

Phase 2: In Phase 2, site 0 gets the fully encrypted sets of

itemsets from the other even sites. Assuming that each site

knows the source of a received message, site 0 will know

which fully encrypted set LLe(k) contains encrypted itemsets

from which (odd) site. Equal itemsets will now be equal in

encrypted form. Thus, site 0 learns if any odd sites had locally

supported itemsets in common. We can still build a simulator

for this view, using the information in point 1 above. If there

are k itemsets known to be common among all bN/2c odd sites

(from point 1), generate k random numbers and put them into

the simulated LLei(k). Repeat for each bN/2c−1 subset,etc.,

down to 2 subsets of the odd sites. Then fill each LLei(k) with

randomly chosen values until it reaches size |CGi(k)|.The

generated sets will have exactly the same combinations of

common items as the real sets, and since the values of the items

in the real sets are computationally indistinguishable from a

uniform distribution, their simulation matches the real values.

The same argument holds for site 1, using information from

point 2 to generate the simulator.

Phase 3: Site 1 eliminates duplicates from the LLei(k) to

generate RuleSet1. We now demonstrate that Site 0 can

simulate RuleSet1. First, the size of RuleSet1 can be simulated

knowing point 2. There may be itemsets in common between

RuleSet0 and RuleSet1. These can be simulated using point 3:

If there are k items in common between even and odd sites, site

0 selects k random items from RuleSet0 and inserts them into

RuleSet1. RuleSet1 is then filled with randomly generated

values. Since the encryption guarantees that the values are

computationally indistinguishable from a uniform distribution,

and the set sizes |RuleSet0|, |RuleSet1|,and |RuleSet0\RuleSet1|

(and thus |RuleSet|) are identical in the simulation and real

execution, this phase is secure.

Phase 4: Each site sees only the encrypted items after

decryption by the preceding site. Some of these may be

identical to items seen in Phase 2, but since all items must be in

the union, this reveals nothing. The simulator for site i is built

as follows: take the values generated in Phase 2 step N − 1 − i,

and place them in the RuleSet. Then insert random values in

RuleSet up to the proper size . The values we have not seen

before are computationally indistinguishable from data from a

uniform distribution, and the simulator includes the values we

have seen (and knew would be there), so the simulated view is

computationally indistinguishable from the real values.The

simulator for site N − 1 is different, since it learns RuleSet(k).

To simulate what it sees in Phase 4, site N – 1 takes each item

in RuleSet(k), the final result, and encrypts it with EN−1.

These are placed in RuleSet. RuleSet is then filled with items

chosen from F, also encrypted with EN−1.Since the choice of

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

36

items from F is random in both the real and simulated

execution, and the real items exactly match in the real and

simulation, the RuleSet site N − 1 receives in Phase 4 is

computationally indistinguishable from the real execution.

Therefore, we can conclude that above protocol is privacy

preserving in the semi-honest model with the stated

assumptions. The information disclosed by points 1-3 could be

relaxed to the number of itemsets support by 1 site, 2 sites... N

sites if we assume anonymous message transmission. The

number of jointly supported itemsets can also be masked by

allowing sites to inject itemsets that are not really supported

locally. These fake itemsets will simply fail to be globally

supported, and will be filtered from the final result when global

support is calculated as shown in the next section. The jointly

supported itemsets “l eak” then becomes an upper bound rather

than exact, at an increased cost in the number of candidates that

must be checked for global support. While not truly

zeroknowledge, it reduces the confidence (and usefulness) of

the leaked knowledge of the number of jointly supported

itemsets. In practical terms, revealing the size (but not content)

of intersections between sites is likely to be of little concern.

2) Testing support threshold without revealing support count:

Protocol 1 gives the full set of locally large itemsets LL(k). We

still need to determine which of these itemsets are supported

globally. Step 4 of the FDM algorithm forces each site to

reveal its own support count for every itemset in LL(k). All we

need to know is for each itemset X 2 LL(k), is X.sup _ s% ×

|DB|? The following allows us to reduce this to a comparison

against a sum of local values (the excess support at each site):

X.sup _ s _ |DB| = s _ (Xni=1|DBi|)Xni=1

X.supi _ s _ (Xni=1|DBi|)Xni=1

(X.supi − s _ |DBi|) _ 0

PTherefore, checking for support is equivalent to checking if

ni=1(X.supi − s _ |DBi|) _ 0. The challenge is to do this without

revealing X.supi or |DBi|. An algorithm for this is given in

Protocol 2.The first site generates a random number xr for

each itemset X, adds that number to its (X.supi − s _ |DBi|),

and sends it to the next site. (All arithmetic is modm _ 2 _

|DB|, for reasons that will become apparent later.) The random

number masks the actual excess support, so the second site

learns nothing about the first site‟s actual database size or

support. The second site adds its excess support and sends the

value on. The random value now hides both support counts.

The last site in the change now has

Pni=1(X.supi − s _ |DBi|) + xr(mod m).

Since the total database size |DB| _ m/2, negative summation

will be mapped to some number that is bigger then or equal to

m/2. (−k = m − k mod m.) The last site needs to test if this sum

minus xr (mod m) is less then m/2. This can be done securely

using Yao‟s generic method [11]. Clearly this algorithm is

secure as long as there is no collusion, as no site can

distinguish what it receives from a random number.

Alternatively, the first site can simply send xr to the last site.

The last site learns the actual excess support, but does not learn

the support values for any single site. In addition, if we

consider the excess support to be a valid part of the global

result, this method is still secure.

Theorem 3.2: Protocol 2 privately computes globally supported

itemsets in the semi-honest model.

Proof: To show that Protocol 2 is secure under the semi-honest

model, we have to show that a polynomial time simulator can

simulate the view of the parties during the execution of the

protocol, based on their local inputs and the global result. We

also use the general composition theorem for semi-honest

computation [9]. The theorem says that if g securely reduces to

f, and f is computed securely, then the computation of f(g) is

secure.

4. EXPERIMENTAL SETUP AND

IMPLEMENTATION
We have done mining on shop data bases. This consists of the

binary transactions. The table in the database consists of the

attributes like Mouse, Keyboard, Pen drive, Card reader,

Headphones and Speakers. We have mined the database using

apriori algorithm. After conducting the apriori algortithms the

support counts which are generated at each individual sites are

encrypted using DES Algorithm.The encrypted counts will be

sent to all the other sites. The other sites will not know the

count because of encryption.After sending all the counts to all

the sites the sites will know the total support count but not

individual support count

5. CONCLUSION
This paper is a implementation version of Privacy-preserving

Distributed Mining of Association Rules on Horizontally

Partitioned Data Using DES Algorithm. This paper mainly

addressed the implementation. Privacy-preserving Distributed

Mining of Association Rules on Horizontally Partitioned Data

Privacy-preserving Distributed Mining of Association Rules on

Horizontally Partitioned Data can be implemented using other

secure multy party computation.

6. REFERENCES
[1] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules,” in Proceedings of the 20th

International Conference on VeryLarge Data Bases.

Santiago, Chile: VLDB, Sept. 12-15 1994, pp.487–499.

[Online]. Available:

http://www.vldb.org/dblp/db/conf/vldb/vldb94-487.html

[2] D. W.-L. Cheung, J. Han, V. Ng, A. W.-C. Fu, and Y. Fu,

“A fast distributed algorithm for mining association

rules,” in Proceedings of the 1996 International

Conference on Parallel and Distributed Information

Systems (PDIS’96). Miami Beach, Florida, USA: IEEE,

Dec. 1996,pp. 31–42.

[3] D. W.-L. Cheung, V. Ng, A. W.-C. Fu, and Y. Fu,

“Efficient mining of association rules in distributed

databases,” IEEE Trans. Knowledge Data Eng., vol. 8,

no. 6, pp. 911–922, Dec. 1996.

[4] R. Agrawal and R. Srikant, “Privacy-preserving data

mining,” in Proceedings of the 2000 ACM SIGMOD

Conference on Management of Data. Dallas, TX: ACM,

May 14-19 2000, pp. 439–450. [Online]. Available:

http://doi.acm.org/10.1145/342009.335438.

[5] D. Agrawal and C. C. Aggarwal, “On the design and

quantification of privacy preserving data mining

algorithms,” in Proceedings of the Twentieth ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems. Santa Barbara, California, USA:ACM,

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

37

May 21-23 2001, pp. 247–255. [Online]. Available:

http://doi.acm.org/ 10.1145/375551.375602.

[6] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke,

“Privacy preserving mining of association rules,” in The

Eighth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, Edmonton,

Alberta, Canada, July 23-26 2002, pp. 217–228. [Online].

Available: http://doi.acm.org/10.1145/775047.775080

[7] S. J. Rizvi and J. R. Haritsa, “Maintaining data privacy in

association rule mining,” in Proceedings of 28th

International Conference on Very Large Data Bases.

Hong Kong: VLDB, Aug. 20-23 2002, pp. 682–693.

[Online]. Available:

http://www.vldb.org/conf/2002/S19P03.pdf

[8] Y. Lindell and B. Pinkas, “Privacy preserving data mining,”

in Advances in Cryptology – CRYPTO 2000. Springer-

Verlag, Aug. 20-24 2000, pp. 36–54. [Online]. Available:

http://link.springer.de/link/ service/series/ 0558 /bibs/

1880/18800036.htm

[9] O. Goldreich, “Secure multi-party computation,” Sept.

1998, (working draft). [Online]. Available:

http://www.wisdom.weizmann.ac.il/_oded/pp.html

[10] J. Vaidya and C. Clifton, “Privacy preserving association

rule mining in vertically partitioned data,” in The Eighth

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Edmonton, Alberta, Canada,

July 23-26 2002, pp. 639–644. [Online]. Available:

http://doi.acm.org/10.1145/775047.775142

[11] A. C. Yao, “How to generate and exchange secrets,” in

Proceedings of the 27th IEEE Symposium on

Foundations of Computer Science. IEEE,1986, pp. 162–

167.

[12] I. Ioannidis and A. Grama, “An efficient protocol for

yao‟s millionaires‟ problem,” in Hawaii International

Conference on System Sciences(HICSS-36), Waikoloa

Village, Hawaii, Jan. 6-9 2003.

[13] O. Goldreich, “Encryption schemes,” Mar. 2003, (working

draft). [Online]. Available:

http://www.wisdom.weizmann.ac.il/_oded/PSBookFrag/e

nc.ps

[14] R. L. Rivest, A. Shamir, and L. Adleman, “A method for

obtaining digital signatures and public-key

cryptosystems,” Communications of the ACM, vol. 21, no.

2, pp. 120–126, 1978. [Online]. Available:

http://doi.acm.org/10.1145/359340.359342

