
IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

14

P2P Secure Collaboration between Byzantine Processes

in Heterogeneous distributed – Processing Systems

Ramesh Dharavath
Associate Professor, Dept of CSE

Pulipati Prasad Institute of Technology & Science
Khammam, Andhra Pradesh, India

Vallem Swetha Reddy
Assistant Professor, Dept of CSE

Pulipati Prasad Institute of Technology & Science
Khammam, Andhra Pradesh, India

ABSTRACT

The www and related technologies have made multi domain

collaborations a reality. Collaborations enable processes to

effectively share resources; it introduces several security and

privacy challenges. Managing security and efficient exchange

of information is even more challenging. In this paper, we

propose a distributed secure frame work between Byzantine

processes (nodes) in order to predict and resolve the

functionalities of communication errors in collaboration

environments. We introduce the idea of secure paths, which

enables the front-end clients (e.g. Web browsers) that invoke

application servers (e.g. web servers) to access the back-end

databases when an end-user interacts. We present a

cryptographic protocol for ensuring secure and timely

availability of the data of a peer to other peers. Furthermore,

we present an on-demand path discovery that enable peers to

securely discover paths in the collaboration environment.

Keywords

Secure paths, Security, distributed systems, collaboration

environment.

1. INTRODUCTION
The www has become integrated into practices of individuals,

business, and governments. In such a combined world, there

are immense possibilities of collaboration in distributed

environments. Though interoperability has several advantages

and is crucial in the context of new dynamic collaborative

applications and adaptive enterprises, it introduces several

security and privacy concerns. In particular, a domain

represents a core element in a collaborating environment. A

domain is a separate autonomous entity that manages a group

of resources and has its own administration and access control

policies. Collaboration could be viewed as an interoperation

between the access control policies of the involved domains.

It is more challenging to handle security in a fully distributed

and dynamic interoperation environment where domains join

and leave in an ad hoc manner and in the absence of a trusted

mediator.

A client submits a request to some application Server on

behalf of an end-user; the application server Processes the

client's request, stores the resulting state in a back-end

database, and returns a result to the client. This simple

interaction scheme is at the centre of the called business mode

today. If a failure occurs at the middle or back-end tier during

request processing, or a timeout mode expires at the client

side, the end-user typically receives an exception notification.

This does not convey what actually happened, or whether a

new state was actually stored in the database. In practice, end-

users strongly resubmit the request with the risk of

committing multiple server-side transactions. P2P networks

are more vulnerable to dissemination of malicious or spurious

content, malicious code, viruses, worms, and trojans than the

traditional client-server networks, due to their unregulated and

unmanaged aspect.

The traditional mechanisms for generating trust and protecting

client-server networks cannot be used for pure P2P networks.

This is because the trusted central authority used in the

traditional client-server networks is absent in P2P networks.

Introduction of a central trusted authority like a Certificate

Authority (CA) can minimize the difficulty of securing P2P

networks. The major disadvantage of the centralized approach

is, if the central authority turns malicious, the network will

become vulnerable. A two-party cryptographic protocol not

only protects the reputation information from its owner, but

also facilitates secure exchange of information between the

two peers participating in a transaction.

1.1 Contributions
The contributions in this paper can be summarized as follows:

 We present a secure collaboration

environment and discuss the security

collaboration challenges in such an

environment. We define access paths and

present access path security requirements in a

secure collaboration.

 We provide a framework for enabling secure

collaboration in an agent-free environment, in

which access control decisions are dependent

on the user’s access history in the collaboration

environment.

 We discuss several security attacks that can be

performed in a secure environment and provide

mitigation techniques to such attacks.

 A self-certification-based identity system

protected by cryptographically blind identity

mechanisms.

 A light weight and simple reputation method.

 An attack resistant cryptographic protocol for

generation of authentic global reputation

information of a peer.

We do not make any operations on the failure task to detect

the scheme used by the client-side software to detect the crash

of application servers, and we tolerate failure detection

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

15

mistakes among application servers. Network partitions might

block the algorithm, but as long as we assume that partitions

are eventually repaired, our algorithm ensures Transaction

semantics.

2. RELATED SCENARIO
We consider a distributed system with a finite set of Processes

that communicate by message passing. Processes fail by

crashing. At any point in time, a process is either up or down.

A crash causes a transition from up to down, and a recovery

causes the transition from down to up. The crash of a process

has no impact on its stable storage. When it is up, a process

behaves according to the algorithm that was assigned to it.

Processes do not behave maliciously. We review current work

done for protecting the users of distributed systems using

distributed CAs. This section is focused on distributed

systems with one or more central credentials.

 Publius - is a monolithic system comprised of a set of

independently managed servers. It is censorship resistant and

allows a publisher to publish anonymously. It uses

cryptographic secret splitting techniques and divides the

secret among a set of servers.

 SDSI - is a Simple Distributed Security Infrastructure,

Simplifies the X.509 certificates design and provides the

means for self-certification, local name spaces, secure

formation of groups, and simple access control mechanisms.

 RBAC- Role-Based Access Control was introduced in 1992

by Ferraiolo and Kuhn. RBAC associates permissions with

roles and not with users.

Cryptographic blinding- enables an authority to digitally

sign a document without seeing the content of the document.

COCA- uses a set of distributed CA servers and provides fault

tolerance and mitigation against denial of service attacks.

COCA puts lose constraints on the communication channels

among the servers and between the client and the servers in

order to improve deployability.

 The protocols and algorithms presented in this paper can still

be applied when other access control models are adopted. We

have chosen RBAC because it is suitable for specifying the

security requirements of a wide range of commercial, medical,

government applications, and moreover, it is being

standardized by the National Institute of Standards. A domain

that does not use RBAC as its access control model can easily

generate an export RBAC policy to join the collaboration.

 Fig. 1. Collaboration and dissimilarities.

2.1 Clients
Client processes are sketched by c1; c2; . . . ; ck (ci €

Client).We assume a domain, “Request,” of request values,

and we facilitate how requests in this domain are submitted to

application servers. Clients have an operation issue (), which

is invoked with a request as parameter (e.g., on behalf of an

end-user). We say that the client issues a request when the

operation issue () is invoked. The issue () primitive is

supposed to return a result value from the domain “Result.”

When it does so, we say that the client delivers the result (e.g.,

to the end-user).

2.2 Application Servers
Application server processes are denoted by a1; a2; am (ai €

Appserver). We will discuss the situation of having a dynamic

set of application servers. Application servers are stateless in

the sense that they do not maintain states across request

methodologies: Requests do not have side-effects on the state

of application servers, only on the database state. Thus, a

request cannot make any assumption about previous requests

in terms of application-server state changes.

2.3 Database Servers
Database server processes are denoted by s1; s2; Sn (si €

Server). We consider a fixed set of databases for simplicity of

presentation. Since we want our methodology to apply to off-

the-shelf database systems, we view a database server as an

XA engine. In particular, a database server is a real server: It

does not invoke other servers, it only responds to invocations.

We do not represent full XA functionality, we only represent

the transaction Commitment aspects of XA (prepare () and

commit ()). We use two non-blocking primitives, vote () and

decide (), to represent the transaction commitment

functionality. The vote () primitive takes as a parameter a

result identifier and returns a vote in the domain Vote = {y,

n}. Surely speaking, a yes vote means that the database server

is able to commit the result (i.e., the corresponding

transaction). The decide () primitive takes two parameters: a

result identifier and an outcome in the domain Outcome =

{commit, abort}.

2.4 Secure Collaboration
In this section, we present the notion of agent-free

secure collaboration environment. In an agent-free

environment, there is no global entity ensuring secure

interoperability among the collaborating domains. Fig. 2

shows both the mediated and the agent-free types of

collaboration environments. In an agent-free environment, we

have the following main assumptions:

 Processes have limited information about the

collaboration environment. Each domain only has

information about its own security policy, the cross-

links and restricted links in which it is involved.

 Each domain is responsible for making its own

access control decisions. The first priority of each

domain is to ensure that its security policy is not

violated.

 Domains are willing to collaborate in propagating

access control messages and requests across domain

boundaries.

Fig. 2 Collaboration environment with and without an

agent. (a) Mediated. (b) Agent-Free.

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

16

We included this section in order to summarize the identity

management methods used by the current P2P networks,

reputation systems, and client-server networks. In P2P

networks, there is no way to ascertain the distinctness of a

peer in the absence of a central agency or without using

external means. This thesis has been named as the Sybil attack

and proved in and has been reiterated in.

3. METHODS FOR COLLABORATION
Our framework enables domains to make localized access

control decisions based on the user’s access history in the

collaboration environment. It is composed by the following.

Major modules (see Fig. 3):

 Request processing module. Enables domains to

generate and evaluate user access requests across

domains. Request processing enables domains to

accumulate secure access paths and use these access

paths to evaluate cross-domain access requests.

 Path authentication module. The user path migrates

with the user requests; path authentication ensures is

required to check the authenticity of the received

paths. In addition, path authentication generates

path signatures for generated requests.

 Path discovery module. Enables users residing in

their home domain to discover secure access paths

to roles accessible in target domains. Path

discovery could be on-demand or proactive

depending on the collaboration environment.

In order to participate in the reputation system, a peer needs to

have a handle. The reputation of a peer is associated with its

handle. This handle is commonly termed as the “identity” of

the peer even though it may not “identify” a peer, i.e., it may

not lead to the real-life identity of the peer. A peer receives a

recommendation for each transaction performed by it, and all

of its recommendations are accumulated together for

calculation of the reputation of a given peer.

3.1 The Transaction Phenomenon
The Transaction phenomenon is defined with three categories

of properties: termination, agreement, and validity.

Termination captures liveness guarantees by preventing

blocking modularity. Agreement captures safety guarantees

by ensuring the consistency of the client and the databases.

Validity restricts the space of possible results to exclude

meaningless ones.

 Termination.

(T.1) If the client issues a request, then, unless it crashes, the

client eventually delivers a result.

(T.2) If any database server si votes for a result, then si

eventually commits or aborts the result.

 Agreement.

(A.1) No result is delivered by the client unless the result is

committed by all database servers.

(A.2) No database server commits two different results.

(A.3) No two database servers decide differently on the same

result.

 Validity.

(V.1) If the client delivers a result, then the result must have

been computed by an application server with, as a parameter,

a request issued by the client.

(V.2) No database server commits a result unless all database

servers have voted {yes} for that result.

3.2 Reputation Exchange Method
Once the requester has selected the provider with the highest

reputation, it initiates the reputation exchange method with

the provider. In the reputation exchange Protocol, the

requester is denoted by R while the provider is denoted by P.

Here RP: X denotes that the requester (R) sends a message

X to the provider (P). The symbol PK2 represents the private

key of the peer P and PK1 represents the public key of the peer

P. EK(˥) represents encryption of the phrase (˥) with key K,

while EBK(X) represents blinding phrase X with key K. H(∂)

denotes a one way hash of the value ∂. This protocol only

assumes that insert & search functions are available and are

not resilient to peers

that may not follow the recommended join & leave protocol

of the network. The steps in the reputation exchange protocol

are as follows:

Step 1: RP: RTS & IDR

Step 2: PR: IDP & TID & EPK2 (H (TID || RTS))

Step 3: R: LTID = Max (Search PK1 || TID))

Step 4: R: IF (LTID >=TID)

Step 5: RP: Past Recommendation Request & r

4. PATH DISCOVERIES (On – Demand)
Domains are able to collaborate with neighboring domains

through the established collaboration cross-links. Neighboring

domains are single hop collaborations as they only involve

two domains. Single hop collaborations are easy to achieve

and initiate as domains already have full knowledge of their

established cross-links. On the other hand, to collaborate

through multihop collaborations domains need to build one or

more single access paths to target domains. To enable

domains to discover available multihop collaborations a

distributed path discovery algorithm is required. The

discovery algorithm enables domains in an interoperation

environment to discover paths to roles in other domains,

whether reachable through one or more intermediate nodes.

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

17

Fig. 3. Modules of the agent-free secure interoperability framework.

Fig. 4. Example of On-demand Path Discovery.

It works depending upon the following agreement properties:

(Agreement A.1). No result is delivered by the client unless it

is committed by all database servers.

(Agreement A.2). No database server commits two different

results.

(Agreement A.3). No two database servers disagree on the

outcome of a result.

The effect of the Network Size (N), the Number of

Transactions (T), and the Group Size (d) on the Mean Rank

Difference (M) over all the peers in the network. The Mean

Rank Difference (M) is calculated by averaging the rank

difference of all the peers in the network for one instance of

the simulation. The rank difference for a peer is the difference

in the rank of the peer when the proposed identity

mechanisms are used, and when it is not used. Specifically,

we tried to answer the following two questions:

1. Is the mean rank difference a good predictor of the

rank difference of individual nodes? What is the

variation in the rank difference of individual peers

in the simulation for a given value of d?

Mathematically, what percentage of nodes has their

rank difference equal to the mean rank difference?

2. Does the network size (N), group size (d), or the

number of transactions (T) in the network impact

the mean rank difference in the network? In other

words, what is the expected mean rank difference

for other network configurations which are different

(in terms of size, group size d, or number of

transactions) than the networks simulated by us?

4.1 Overall Evaluation of the System
In order to evaluate the integrated benefit of self-certification,

the cryptographic protocol, we performed the experiments

done for the evaluation of the cryptographic protocol, and

added an availability factor, AF, to each node. The availability

factor accounts for the erratic availability of the past

recommenders of a given peer. AF values from 50 percent to

90 percent were randomly allocated to peers.

5. SECURITY ANALYSIS
In this section, we state some security attacks that could be

performed in an agent-free collaboration environment.

Moreover, we show that our secure collaboration framework

is resilient to these attacks. We assume all access messages

exchanged between domains are sent over secure reliable

nodes.

 Path corruption. The access path is one of the

main elements required when making access control

decisions. A malicious domain may attempt to alter

the access path by removing or adding entries to the

current access path. The path corruption could be

divided into two types of attacks, namely, path

insertion and deletion.

 Path replay attacks. An attacker could capture a

request submitted during a valid session and try to

replay such a request. This attack is not possible, as

we assume that for each session, a new nonce is

used to authenticate the path.

 Denial of service. An attacker would request a role

via a path that contains a loop P = {r1, r2,., rn, r1,

r2, . . .} and repeat such requests infinitely to

increase the path size infinitely. Such an attack can

be easily dealt with by introducing a bound on the

permissible path size, which is basically the path

cardinality constraint mentioned in Section 4.1, and

the permissible path size can be set to double the

number of domains present in the collaboration.

Another form of denial of service could be

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

18

performed when malicious domain floods

neighbouring domains with path requests.

Violations of the restricted relation R. In this case, a

malicious domain involved in a restricted access relation does

not honour such relations. In such a case, this domain gives

access to a user that violates the restricted access relation R.

This attack is easily detected by the neighbouring domain as

such role access will be recorded in the user’s access path and

delivered to the mitigated space.

6. PERFORMANCE ANALYSIS
We state here simply on nice runs where no process crashes or

is suspected to have crashed. In particular, our performance

measure takes into account only the number of messages

exchanged in a nice run of a wo-register implementation. In

terms of latency, we show that our algorithm introduces an

overhead of about 16 percent over the baseline unreliable

algorithm (that does not offer any guarantee). This overhead is

actually lower than the overhead of a 2PC algorithm, which

we show is around 23 percent in our environment. This might

look surprising at first glance, because our algorithm also

ensures a nonblocking property of databases besides the

exactly-once guarantee (2PC is blocking [4] and ensures only

at-most-once request delivery). However, in contrast to 2PC,

our algorithm does not induce any forced disk IO. We use the

same replication scheme to ensure the client's outcome

determination as we use to guarantee nonblocking.

Nevertheless, we assume that application servers cannot all

crash at the same time, whereas a 2PC tolerates a total crash

of these servers.

Here, we consider the case where a single application server

crash is tolerated. Since our algorithm requires a majority of

correct application processes, three application servers are

required. In our primary-backup scheme, a single backup is

enough. We assume an implementation of a wo-register using

an optimized consensus algorithm along the lines. Basically,

in a nice run, it takes only a round trip message for the first

primary to write into the register (the first consensus

coordinator is the default primary application server). In terms

of the latency, as viewed by the client, our algorithm

introduces the same number of communication steps than a

primary-backup scheme, but more than a 2PC algorithm or an

unreliable baseline algorithm. The 2PC, however, introduces

eager disk accesses.

7. CONCLUDING REMARKS
In this paper, we have presented an agent-free collaboration

environment in which domains collaborate in making

localized access control decisions. We presented a framework

to enable collaboration in such an environment, where

domains collaborate securely without needing a trusted

mediator and without needing a global view of the

collaboration environment. In our framework, the user’s

access path is used to provide domains with enough

information to make secure access control decisions using

both basic and extended path linking rules. We also provided

a path authentication scheme that ensures that the path is not

tampered with, as it propagates between domains.

Furthermore, we have provided an on-demand path discovery

algorithm that enable domains to discover available multihop

collaborations. We analysed several security attacks that could

be performed and showed how our framework can easily

handle such attacks.

8. ACKNOWLEDGMENTS
Our thanks to the experts who have contributed towards

development of the template. This paper is an extended and

revised version of a paper, with the title, secure collaboration

in a Mediator-Free Distributed Environment appears in the

Proceedings of the IEEE International Conference on Parallel

and Distributed Systems 2008. The authors would like to

thank Mohamed Shehab, Arif Ghafoor, and Elisa Bertino for

their contributions about the structure of our protocol and to

Jim Gray for sharing with us his views about the meaning of

reliability in three-tier architectures. We are also very grateful

to the reviewers for their helpful presentation suggestions on

the earlier version of this paper.

9. REFERENCES
[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin, “A

Calculus for Access Control in Distributed Systems,

ACM Trans. Programming Languages and Systems,

vol.15, no.4, pp. 706-734, Sept. 1993.

[2] M. Abadi and C. Fournet, “Access Control Based on

Execution History,” Proc. 10th Ann. Network and

Distributed System Symp. (NDSS), 2003.

[3] D. Bell and L. LaPadula, “Secure Computer Systems:

Mathematical Foundations,” Technical Report MTR-

2547, vol. 1, Mar. 1973.

[4] E. Bertino and R. Sandhu, “Database Security-Concepts,

Approaches, and Challenges,” IEEE Trans. Dependable

Secure Computing, vol. 2, no. 1, pp. 2-19, 2005.

[5] P. Bonatti, M. Sapino, and V. Subrahmanian, “Merging

Heterogenous Security Orderings,” J. Computer Security,

vol. 5,no. 1, pp. 3-29, 1997.

[6] S. Dawson, S. Qian, and P. Samarati, “Providing Security

and Interoperation of Heterogeneous Systems,”

Distributed Parallel Databases”, vol. 8, no. 1, pp. 119-

145, 2000.

[7] A. Rowstron and P. Druschel, “Pastry: Scalable,

Decentralized Object Location, and Routing for Large-

Scale Peer-to-Peer Systems,” Proc. IFIP/ACM Int’l

Conf. Distributed Systems Platforms (Middleware), pp.

329- 350, Nov. 2001.

[8] B.C. Ooi, C.Y. Kiau, and K. Tan, “Managing Trust in

Peer-to-Peer Systems Using Reputation-Based

Techniques,” Proc. Fourth Int’l Conf. Web Age

Information Management, Aug. 2003.

[9] L. Liu, S. Zhang, K.D. Ryu, and P. Dasgupta, “R-Chain:

A Self-Maintained Reputation Management System in

p2p Networks,” Proc. 17th Int’l Conf. Parallel and

Distributed Computing Systems (PDCS), Nov. 2004.

[10] R. Zhou, K. Hwang, and M. Cai, “Gossiptrust for Fast

Reputation Aggregation in Peer-to-Peer Networks,”

IEEE Trans. Knowledge and Data Eng., vol. 20, no. 9,

pp. 1282-1295, Aug. 2008.

[11] Z. Xu, Y. He, and L. Deng, “A Multilevel Reputation

System for Peer-to-Peer Networks,” Proc. Sixth Int’l

Conf. Grid and Cooperative Computing (GCC ’07), pp.

67-74, 2007.

[12] M. Gupta, P. Judge, and M. Ammar, “A Reputation

System for Peer-to-Peer Networks,” Proc. 13th Int’l

Workshop Network and Operating Systems Support for

Digital Audio and Video (NOSSDAV), 2003.

IJCA Special Issue on “2nd National Conference- Computing, Communication and Sensor Network”

CCSN, 2011

19

10. AUTHORS PROFILE

Ramesh Dharavath received the B.Tech degree in computer

science and Engineering from KITS – Warangal (Kakatiya

University) in Warangal, in 2004, and the M.Tech degree in

Software Engineering from the University of Jawaharlal

Nehru Technological University at Hyderabad, in 2009. He is

a senior Faculty member with the designation of Associate

Professor and also having affiliation with professional bodies

like Indian Society of Technical Education (ISTE) and

International Association of Engineers (IAENG). His research

interests include Distributed systems, Database security, SQL

injections, and Neural Network. He is currently focused on

research in Heterogeneous Distributed Databases reliability

and availability for critical systems.

Swetha Reddy Vallem received the B.Tech degree in

computer science from MITS – Peddapalli (JNTU University)

in 2005, and the M.Tech degree in Computer Science and

Engineering from Anurag Engineering College – kodad in

2011. She is a senior Faculty member with the designation of

Assistant Professor. Her research interests include Distributed

systems, She is currently focused on research in Distributed

Databases for critical systems.

