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ABSTRACT 
The digital data can be transformed using Discrete Wavelet 

Transform (DWT). The Discrete Wavelet Transform (DWT) was 

based on time-scale representation, which provides efficient 

multi-resolution. The lifting based scheme (9, 7) (Here 9 Low 

Pass filter coefficients and the 7 High Pass filter coefficients) 

filter give lossy mode of information. The lifting based DWT are 

lower computational complexity and reduced memory 

requirements. Since Conventional convolution based DWT is 

area and power hungry which can be overcome by using the 

lifting based scheme. 

 

The discrete wavelet transform (DWT) is being increasingly used 

for image coding. This is due to the fact that DWT supports 

features like progressive image transmission (by quality, by 

resolution), ease of transformed image manipulation, region of 

interest coding, etc. DWT has traditionally been implemented by 

convolution. Such an implementation demands both a large 

number of computations and a large storage features that are not 

desirable for either high-speed or low-power applications. 

Recently, a lifting-based scheme that often requires far fewer 

computations has been proposed for the DWT. 

Keywords – Lifting based scheme, Filter Co-efficient, Multi 

Resolution Analysis (MRA). 

1.  INTRODUCTION 

The fundamental idea behind wavelets is to analyze according to 

scale. Indeed, some researchers in the wavelet field feel that, by 

using wavelets, one is adopting a perspective in processing data. 

Wavelets are functions that satisfy certain mathematical 

requirements and are used in representing data or other functions. 

This idea is not new. Approximation using superposition of 

functions has existed since the early 1800's, when Joseph Fourier 

discovered that he could superpose sines and cosines to represent 

other functions. However, in wavelet analysis, the scale that we 

use to look at data plays  a   special   role.  

Wavelet algorithms process data at different scales or resolutions. 

 

Fourier Transform (FT) with its fast algorithms (FFT) is an 

important tool for analysis and processing of many natural 

signals. FT has certain limitations to characterize many natural 

signals, which are non-stationary (e.g. speech). Though a time 

varying, overlapping window based FT namely STFT (Short 

Time FT) is well known for speech processing applications, a 

time-scale based Wavelet  

 

Transform is a powerful mathematical tool for non-stationary 

signals.  

 

Wavelet Transform uses a set of damped oscillating functions 

known as wavelet basis. WT in its continuous (analog) form is 

represented as CWT. CWT with various deterministic or non-

deterministic basis is a more effective representation of signals 

for analysis as well as characterization. Continuous wavelet 

transform is powerful in singularity detection. A discrete and fast 

implementation of CWT (generally with real valued basis) is 

known as the standard DWT (Discrete Wavelet Transform).With  

 

standard DWT, signal has a same data size in transform domain 

and therefore it is a non-redundant transform. A very important 

property was Multi-resolution Analysis (MRA) allows DWT to 

view and process. 

 

Fourier transform based spectral analysis is the dominant 

analytical tool for frequency domain analysis. However, Fourier 

transform cannot provide any information of the spectrum 

changes with respect to time. Fourier transform assumes the 

signal is stationary, but PD signal is always non-stationary. To 

overcome this deficiency, a modified method-short time Fourier 

transform allows representing the signal in both time and 

frequency domain through time windowing functions. The 

window length determines a constant time and frequency 

resolution. Thus, a shorter time windowing is used in order to 

capture the transient behavior of a signal; we sacrifice the 

frequency resolution. The nature of the real PD signals is non-

periodic and transient as shown in such signals cannot easily be 

analyzed by conventional transforms. So, an alternative 

mathematical tool- wavelet transform must be selected to extract 

the relevant time-amplitude information from a signal. In the 

meantime, we can improve the signal to noise ratio based on 

prior knowledge of the signal characteristics.  

2. LIFTING IMPLEMENTATION OF THE 

DISCRETE WAVELET TRANSFORM 

As the DWT intrinsically constitutes a pair of filtering 

operations, a unified representation of the poly-phase matrix is 

introduced as follows[16]: 

 

 

 

 

     where h(z) and g(z) stand for the transfer functions for the low 

pass and high pass filter banks, respectively, and all suffixes e 

and o in the literature correspond to even and odd terms, 

respectively. Thus, the transform is symbolized with the equation 

 

with λ(z) and γ(z) signifying the filtered low pass and high pass 

parts of the input x(z). 
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The lifting scheme [16] factorizes the poly phase representation 

into a cascade of upper and lower triangular matrices and a 

scaling matrix which subsequently return a set of linear algebraic 

equations in the time domain bringing forth the possibility of a 

pipelined processor.  

For instance, the common Daubechies (9, 7) filter bank can be 

factorized as 

 

Figure. 1 The lifting scheme: Split, Predict, Update    and 

Scale phases 

 

 

 

Figure .2 1-D lifting Scheme of daubechies 9/7 for forward 

wavelet DWT 

3.  3-D (9, 7) DWT  
The analysis and the synthesis filter coefficients ( both low pass 

and high pass) for Wavelet Transform are as shown in the 

Table.1. 

 

 

 

 

 

 

 

 

 

                                     Table.1 

 

The rational coefficients allow the transform to be invertible with 

finite precision analysis, hence giving a chance for performing 

lossy compression. Initially the Pixel values of any image will be 

taken with the help of MATLAB, which will be used as the 

primary inputs to the DWT Block. 

Basically 1-D (9, 7) DWT block diagram is developed based on 

the equations. The registers in the top half will operate in even 

clock where as the ones in bottom half work in odd clock.  

The input pixels arrive serially row-wise at one pixel per clock 

cycle and it will get split into even and odd. So after the 

manipulation with the lifting coefficients „a‟,„b‟,„c‟ and „d‟ is 

done, the low pass and high pass coefficients will be given out. 

Hence for every pair of pixel values, one high pass and one low 

pass coefficients will be given as output respectively. 

 

Figure.3 Computation of Basic (9,7) DWT Block in which 

‘coefficients ‘a’,‘b’,‘c’ and ‘d’ are lifting coefficients 

The internal operation of the DWT block has been explained 

above and hence the high pass and low pass coefficients of the 

taken image were identified and separated. The generated[10] 

low pass and high pass coefficients are stored in buffers for 

further calculations. 

4. RESULTS 

The test bench is developed in order to test the modeled design. 

This developed test bench will automatically force the inputs and 

will make the operations of algorithm to perform. 

The initial block of the design is that the Discrete Wavelet 

Transform (DWT) block which is mainly used for the 

transformation of the image. In this process, the image will be 

transformed and hence the high pass coefficients and the low 

pass coefficients were generated. Since the operation of this 

DWT block has been discussed in the previous chapter, here the 

snapshots of the simulation results were directly taken in to 

consideration and discussed. 
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The input is 16 bits each input bit width is vary because of the 

multiplier. The DWT consists of registers and adders. When ever 

the input is send, the data divided into even data and odd data. 

The even data and odd data is stored in the temporary registers. 

When the reset is high the temporary register value consists of 

zero when ever the reset is low the input data split into the even 

data and odd data. The input data read up to sixteen clock cycles 

after that the data read according to the lifting scheme. The 

output data consists of low pass and high pass elements. This is 

the 1-D discrete wavelet transform. The 2-D discrete wavelet 

transform is that the low pass and the high pass again divided 

into LL, LH and HH, HL. The 3-D discrete wavelet transform is 

that the low pass and the high pass again divided into LLL, LLH, 

LHL, LHH, HLL, HLH, HHL, and HHH. The output is verified 

in the Modelsim. 

For this DWT block, the clock and reset were the primary inputs. 

The pixel values of the image, that is, the input data will be given 

to this block and hence these values will be split in to even and 

odd pixel values. In the design, this even and odd were taken as a 

array which will store its pixel values in it and once all the input 

pixel values over, then load will be made high which represents 

that the system is ready for the further process. 

Simulation Results of top module: 

 

Figure .1 Simulation Result of 3D-DWT(TOP MODULE) Block 

with High and Low Pass Coefficients LLL, LLH, LHL, LHH, 

HLL, HLH, HHL and HHH. 

Once the load signal is set to high, then the each value from the 

even and odd array will be taken and used for the Low Pass 

Coefficients generation process. Hence each value will be given 

to the adder and in turn given to the multiplication process with 

the filter coefficients. Finally the Low Pass Coefficients will be 

achieved from the addition process of multiplied output and the 

odd pixel value.  

Again this Low Pass Coefficient will be taken and it will be 

multiplied with the filter coefficients. The resultant will be added 

with the even pixel value which gives the High Pass Coefficient. 

Hence all the values from even and odd array will be taken and 

then above said process will be carried out in order to achieve the 

High and Low Pass Coefficients of the image. 

Now these low pass coefficients and the high pass coefficients 

were taken as the input for the further process. Hence for the 

DWT-2 process, low pass coefficients will be taken as the inputs 

and will do the process in order to calculate the low pass and high 

pass coefficients from the transformed coefficients of DWT-1. In 

DWT-2, the same process as in DWT-1 will be carried out. 

Hence the simulated waveform is shown in the figure.1. Similarly 

the high pass coefficients from the DWT-1 block were taken as 

input to the DWT-3 block and hence further transformed low 

pass and high pass coefficients will be obtained. Similarly the 

process is continued for DWT-4, DWT-5, DWT-6, and DWT-7. 

HDL Synthesis Report 

Final Results 

RTL Top Level Output File Name     : top_dwt_m97.ngr 

Top Level Output File Name         : top_dwt_m97 

Output Format                      : NGC 

Optimization Goal                 : Speed 

Keep Hierarchy                     : NO 

Design Statistics 

# IOs                                      : 1612 

Cell Usage : 

# BELS                                 : 54288 

#      GND                             : 1 

#      INV                              : 30 

#      LUT1                           : 1022 

#      LUT2                           : 17056 

#      LUT3                           : 133 

#      LUT4                           : 38 

#      LUT5                           : 4 

#      LUT6                           : 8 

#      MUXCY                      : 18001 

#      VCC                             : 1 

#      XORCY                       : 17994 

# FlipFlops/Latches            : 14166 

#      FDR                             : 14070 

#      FDRE                           : 83 

#      FDSE                               : 7 

#      FDSE_1                           : 6 

# RAMS                                  : 46 
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#      RAM32M                        : 2 

#      RAM32X1D                    : 8 

#      RAMB18                         : 8 

#      RAMB36_EXP               : 24 

#      RAMB36SDP_EXP        : 4 

# Clock Buffers                       : 2 

#      BUFG                              : 1 

#      BUFGP                           : 1 

# IO Buffers                           : 1611 

#      IBUF                              : 11 

#      OBUF                            : 1600 

# DSPs                                   : 670 

#      DSP48E                         : 670 

Device utilization summary: 

Selected Device : 5vfx200tff1738-1  

Slice Logic Utilization:  

Number of Slice Registers: 14166  out of  122880    11%   

Number of Slice LUTs:   18315  out of  122880    14%   

Number used as Logic:    18291  out of  122880    14%   

Number used as Memory:   24  out of  36480     0%   

Number used as RAM:               24 

Slice Logic Distribution:  

Number of LUT Flip Flop pairs used:  27459 

Number with an unused Flip Flop:   13293  out of  27459    

48%   

Number with an unused LUT: 9144  out of  27459    33%   

Number of fully used LUT-FF pairs:  5022  out of  27459    

18%   

Number of unique control sets:    42 

IO Utilization:  

Number of IOs                      :  1612 

Number of bonded IOBs: 1612  out of  960   167% (*)  

Specific Feature Utilization: 

Number of Block RAM/FIFO: 32  out of  456     7%   

Number using Block RAM only:   32 

 Number of BUFG/BUFGCTRLs: 2  out of   32   6%   

 Number of DSP48Es:  670  out of    384   174% (*)  

5. CONCLUSION 
Basically the medical images need more accuracy without 

loosing of information. The Discrete Wavelet Transform (DWT) 

was based on time-scale representation, which provides efficient 

multi-resolution. The lifting based scheme (9, 7) (The high pass 

filter has five taps and the low pass filter has three taps) filter 

give lossless mode of information. A more efficient approach to 

lossless whose coefficients are exactly represented by finite 

precision numbers allows for truly lossless encoding.  

This work ensures that the image pixel values given to the DWT 

process which gives the high pass and low pass coefficients of 

the input image. The simulation results of DWT were verified 

with the appropriate test cases. Once the functional verification is 

done. 

6. FUTURE SCOPE 
This work can be extended in order to increase the accuracy by 

increasing the level of transformations. This can be used as a part 

of the block in the full fledged application, i.e., by using these 

DWT, the applications can be developed such as compression, 

watermarking, etc. 
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