
Amrita International Conference of Women in Computing (AICWIC’13)

Proceedings published by International Journal of Computer Applications® (IJCA)

24

An Enhanced Map Reduce Framework for Improving the

Performance of Massively Scalable Private Clouds

 Ashutosh Rajan M. V. Judy, Ph.D

Amrita School of Arts and Sciences,Kochi, Amrita School of Arts and Sciences, Kochi,
 Amrita Vishwa Vidyapeetham, Amrita Vishwa Vidyapeetham

ABSTRACT
Cloud Computing systems provide access to large amount of

data and other resources through a large number of interfaces.

Apache Hadoop is a framework that allows distributed

processing of large sets of data across cluster of computers. It

is a powerful abstraction proposed for making scalable and

fault tolerant applications. In this paper we have suggested an

enhanced framework for MapReduce which increased the

performance of the Private Clouds in distributed environment.

In this framework a separate thread is maintained for each and

every Mapper and a single buffer is used for retrieving all

threads. A single Buffer retrieves all records. At this instance

a separate thread can search for all the records with same key

in the buffer and pass it on to the Reduce function which can

executed. A multimap is used to access partial result while

maintain key ordering. Our analysis shows that better

performance can be achieved using this enhanced Map

Reduce framework than using the traditional MapReduce

framework. The results show the reduction in job completion

time when compared with existing one.

1. INTRODUCTION
The growth of internet has pushed researchers from all

disciplines to deal with volumes of information where the

only viable path is to utilize data intensive frameworks [4].

Cloud Computing is a successful paradigm of service oriented

architecture. It has revolutionized the infrastructure which is

abstracted and used. Elasticity, pay-per-use, low time to

market and transfer of risk are the major factors which makes

cloud suitable for deploying applications which are infeasible

in traditional enterprise architecture. Hadoop [3] is used to

improve the performance of data intensive systems.

With the increase in power of processors every year, the data

to be processed is also increasing with a faster rate. In such a

situation rather than trying to improve the complexity of

algorithms which has got a saturation point or upgrading the

processor each and every time, the performance can be

improved by enhancing the parallel processing framework.

In this paper the Map Reduce algorithm is used to solve

problems with large size on a private cloud and its scalability

demonstrated. The enhanced Map Reduce removes the

barriers of the traditional Map Reduce and its performance

improvement is shown.

2. PRIVATE CLOUD
Cloud computing [6] is a computing model where resources

such as computation power, storage, network and software are

abstracted and provided over internet in remotely accessible

fashion. Cloud has got following service models:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS) and Software as a Service (SaaS). Cloud can be

divided into following types: Public Cloud, Community,

Private Cloud [1] and Hybrid Cloud.

Private Cloud is an infrastructure which operates solely for a

private organization which is managed internally.

3. MAPREDUCE
Inspired from map and reduce of functional programming

Hadoop proposed open source implementation of Google

MapReduce [2]. MapReduce is an abstraction which provides

the user with capability to build large scale distributed

applications easily. MapReduce easily parallelizes the

computations as invocation of map function is independent

and uses re-execution as primary mechanism of fault-

tolerance.

In this input is given as a set of key/value pair and also

produces a key/value pair as its output. The user of

MapReduce library expresses the computation as two

functions: Map and Reduce. Map function takes as input a set

of key/value pair and generates a set of intermediate key/value

pair as its output. MapReduce library groups together all

values for a particular key. Until whole data from Map stage

is transferred to appropriate machine Reduce function waits.

The Reduce function accepts this key and set of values

corresponding to that particular key as its inputs. It is the job

of reducer to merge these values and provide a smaller set of

values. The intermediate values are supplied to user via an

Iterator. It allows model to handle large list of values that are

too large to fit in main memory.

Logically map and reduce function executes in following

manner:

Map (k1, v1)  list (k2, v2)

Reduce (k2, list (v2))  list (k3, v3)

MapReduce library splits the input file into M pieces and

many copies of programs are started up in cluster of machines

and these input splits can be processed in parallel by different

machines. Shuffling and sorting takes place. Reduce

invocations are distributed by partitioning the intermediate

key spaces into R pieces which hash(key)%R according to

Hadoop configuration.

4. ENHANCED MAPREDUCE

FRAMEWORK
MapReduce program is divided into two stages Map and

Reduce. Map stage writes the output locally and Reducers

aggregates the output by remotely reading from the Mappers.

This process of transferring the data is called as Shuffling.

In this Non-conventional MapReduce we device a technique

by which we bypass the sorting mechanism and modify the

invocation of reduce function so that it can be called with a

small set of records. Reducers no longer needs to wait for

remotely read from Mappers and then to be grouped. Due to

this performance gets improved as now Reducers need not to

wait till the Mappers complete their whole work and shuffling

gets completed.

Amrita International Conference of Women in Computing (AICWIC’13)

Proceedings published by International Journal of Computer Applications® (IJCA)

25

In Non-conventional Map Reduce we overcome the following

overheads:

1. Waiting time between Remote reading of the first and

the last records.

2. Time taken for sorting of whole records.

3. Maintaining a local buffer for each Mapper.

In this Non-conventional Map Reduce the intermediate results

are not stored as a whole for each and every key. And Reduce

function works at one record at a time.

In traditional Map Reduce shuffle stage is designated to work

in an efficient and asynchronous manner by providing a

thread for each and every Mapper which reads the data from

Mappers and this data is stored in their local Buffers which is

then merge sorted. Then the key and corresponding values are

passed on to the Reduce function.

Figure 2: Enhanced Map Reduce Framework

5. ENHANCED MAP REDUCE WORD

COUNT ALGORITHM
In this section we modify the traditional Map Reduce to a Non

–Conventional Map Reduce.

Algorithm 4: Non-Conventional Map Reduce Mapper

map (key, value)

// key: document name

// value: document contents

for each word in value

 EmitIntermediate (word,1)

End for

Algorithm 5: Non-Conventional Map Reduce reducer function

reduce (key, value, context)

//key: word

//value: a list of counts

result =0

for each v in value

 result=result+v

End for

Insert(key,value) in TreeMultiMap

 Algorithm 6: Non-Conventional Map Reduce Run function

run ()

create a new TreeMultiMap

while context has more keys

 key= current key from context

 value=current values from context

 if TreeMultiMap doesn’t contain a

 particular key then

 Insert (key,0)

 End if

reduce(key, value, context)

/* After all reduce invocations have been done*/

6. RESULTS

Word Count Problem is a simple problem where frequency of

occurrences of each word is counted by the algorithm in “n”

documents. We implemented this simple problem on Hadoop

(0.20) and executed it on Intel core i3 machines with 4 GB

RAM and 500 GB Hard disk. Private Cloud was formed with

three machines and Hadoop was configured on this Private

Cloud.

Then we implemented the same Word Count problem with

Non-Conventional Map Reduce and again counted the

performance of the algorithm we found that Non-

Conventional Map Reduce performed better than

Conventional one as it reduced the effort which was there

while shuffling was done. Detailed description on Private

Cloud setup can be found from [1]. Apache Hadoop [2][3][10]

setup description can be found from [10][11].

Scenario 1

In first scenario we tested the word count algorithm and its

performance on the Private Cloud using Conventional Map

Reduce and Non-Conventional Map Reduce showing that

performance of Non-Conventional Map Reduce was better

than Conventional Map Reduce. Performance Increase was of

nearby 20%.

Total word count = Total number of words/Total time taken

for execution

Amrita International Conference of Women in Computing (AICWIC’13)

Proceedings published by International Journal of Computer Applications® (IJCA)

26

Figure 2 Total number of words counted in a given time

period.

Scenario 2:

In second case we kept the number of words constant and

time taken for counting frequency of all words in all

documents given as input was measured. This test was also

performed using both Conventional and Non-Conventional

Map Reduce. We tested this with about 8 GB of data.

Our results showed that Non-Conventional Map Reduce

performed better than Conventional Map Reduce.

Figure 3 Total time taken for counting words.

7. DISCUSSION OF RELATED WORKS
MapReduce [8] is a programming model that enables users to

easily develop large-scale distributed applications. Apache

Hadoop is the open source implementation of MapReduce

model whereas Google MapReduce is a proprietary version of

MapReduce. We tried to change the Conventional Map

Reduce to improve the performance which we called Non-

Conventional Map Reduce. Several different implementations

of Hadoop for multicores like Phoenix [12]. CGL-

MapReduce [13] for streaming applications are available.

8. CONCLUSION AND FUTURE WORK
In this paper, we have mainly used MapReduce model to

show that performance increases when resources are

increased. We described how we can design a parallel

algorithm using MapReduce model on Hadoop and then we

modified the original Map Reduce model to non-Conventional

Map Reduce and its performance is analyzed. Performance of

the algorithm on Non-Conventional Map Reduce was near

about 20% better. It also depicts that on adding more

resources we would be able to solve larger problems and Non-

Conventional Map Reduce is better than the original Map

Reduce. Memory management may be a problem which arises

for large sets of data as partial results obtained after the Map

stage is stored in memory only. This could result in overflow.

A solution suggested to this problem is moving the contents

which is least recently used into files. A Hash table is used to

keep the track of files which have been moved on to the file

and for faster access. We can try to implement Non-

Conventional MapReduce model on GPUs that is our compute

intensive tasks Map on GPUs and Reduce on CPUs.

9. REFERENCES
[1] Private Cloud setup http://www.akashsharma.me/private-

cloud-setup-using-eucalyptus-and-xen/

[2] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. Commun. ACM,

51(1):107–113,2008.

[3] The Apache Hadoop Project.

http://hadoop.apache.org/core/, 2009.

[4] Data Intensive applications

http://en.wikipedia.org/wiki/Data_Intensive_Computing#

MapReduce

[5] Fundamentals of cloud computing

http://www.cse.fau.edu/~borko/HandbookofCloudComp

uting.

[6] Cloud computing

http://en.wikipedia.org/wiki/Cloud_computing

[7] Eucalyptus Beginner’s Guide UEC Edition by Johnson

D, Kiran Murari, Murthy Raju, Suseendran RB, Yogesh

Girikumar.

[8] Apache Hadoop Map Reduce

http://hadoop.apache.org/common/docs/current/mapred_t

utorial.html#MapReduce+- +User+Interfaces

[9] Apache Hadoop Distributed File System

http://hadoop.apache.org/common/docs/current/hdfs_desi

gn.html

[10] Running Hadoop on single node environment

http://www.michael-noll.com/tutorials/running-hadoop-

on-ubuntu-linux-single-node-cluster/

[11] Running Hadoop on multi node environment

http://www.michael-noll.com/tutorials/running-hadoop-

on-ubuntu-linux-multi-node-cluster/

[12] R. Raghu Raman, A. Penmetsa, G. Bradski, and C.

Kozyrakis. Evaluating mapreduce for multi-core and

multiprocessor systems. Proceedings of the 2007 IEEE

13th International Symposium

[13] Breaking the Map Reduce stage Barriers

[14] Abhishek Verma, Nicolas Zea, Brian Cho, Indranil

Gupta, Roy H. Campbell University of Illinois at

Urbana-Champaign

