Amrita International Conference of Women in Computing (AICWIC13)

Proceedings published by International Journal of Computer Applications® (IJCA)

Modeling and Verification of Aircraft Stability Controller

Divya Udayan J
Dept. of Internet & Multimedia
Konkuk University

ABSTRACT

Stability control system is one of the most critical systems
inside an aircraft. Design verification and validation of such a
system is very essential to reduce development cycles and
cost of system development. This paper evaluates the
possibility and effectiveness of SCADE software in the design
verification of stability controller model of an aircraft.
Dataflow and state machine can be integrated in the SCADE
suite for the formal verification of temporal logics of the
hardware system. This technique is effective in finding out
violations of system invariants at an early stage of the design
phase. Graphical simulations and system analysis demonstrate
the efficiency of this approach.

Keywords
Stability control, Design verification and validation, Data
flow, State machine, Scade suit, formal verification.

1. INTRODUCTION

Development of safety critical applications like stability
controller for aircraft requires a strict interdisciplinary
approach to ensure safety, since failures are often catastrophic
[1,2,3]. The development phase involves a large number of
stages and therefore reducing the time in each stage is
essential. In classical design methods, the system is tested,
only after the complete prototype is produced and hence
correcting those errors is difficult and may sometimes carry
on to the later stages of the development phase which may
increase the design costs [4,5]. In order to overcome this
problem, a graphical tool known as SCADE (Safety Critical
Application Development Environment) [6] is used in our
work. SCADE is a graphical environment which allows the
hierarchical definition of each system components and the
automatic code generation. SCADE software is available as
SCADE SUIT and SCADE DISPLAY. SCADE SUIT covers
all phases in software engineering process from the system
specification, automatic code generation down to simulation
and system testing.

In this paper, we have tried to evaluate the possibility and
effectiveness of the SCADE software with an example of
stability controller in the aircraft domain as the preliminary
step. Such a simplification would expand its mission
capability by enabling more personnel to successfully operate
the plane and even enabling autonomous operation.

The remainder of the paper is structured as follows. Section 2
describes the aircraft stability controller. Section 3 presents
the system design employed to obtain the verification of the
controller. Section 4 discusses the implementation details.
Finally, concluding remarks and future work is given in
Section 5.

2. AIRCRAFT STABILITY CONTROLS

The aircraft stability controller addresses specific properties
that are desirable for the airplane. The pilot should be able to

control the roll rate rather than actuator position [7]. This will
help the pilots who are unfamiliar with the aircrafts to still fly
the vehicle based on maneuvering principles. Whenever an
aircraft changes its flight altitude and position, it encounters a
rotation about any one or more of the three axes, which are
imaginary lines that pass through the center of mass of the
aircraft. The science of air vehicle orientation and control in
three dimensions is known as Flight dynamics[8,9,10]. The
three critical flight dynamics parameters are the angle of
rotation in three dimensions known as roll, pitch and yaw.
Figure 1. shows the axes to control the stability of an aircraft.

Centre of gravity

Pitch Axis

+ Pitch

Roll Axis

U Yaw Axis
+ Roll

Fig 1: Axes to control the stability of an aircraft

Each axis will be perpendicular to the other two at the point
where all the axes intersect. The axis which extends
lengthwise through the fuselage from the nose to the tail, is
the longitudinal axis. The axis, which extends crosswise from
wingtip to wingtip is the lateral axis and which passes
vertically through the center of mass, is the vertical axis.

Aircraft engineers develop stability control systems for the
vehicle’s orientation about its center of gravity. These control
systems generate forces in various directions or moments
about the center of gravity of the aircraft, and thus rotate the
aircraft in pitch, roll or yaw [11,12]. If the airplane movement
is roll and axes of rotation is longitudinal/fuselage axis, then
lateral stability can be achieved. If the airplane movement is
pitch and axes of rotation is lateral/wing axis, then
longitudinal stability can be achieved. If the airplane
movement is yaw and axes of rotation are vertical, then
directional stability can be achieved. Table 1. shows the
aircraft movement, axes of rotation and type of stability
associated with each axis.

Table 1. Aircraft movement, axes of rotation and type of
stability

et it

Roll Longitudinal Fuselage axis Lateral
Pitch Lateral/Wing axis Longitudinal
Yaw Vertical Directional

Amrita International Conference of Women in Computing (AICWIC13)

Proceedings published by International Journal of Computer Applications® (IJCA)

3. SYSTEM DESIGN

In the design of safety critical systems like stability controller
for aircraft, the tools and techniques are chosen in a manner to
reduce the number of design faults that are introduced during
post specification and also to protect the final software from
their effects. One important characteristic of the software
development process is that, in general, the earlier a fault is
introduced, the more severe and expensive (in time and cost)
is its effects [13]. Therefore mistakes in the requirement
specification, modeling and planning phases are of most
concern in managing the development of software. This fact
leads to bridging the gap between system requirements and
implementation by using visible traceability tool like SCADE
in design verification and validation. The Figure 2 illustrates
the proposed system design for the verification process.

Stability Controller

s [) Model Capture = i
- Data Flow Eg 'I‘ -
Stability Controll - Control Flow

Design/Model
Specification

3 -3
scave’ T ¢
Model Debugging

- Simulation _‘.-—

- Formal Verification =
- Model Coverage

@ Automatic Code Generation K ——— 1 Analysis 'Y

Alert

Fig 2: Proposed System Design

The stability controller requirements specification is framed
as a result of a process of requirements elicitation which
involves experts in avionics domain. The specification is
based on an analysis of the safety of the aircraft and involves
any other relevant information like details of earlier accidents.
The requirements specification of the stability controller
describes the functionality of the system including any
protective measures and performance (in particular safety)
criteria. In the model capture stage, the requirements
specification is taken and the corresponding Data flow and
Control Flow diagrams are formulated. The Data flow
diagrams are graphical representation of the flow of data
through each block of the system. They can be considered as
an overview of the system which can later be elaborated. Thus
a structured design can be made from this. The control flow
diagram consists of sequential steps, with if-then-else
conditions, repetition, and/or case conditions. Suitable
geometric shapes are used to represent operations, data or
equipment and arrows indicate the sequential flow from one
state to another. In the next phase, Model debugging, we run
the program to check whether the output is same as we expect.
If a fault is identified, then the solution to rectify the fault can
be made at an early stage. By simulation, we imitate the real
roll rate and pitch of the aircraft [14,15,16]. We may also try
different combinations of parameters to see if we can get the
desired results. Thus we can provide eventual real effects of
alternative conditions and provide a lifelike experience to the
user. In this phase, formal verification is also done to check
the correctness of the system. The verification of the
controller is done by providing a formal proof on the abstract
mathematical model of the system. One approach to do this is

model checking which includes exploring all states and
transitions in the model. Another approach is by using logical
inference which consists of using proof objectives which
evaluates some property to be proved as a Boolean condition.
After model debugging automatic source code is generated
using the SCADE KCG Code generator. The last stage is
integrating the model design with the graphical panel, which
is supported by SCADE Suit Rapid Prototyper for any alert
generation. The implementation details of each stage are
explained in the next section.

4. IMPLEMENTATION
Designing the stability controller with SCADE involves the
following stages.

4.1 REQUIREMENT SPECIFICATION
The roll rate calculation subsystem calculates the plane roll
rate, according to the joystick command and the adverse yaw
coupling effects. Adverse Yaw function is given by the
formulae

rollCoupling = (leftAdverseYaw-rightAdverseYaw) * gain factor
rollRate = (joystickCommand-rollCoupling) * gain factor

The absolute value of the aircraft roll rate is saturated to 25.0
i.e. Roll rate will never be less than -25 degrees/sec or greater
than +25 degrees/sec. The roll rate warning subsystem
computes left and right warning alarms which get activated,
respectively if the aircraft roll rate is strictly less than -15
degrees/sec or strictly greater than 15 degrees/sec. The roll
mode management subsystem computes the plane roll mode
as either OFF, Nominal or Failsoft according to the ON/OFF
button pressed and the aircraft roll rate value. The pitch is
calculated from the variations in altitude and aircraft engine
rpm.

4.2 MODEL CAPTURE

The model capture stage understands the workflow from the
specifications of the model and capture them using modeling
tools. The graphical formalisms used to design the stability
controller are Data Flow and Control Flow diagrams. Safe
State machines (SSM) [17] are used to represent the Control
Flow diagrams. The detailed Control Flow is shown in the
Figure 3. Then these graphical formalisms define the data
structure of the model using data types and constants.

4.3 MODEL DEBUGGING

The third stage of the workflow is a three stage process.

(i) Semantic Check: The SCADE controller model is checked
before simulation code or target code is generated. It is also
possible to check model semantics at any time.

Table 2. Test cases

T

Cydles OnOff Joystickand rightAdverseYaw leftAdverse¥aw RollRate leftWaming rightWaming RollMode
1 false 100 00 0.0 25 false false off
filse 100 500 0.0 375 filse false off
false 60.0 500 00 16.25 false true off
4 filse 100.0 500 0.0 250 filse true off
false 50.0 500 00 11.25 false false off
6 filse 500 500 2000 1625 wue false on
e 500 500 200.0 1625 true false nominal
] filse 100.0 500 2000 2125 filse true failsoft

9 true 1000 500 2000 2125 false. true off

Amrita International Conference of Women in Computing (AICWIC13)

Proceedings published by International Journal of Computer Applications® (IJCA)

—

<SuRcmlese

SHRsElodes -~

<. <SMRoMode> =+

Fig 3: Detailed Control Flow diagram of RolIMode Management

(ii) Simulation: The stability controller is then run interactive
simulation sessions to dynamically check the model. The
SCADE suit provides facility for different docking windows.
The simulation can be viewed using graph and watch
windows. The test cases for roll control simulation are shown
in the Table 2. The results of the test cases are depicted in the
Figure 4. It shows the variation in output when any one/more
of the input parameter changes.

rolRate [4[_1

lefiWarning [~

rightWamning [

rolMede |

[

Nurber of cycles

Fig 4: Test case results

(iii) Formal Verification: Formal verification analysis is also
possible in SCADE Suit. The proof objectives are represented
as a separate SCADE node, called an ‘Observer’ node. The
observer node evaluates the property to be proved as a
Boolean condition that takes the value false if it is broken. The
property is encoded using standard SCADE design elements;
therefore the new notation of representation is not required.
The observer node is connected to the node where the design
verification is carried out. In our work, for verifying system
correctness, Observer property, Divide by zero and Overflow
stack conditions were checked. The result of the analysis is
shown in the Figure 5. The Proof meaning is also explained in

the SCADE Suit documentation [6,18] by Esterel
Technologies as shown in the Table 3.

Table 3. Proof Meaning

Proof result Meaning

Vakid The venified propertyis ahways true mathematically
Falsifiable Propenty is false because Design Venfier detacts a
vahtion of the system inputs such that the output of the
observer operator is not equal to the value specified n
the proof objective

Indetemunate The proofreaches no significant conclusion

Interrupted Either manually aborted the amalysis n the status
window, or strategy time-out

The analysis reaches its execution cycle depth set m the

Stop Depth Reached
debug strategy and Design Verifier cannet report any
significant result.

Faisedan emor The cause of enor displays m the message Beld of oe
report.

Error. Non neaz property Venfication is Enpossble becawse fhe propery s

expressed with non-linear expressions ox functions.

Contradictory Contradictory assertions in the analyzed design.

4.4 CODE GENERATION

The next stage consists of automatic code generation. Since
the SCADE language is formally specified, most of the checks
can be performed at model level during the design phase.
After the semantic check, the build command generates the
code automatically. The generated code structure is same as
any C-file with its corresponding header file for each operator
in the model, unless the operator is expanded. For each non-
expanded operator, two functions are generated, one for the
operator memory reset and the other for its activation. The call
graph of the C function corresponds to each model. The
generated code is correct and optimized by SCADE KCG
Code generator.

45 GRAPHICAL DISPLAY

The last stage of the implementation consists of integrating
the model design with the graphical panel, which is supported

Amrita International Conference of Women in Computing (AICWIC13)
Proceedings published by International Journal of Computer Applications® (IJCA)

ao F - ®
W & Defauk > §8 Defaut - A
Tasks General Info
RollCor eftWarning time of analysis RacaAl 03 1260 2011 15:37
gy model RollControl2
e user VRLab
7 Sum Up
dogy ho_geeanc Su-sretey stningy Mpe inducton |
T R AR g e S RollControl.leftWarning Falsifiable
L hDo_gananc. Su-sietody shoinay pe inducton] Tasks
euming: po_falstiabie |
RollControl.leftWarning
P biis rovuhs |
& Node RollControl::RollControl
| SSSRS———————————— V01T leftWarning
Oone Strategy Default - Prove
3 Cose Result s 0
BFiden, Qlfiamewch 88 Ovson Vs L Scenario Control.leftwarning_sQ.sss | [Load
M Task 3 . Defau
© RoliControlleftWaming
Fig 5(a): Verifying system correctness — Observer property
=& RollControl2.etp
=3 Proof Objectives o General Info
@ RollCentrol leftWarning
@ RollCentrol rightaming f - . . i
® RolFateWamig lsftWaring RollRateWarning.check_divisiol| time of analysis RacaAl 03 12¢0 2011 15:39
@ RollRatet ightWarning model RollControl2
- ap) Analysis X user VRLab
5 ‘aw.check_division_by_zero
% RollControl check _division_by_zero
% RollMode check_division_by_zero Sum Up L
% RollRate'Waming, check_division_by_zero 3
o 83 Overflow Checks RollRateWarning.check_division_by_zero Valid
< RollCantrol check_overflow
<+ RollRateCalculate check_overflow
(3 Strategies Tasks
RollRateWarning.check_division_by_zero
Node RollRate: :RollRateWarning
Strategy Default Division by zero - Prove
Result Valid
Translation time 0s
(2] Fieview |] Framewor. B Design Verifer Analysis time 0s il
|
| Task Result = | General Name: RollRateWaming check_division_by_zero
@ RollRateWarning.check_division_by zero = - Notes
Node: RollRate: RollRateW arming

Fig 5(b): Verifying system correctness — Division-By-Zero check

by SCADE Suit Rapid Prototyper. The Rapid Prototyper
builds interactive graphical panels by connecting
inputs/outputs between models and graphical panels. It
includes a library of control widgets including buttons, LEDs,
knobs, text and numerical entry boxes. The prototype
simulation of the warning signals is shown in Figure 6. If the
value of roll rate is less than -15 degrees/sec, the left warning
alert is activated and if roll rate is greater than +15 degrees/sec
, the right warning alert is activated.

5. CONCLUSION AND FUTURE WORK
This paper presented the design and verification of the
stability controller of an aircraft starting from requirement
specification passing through control design and its
verification. Experiments using the various test cases were
conducted and prototype simulations of the warning signals
were demonstrated to further validate the design against
system requirements. This represented two main advantages
i.e. cost reduction and development time reduction. The
objective is to validate the effectiveness of SCADE tool as
well as to evaluate its scalability in testing real-world
applications. Similar experiments can be conducted in other
research domains like rail-road transportation and high-end
automotive systems where a design environment is essential

to connect developers through their participation in the
execution of the engineering process. Our future work is to
test the feasibility of SCADE tool with the real control
software for airplanes and its effect on cost reduction.

Graphical Panel - RollRateWarning =) e

Fig 6: Prototype simulation of warning signals

Amrita International Conference of Women in Computing (AICWIC13)

Proceedings published by International Journal of Computer Applications® (IJCA)

REFERENCES
[1] Nelson, R. C. 1989. Flight stability and automatic
control. New York, McGraw-Hill.

[2] Perkins C.D. and Hage R.E. 1949. Aircraft Performance,
Stability and Control. John Wiley.

[3] Pamadi, B. N. 2004. Performance, stability, dynamics,
and control of airplanes. Aiaa.

[4] Davies, M.2003. The standard handbook for aeronautical
and astronautical engineers. New York: McGraw-Hill.

[5] Ogata K. 1984. Modern Control Engineering. Prentice-
Hall, India.

[6] Esterel Technologies
http://www.estereltechnologies.com/industry/avionics/.

[7] Anderson, J. D. 2005. Introduction to flight (Vol. 199).
McGraw-Hill.

[8] Etkin, B., & Reid, L. D. 1982. Dynamics of flight:
stability and control (p. 103). Wiley.

[9] Houghton E.L and Carruthers N.B. 1982. Aerodynamics
for Engineering students. Arnold.

[10] McCormick B.W. 1995. Aerodynamics, Aeronautics and
Flight Mechanics. John Wiley.

[11] Abzug M., and Larrabee E. 2002. Airplane Stability and
Control: A History of the Technologies that Made
Aviation Possible. Cambridge University Press.

[12] Maine, Richard E. and Kenneth W. Iliff. 1986.
Application of Parameter Estimation to Aircraft Stability
and Control - The Output-Error Approach. NASA RP-
1168.

[13] Yoo, J., Jee, E., & Cha, S. 2009. Formal modeling and
verification of safety-critical software. Software,
IEEE, 26(3), 42-49.

[14] Bellmann, T. 2009, September. Interactive simulations
and advanced visualization with modelica.
In Proceedings of the 7th Modelica Conference, Como,
Italy. ISBN 978-91-7393-513-5. ISSN 1650-3740

[15] Binte, T., & Chrisofakis, E. 2011 A Driver Model for
Virtual Drivetrain Endurance Testing. In: Proceedings of
the 8th International Modelica Conference

[16] Bhatt, D., Hall, B., Dajani-Brown, S., Hickman, S., &
Paulitsch, M. 2005. Model-based development and the
implications to design assurance and certification.
In Digital Avionics Systems Conference, 2005. DASC
2005. The 24th (Vol. 2, pp. 13-pp). IEEE.

[17] Colago, J. L., Pagano, B., & Pouzet, M. 2005,
September. A conservative extension of synchronous
data-flow with state machines. In Proceedings of the 5th
ACM international conference on Embedded
software (pp. 173-182). ACM.

[18] Esterel Technologies. http://www.myscadesupport.com/

http://www.estereltechnologies.com/industry/avionics/
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521809924
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521809924
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521809924
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=0521809924
http://www.myscadesupport.com/

