Detection of Facial Parts based on ABLATA

Siddhartha Choubey Shri Shankaracharya Technical Campus, Bhilai Vikas Singh Shri Shankaracharya Technical Campus, Bhilai Abha Choubey Shri Shankaracharya Technical Campus, Bhilai

ABSTRACT

Facial feature detection from standard 2D RGB images is a well-researched field but out of prolific techniques there isn't amuch efficacy is achieved in the previous studies that can extract feature data even for a low quality images in real time. Hence, we propose an algorithm based on Attribute Based Level Adaptive Algorithm (ABLATA) which use recursive data estimates for this task. While the recursive data estimates learns the relation between patches of the localized segmented blocks and the location of nodes covering the region of the required regional properties of the face.

Keywords

Face detection, ABLATA, feature selection.

1. INTRODUCTION

Facial feature extraction has been an active area of research in computer vision for increasing applications like human computer interactions [1-5]. In the previous studies had reported results which similar tasks has been carried out effectively over medium quality images [2-7]. Out of which regression forest method has been a useful tool to for daunting tasks involving task efficiency for operations associated with computer vision applications [6]. This method employs probability estimation over the parametric mapping of the given image and subsequent depth patches, while ensuring that the position & orientation of the imagery objects are encoded through various learning schemes. Whereas, other related methods like Houng forest estimation & pose estimation detects objects from 2D slandered RGB images from rich training data sets [7-13]. Even though, most of the available techniques haven't yet been successful in providing real time performances which largely restricts its applications and in addition with that this methods have been ineffective against low quality images.

Now, there are other models popularly known as active appearance model which uses textures above the area of facial region to regressively fit a linearly generative model to a masked test image [8,9,13]. However, the performance of such algorithms are easily influenced by the environmental changes like lighting variation, complexity of the model, and an unrequired affinitive for the average face; this lead such methods to give poor performance against untrained objects and remain untouched to complete the tasks with low resolution images [14-22].

This work is focused on detection and segmentation of microfacial expression from input images using temporal cues. The feature extraction process is implemented by the custom modeled ABLATA algorithm [23-27]. The proposed methods aids feature extraction without using template matching techniques and thus eliminating unnecessary time consumption during the requisite computational operations. This work exploits the advantages of ABLATA for automatically segmenting and recognizing human facial expression from 2D standard RGB facial images. The novelty of this architecture is that it achieves detection time close to the human accuracy while processing images in real-time, while the data is matched from the previous study of human face encoding [24].

2. Methodology

Facial Feature DetectionThrough ABLATA

Thus, based on weighted spatial localization of neighboring pixels the threshold value of the cluster is determined through t using ABLATA [32]. Mathematically, an image is a two dimensional (2 D) function, f(x, y), where x and y are the coordinate values in spatial domain or plane; and the magnitude of f(x, y) is the intensity value of pixel at (x, y). If x, y and the magnitude of f(x, y) in an image are discrete quantities then the image is said to be digital image. Image may be represented as two dimensional matrices whose elements are intensities of pixels present in image. Almost all image processing related operations operate on these pixels either in spatial domain or in frequency domain or transform domain. The function f(x, y) can be expressed as:

$$f(x,y) = \begin{bmatrix} f(0,0) & \cdots & f(0,N_y-1) \\ \vdots & \ddots & \vdots \\ f(N_x-1,0) & \cdots & f(N_x-1,N_y-1) \end{bmatrix}$$
(1)

Now, each digital image has certain finite number of elements characterized by some coordinate values and intensity value. The coordinate indicates the position of pixel in an image. In Equation (1) the image elements $f(N_x - 1, N_y - 1))$ represent the maximum number of resolution starting from f(0,0).

Suppose that 'f' is the set of categorized pixels band and 'P' is a uniformity predicate defined over groups of connected pixels. Segmentation is simply a partitioning of the set F into a set of connected subjects or regions $(P_1, P_2, ..., P_n)$ such that n

 $\cup P_i = F$ with $P_i \cap P_j = \emptyset$ when $i \neq j$. The uniformity i = 1predicate i = 1 pixels represented as P (P_i) is true for all regions $P_i \& P(P_i \cup P_j)$ and is false when P_i is adjacent to P_j . The thresholding algorithm for binary images is applied as:

$$f_t \coloneqq \sum_{i=0}^m r \ (\{g_i \leq f_{block} < g_{i+1}\} \quad (2)$$

where, r() is the mean value; $g_i \& g_{i+1}$ are the lower bound and upper bound respectively of the given thresholding pixel boundary condition.

The unnatural bias for partitioning is avoided by selecting small sets of points and different measure of dissociation. The problem with such criterion for thresholding is that it does not consider association with clusters. In order to circumvent this problem, the cost of thresholding at runtime as a function of the total pixel threshold to all those levels formed in the above step is determined and taken in account through the pixel association rule.

Thus, we have the generic equation normalization is defined as:

$$f_t(N_x, N_y) = \sum_{i=0}^{x} r\left(\frac{cut (N_x - 1, V)}{assoc (N_x - 1, N_y)} + \frac{cut (N_x, N_y)}{assoc (N_y, V)}\right) (3)$$

where, assoc $(N_x, N_y) = \sum_{x \in m, v \in n} W(u, v)$ is the total connection from pixels of set A to all set B. By using this definition of the disassociation between the groups, small isolated points are partitioned out and will no longer have distinct Nvalues, since the cut value will almost be a large percentage of the total connections from the small set to all other pixels. If no other level changes are found then terminate the operation. The mechanism of segmented image is finally generated after extraction operation.

Thus, let us suppose that levels based dependencies between different facial parts can be expressed as p(A|B) where A is the sets of nodes estimated by ABLATA in previous steps during normalization and B is the voting element for A which express the facial description for the local sub patches in form of a sets of nodes given by the training sets of a number of images on iteration basis. Thus, the location of different parts is dependent i.e.,

$$p(A|B) = \prod_{i=1}^{N} p(f_t|B)(4)$$

But since, equation 4 creates a consolidated regions R_i from Levels L_i and Pixels p_i . Therefore, the entropy H of two positions can be mathematically defined as:

$$H(B) = \sum_{n=1}^{N} \frac{\sum_{i \in R_{i}} (A|B)}{\|B\|}$$
(5)
$$t_{f_{t}}(R_{i}, L_{i}) = \begin{cases} H(B), if \ f_{t}(R_{i}, L_{i}) < S\\ H(A \cap B), if \ f_{t}(R_{i}, L_{i}) > S \end{cases}$$
(6)
$$S = \frac{t_{f_{t}}}{\nabla t_{f_{t+1}}}$$
(7)

where, S is the splitting function and $f(R_i, L_i)$ which is the function represented in equation 3 recursively with $R_i \& L_i$ as its hierarchical input parameters $\& t_{f_i}$ is the segmented region with integrated facial features.

Algorithm: Detection of facial Feature from ABLATA

Input: f(x, y) Input Image& B i.e., the voting elements of nodes for a facial expression.

Output: f'(x, y) with t_{f_t} the Segmented Facial Portion in aImage.

Step1:Read Image:

$$f(x,y) = \begin{bmatrix} f(0,0) & \cdots & f(0,N_y - 1) \\ \vdots & \ddots & \vdots \\ f(N_x - 1,0) & \cdots & f(N_x - 1,N_y - 1) \end{bmatrix}$$

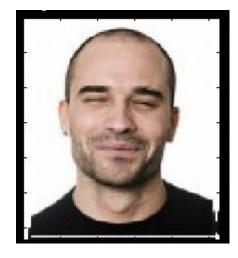


Figure.1: Sample Image Read.

Step2: Initialize Thresholding through ABLATA:

$$f_t \coloneqq \sum_{i=0}^m r \ (\{g_i \leq f_{block} < g_{i+1}\}$$

Step3: Estimate Normalization of Each pixel in conjugation with each other:

$$f_t(N_x, N_y) = \sum_{i=0}^{x} r\left(\frac{cut (N_x - 1, V)}{assoc (N_x - 1, N_y)} + \frac{cut (N_x, N_y)}{assoc (N_y, V)}\right)$$

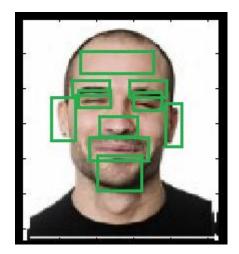


Figure. 2: Normalization & formation of levels based on attribution from ABLATA.

Step4: Find levels based dependencies between different facial parts:

Begin for 1: A

$$p(A|B) = \prod_{i=1}^{N} p(f_i|B)$$

Figure.3: Supplied nodes of the voting element B (marked in white dots).

Step5:FindentropyH for each mutual value of B& A

$$H(B) = \sum_{n=1}^{N} \frac{\sum_{i \in R_i} (A|B)}{\|B\|}$$

Step6:Calculatefinal segmented regions t_{f_t} of facial images:

$$t_{f_t}(R_i, L_i) = \begin{cases} H(B), if \quad f_t(R_i, L_i) < S\\ H(A \cap B), if \quad f_t(R_i, L_i) > S \end{cases}$$
$$S = \frac{t_{f_t}}{\nabla t_{f_{t+1}}}$$

Step6: Repeat Steps 4-6 until whole Image is traversed.

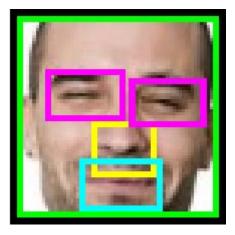


Figure.4: Segmented Facial Parts

Step7:End for Loop

Step8: End Process.

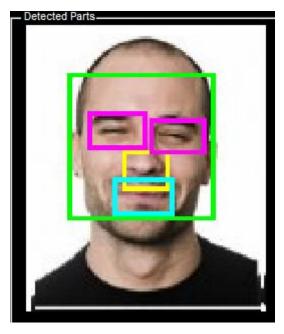


Figure.5: Detected Facial Parts

3. CONCLUSION

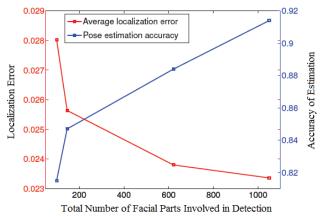


Figure.6(A): Error Evaluation while detecting facial parts through the proposed method.

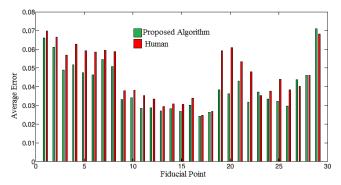
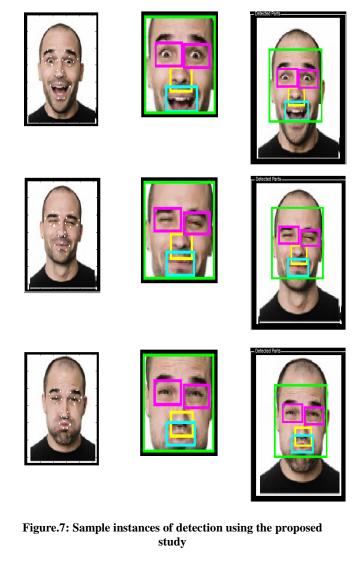


Figure.6(A): Comparison of detection through several voting points i.e., B or fiducial point used to detecting facial parts through the proposed method & through humans As shown in fig.6(A) above the total number of facial detection part is improved over the course while ensuring that the error involved in detection remains nominal. Also, in fig. 6(B) we have compared the rate of detection of the facial parts by the proposed algorithm and by the human [24]; which shows that error ratio involved in detection remains comparable to that of human subjects. Thus, the algorithm that we have presented performs the requisite computational operations in a real-time for facial feature detection based on the improved concept of ABLTA (fig 7). This studyeffectively estimate the positional & several other facial landmarks which once were conditional to the probability ensembles withthe global face properties.Our work will benefits theother studies involving modeling the facial appearance and its location through other facial feature points which is conditional pose authored by the subjects. In our future work, we intend to model the properties like that of emotion detection on top of the proposed study to carry out other relevant computer vision tasks.



4. REFERENCES

[1] T. Amberg, B. Vetter. Optimal landmark detection usingshape models and branch and bound. In ICCV, 2011.

- [2] P. Belhumeur, D. Jacobs, D. Kriegman, and N. Kumar. Localizingparts of faces using a consensus of exemplars. InCVPR, 2011.
- [3] V. Rapp, T. Senechal, K. Bailly, and L. Prevost. Multiple kernellearning svm and statistical validation for facial landmarkdetection. In FG, pages 265–271, 2011.
- [4] G. Roig, X. Boix, F. De la Torre, J. Serrat, and C. Vilella. Hierarchicalcrf with product label spaces for parts-based models.In FG, pages 657–664, 2011.
- [5] M. Valstar, B. Martinez, X. Binefa, and M. Pantic. Facialpoint detection using boosted regression and graph models.In CVPR, pages 2729–2736, 2010.
- [6] S. Baker and I. Matthews. Lucas-kanade 20 years on: Aunifying framework. IJCV, 56(1):221 – 255, 2004.
- [7] L. Breiman. Random forests. Machine Learning, 45(1):5– 32, 2001.
- [8] T. Cootes, G. Edwards, and C. Taylor. Active appearancemodels. TPAMI, 23:681–685, 2001.
- [9] T. Cootes and C. Taylor. Active shape models -'smartsnakes'. In BMVC, 1992.
- [10] G. Fanelli, J. Gall, and L. Van Gool. Real time head poseestimation with random regression forests. In CVPR, 2011.
- [11] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky.Hough forests for object detection, tracking, and actionrecognition. TPAMI, 2011.
- [12] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon. Efficient regression of general-activity humanposes from depth images. ICCV, 2011.
- [13] T. Cootes, K. Walker, and C. Taylor. View-Based ActiveAppearance Models. In Image and Vision Computing, pages227–232, 2002.
- [14] R. Gross, I. Matthews, and S. Baker. Generic vs. personspecific active appearance models. Image and Vision Computing,23:1080 – 2093, 2005.
- [15] M. Everingham, J. Sivic, and A. Zisserman. Hello! my nameis... buffy - automatic naming of characters in tv video. InBMVC, 2006.
- [16] Choubey ,S. and Kashyap , N.(2014) . A Survey on Various License Plate Detection Techniques from Vehicle Image. International Journal of Artificial Intelligence and Mechatronics .2(6):171-174.
- [17] G. Fanelli, T. Weise, J. Gall, and L. Van Gool. Real timehead pose estimation from consumer depth cameras. DAGM,2011.
- [18] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 61, 2005.
- [19] J. Gall and V. Lempitsky. Class-specific hough forests forobject detection. In CVPR, pages 1022–1029, 2009.
- [20] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A. Kipman, and A. Blake. Realtime human poserecognition in parts from single depth images. In CVPR,2011.

- [21] M. Sun, P. Kohli, and J. Shotton. Conditional RegressionForests for Human Pose Estimation. In CVPR, 2012.
- [22] P. Viola and M. Jones. Robust real-time face detection. IJCV,57(2):137–154, 2004.
- [23]Sakshi Shrivastava and Siddhartha Choubey ,"A Comprehensive Survey for 3D Watermarking", Research Journal Of Engineering & Technology (RJET-2011) Jan-Mar 2011, Raipur, Chhattisgarh Vol. 2, issue 1,pp. 42-47, ISSN 0976-2973.
- [24] D. Vukadinovic and M. Pantic. Fully automatic facial featurepoint detection using gabor feature based boosted classifiers.In IEEE Int. Conf. on Systems, Man and Cybernetics, pages1692–1698, 2005.

- [25] Ankush Rai, Attribute Based Level Adaptive Thresholding Algorithm for Object Extraction, Journal of Advancement in Robotics, Volume 1, Issue 2.
- [26] Siddhartha Choubey, G.R. Sinha and Abha Choubey, "Bilateral Partitioning based character recognition for Vehicle License plate", International Conference on Advances in Information Technology and Mobile Communication – AIM 2011 April 21- 22, 2011, Nagpur, Maharashtra, India, V.V. Das, G. Thomas, and F. Lumban Gaol (Eds.): AIM 2011, CCIS 147, pp. 422– 426, 2011, © Springer- Verlag Berlin Heidelberg 2011
- [27]Ankush Rai, Characterizing Face Encoding Mechanism by Selective Object Pattern in Brains using Synthetic Intelligence and Its Simultaneous Replication of Visual System That Encode Faces, Research & Reviews: Journal of Computational Biology, Volume 3, Issue 2.