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Real Time Stereo Matching for Radiometric Changes

ABSTRACT 

Most of the existing stereo matching algorithms assume that 

the corresponding pixels have the same intensity (color) in 

both images. But in real world situations, image color values 

are often affected by various radiometric factors such as 

illumination direction, illuminant color, and imaging device 

changes. Hence, we cannot fully depend on the raw color 

recorded by a camera. So, the assumption of color consistency 

does not hold well for stereo images in real scenes. Thus, the 

performance of most conventional stereo matching algorithms 

would be severely degraded under radiometric variations. The 

main focus of this work is on illumination invariant stereo 

matching by generating illumination invariant images from 

stereo image data using a non-iterative normalisation in log 

RGB space. The actual stereo matching is done using the 

similarity measure, Normalized Cross-Correlation (NCC) 

which is the standard statistical method for determining 

similarity which itself is invariant to linear brightness and 

contrast variations. In this work we propose a novel method 

for error analysis by dividing disparity into uniform and 

discontinuity regions. The proposed algorithm was evaluated 

using standard datasets and the results are comparable to 

state-of-art techniques in the literature. 

General Terms 

Stereo Matching, Computer Vision, Image Processing 

Keywords 

Disparity Map, Stereo Correspondence, Invariant Images, 

Radiometric Variations, Illumination Invariant, Color 

Normalisation. 

1. INTRODUCTION 
The main objective of stereo matching is to obtain 3D 

information by finding the correct correspondence between 

images captured from different point of views or at different 

times. However, finding the accurate correspondence is not an 

easy task since there exists a number of difficulties, such as 

occluded regions, texture less regions, and object boundaries. 

This issue has been an important area of research in the past 

several decades, and considerable progress has been made 

with respect to the problem surrounding stereo matching 

algorithms. Efforts toward this end have resulted in numerous 

stereo algorithms that perform relatively well for the images 

in the Middlebury database [1], [2] 

These algorithms are based on a common assumption that 

corresponding pixels have similar color values, an assumption 

we refer to as color consistency. However, it should be noted 

that these methods do not hold good for stereo images which 

do not have similar corresponding color values. Nonetheless, 

a few studies have been performed in order to solve this 

problem. 

In a real scenario, various factors prevent two corresponding 

pixels from having the same color value. One major factor is a 

radiometric change, which includes lighting geometry, 

illuminant color, and camera device changes between stereo 

images. Different color values are obtained when the same 

scene is viewed under a different lighting geometry; the 

reason for this is that the intensity at each point is determined 

by the angle between the direction of the incident light and the 

direction of the surface normal in a Lambertian model. After 

fixation of the lighting geometry, the object when viewed 

under different illuminant colors also produces different 

colors because there is a change in the spectral distribution of 

the reflected light from the object. Furthermore, color changes 

can also be induced by using a camera device or setting 

changes such as exposure variations because there are options 

to vary the total amount of photon that is incident to the 

camera. Common situations such as these can be a reason for 

practical problems in stereo images such as satellite images. 

Having said that, one should not completely trust the raw 

color recorded by a camera for purposes of matching, and it 

remains that the color consistency assumption is no longer 

valid for stereo images in real scenes. Under radiometric 

variations such as these, the performance of most stereo 

matching algorithms can be severely degraded. To prove this 

point with an example, the case shown in Fig. 1.1  in which a 

conventional method such as the Sum of Absolute Difference 

(SAD) method fails to produce correct depth map. 

    

a)                   b)                   c)                     d) 

Fig 1: The output of conventional SAD for illumination 

varying stereo images. (a) and (b) are the left and right 

Baby1 image with varying illumination.(c) is the ground 

truth (d) is the result using SAD method for images (a) 

and (b) 

For the past few years, a large number of researches have 

been undertaken by Finlayson et al, to study methods for 

creating invariant images from a single digital image. An 

invariant image is one that is independent of illumination 

conditions. In this paper, we have implemented the method 

adopted by Finlayson et al. [3] for generating invariant 

images. This work finds an invariant image motivated by the 

assumptions of Lambertian surface and the imaging device is 

linear with respect to light intensity. But, the method still 

works well when these assumptions do not hold. And, the 

proposed method initially finds invariant images of both left 

and right images using non-iterative comprehensive 

normalisation in log space and the actual stereo matching 

using Normalized Cross correlation is done to these invariant 
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color images which are approximately invariant to intensity 

and color of scene illumination. 

2. INVARIANT IMAGE FORMATION 

2.1 Color Image formation Model 
 An image is made up of pixels, and each pixel reflects the 

light that has been received at a sensor in a digital camera or 

other optical sensor. This light that hits the sensor is made up 

of two main components, the illumination component that 

reflects the colour and intensity of the illuminant, and the 

reflectance component which captures the surface reflectance 

properties, namely the color of the object reflecting the light. 

These two components define the properties of the light that 

hits the sensor. The sensor then converts the light into a digital 

signal, adding in a certain amount of noise. The following 

equation describes an image taken by a linear imaging device 

[5]: 

,)()()( 



dQSEh k
xx

k              )1(  

 where 
x
kh  represents the kth sensor (color channel) response 

at a point x in the scene and   is the wavelength. 

)(E represents the spectral power distribution of the incident 

illuminant, )(xS represents the surface reflectance at a point 

x in the scene, and )(kQ stands for the spectral response of 

the kth sensor.In order to simplify this equation and remove 

the integral, we can assume that the camera sensor  kQ  

behaves similar to a Direc delta function  kQ = kq δ(λ − 

k ), where kq  represents the sensor strength kq = 

 kkQ  .Now, (1) simply becomes 

x
kh =E    k

x
k S                                                             (2) 

         During the image acquisition process, the device responds in a 

linear fashion. However, for the compression of the dynamic 

range, there is a nonlinear transformation of the image data 

before the storage process. This process is called gamma 

correction [6] and it results in the raising of the value of each 

RGB response to a power function of an exponent  value 

depending on the camera. Taking all these factors into 

consideration, the color image formation model at a pixel can 

be represented as follows[3]: 
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        where each pixel has its own individual brightness factor i  

which depends on the angle between the direction of the light 

and  direction of the surface normal at that point. Changing 

illumination color while fixing the lighting geometry would 

result in changes in the responses of three color channels by 

the global scale factor a, b and c, respectively.  

2.2 Color Image Normalisation 
In order to eliminate the effect of lighting geometry that 

depends only on direction of surface normal and the direction 

of light in the Lambertian model, chromaticity normalisation 

is commonly employed [3]. 
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(Clearly the i  term cancels). We will denote the 

chromaticity normalisation carried out on the image I as C(I). 

Let )(R denote the mean red pixel value for an image. 

Assuming N pixels in an image: 
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Under a change in illuminant color, the mean becomes: 
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That is, the mean changes by the same scale factor a. Thus to 

cancel the effect of light colour on RGBs, we can apply the 

following transformation: 
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Equation (7) is commonly referred to as grey-world 

normalisation and we denote this normalisation by a function 

G( )such that the image I post greyworld normalisation is 

denoted G(I). 

Neither (4) nor (7) by itself suffices to remove both lighting 

geometry and lighting colour change. Finlayson et al. [7] 

defined a third normalisation which they called 

Comprehensive normalisation, which can remove both 

dependencies. 

It is defined as: 

1. II 0                    Initialization  

2. ))((1 ii ICGI      Iteration step  

3. ii II 1     Termination condition                       (8) 

That is, chromaticity normalisation and greyworld 

normalisation are applied successively and repeatedly to an 

image until the resulting image converges to a fixed point.  

The problem with (8) (unlike (4) or (7)) is that it is iterative. 

In order to avoid this, Finlayson et al. [4] defined a 

comprehensive normalisation without iteration. From the 

implementation point of view, it would be preferable to 

perform a non-iterative procedure than an iterative one. So 

this work depends on the non-iterative comprehensive 

normalisation procedure performed in log RGB space [3] for 

generating invariant images which are independent of 

illumination conditions. 

2.3 Non-iterative Comprehensive 

normalisation in log-space 
We begin with the simple observation that the lighting 

geometry and lighting colour processes which are 

multiplicative in RGB space become additive in log RGB 

space.  
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To simplify matters we incorporate   into scalars: 

aa ' , bb ' , cc ' and
 ii '  so that (3) becomes : 

(9)                                                             
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Taking logarithms turns multiplications into additions so that 

our model of image formation becomes: 
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where aa  log , bb  log , cc  log , and ii   log . 

Representing log RGBs by R , G , and B we have: 
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Equation (11) tells us that in log RGB space, lighting 

geometry change only affects the length of the log RGB vector 

in the direction of U = (1,1,1).That is, the directions 

orthogonal to (1,1,1) are unaffected by brightness change. By 

applying some simple results from linear algebra, we can 

normalise a log RGB to remove brightness by projecting it 

onto the two-dimensional space which is orthogonal to the 

line that is spanned by U. We define a 3 x 3 projection matrix 

Pr for the space spanned by U and a complementary 

projection matrix Pr = [I-Pr] for the space which is 

orthogonal to the space spanned by U: 
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and so  

Pr = I-Pr =      
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where t denotes the matrix transpose operator and I denotes 

the 3 x 3 identity matrix. By definition these matrices have the 

property that 
tt )1,1,1()1,1,1(Pr  and   t)0,0,0()1,1,1( Pr-1  : 

To project a log RGB onto the space orthogonal to U, we 

simply multiply by the projection matrix Pr : 
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That is, we can remove dependency on lighting geometry by 

subtracting the mean log response at a pixel from each pixel. 

The effect of illuminant colour can be removed in a similar 

way. However, rather than dealing with log RGB vectors we 

must operate on the vector of all log red (or green, or blue) 

responses. Considering all red responses, we can write: 
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It follows that to remove dependence due to illumination 

colour we need to project responses onto the space orthogonal 

to the vector (1,1,…,1)t. This can be achieved similarly to the 

intensity normalisation, by defining a projection matrix Pc 

which projects onto the space spanned by (1, 1,…, 1)t and its 

complement Pc  which projects onto the orthogonal space: 
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Pc = I-Pc =      
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From this projection matrix, we can see that, to implement 

this normalisation we only need to subtract the mean log red 

value from all log red pixel values and subtract the mean log 

green and log blue values from the log green and log blue 

pixel values. 

To remove lighting geometry and illuminant colour both at 

the same time we just apply the projectors (13) and (17) 

consecutively to the log image. This operation is easy to write 

if we think of an N pixel image as an N x 3 matrix of log 

RGBs. Let us denote this image as Y .So for the application 

of the lighting geometry and light colour normalisations we 

can write: 

 )Pr()(  IYPcIY                                                      (18) 
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where Y represents the normalised image. To implement (18), 

we simply subtract row means from rows and then column 

means from columns. 

It is understood from projection theory that matrix 

Pr][ I and ][ PcI    are both idempotent. So (18) becomes 

)Pr)(Pr())((  IIYPcIPcIY                               (19) 

This removes shading or light colour completely. 

Till now we have not attempted to remove the dependence of 

  . Also we have not yet considered its effect on our 

approach to remove lighting geometry and colour. Since   

term is a multiplicative factor in log space, it is easy to see 

that it does not affect the operations of the projectors involved 

in the procedure. Therefore the dependencies due to lighting 

geometry and illuminant colour are removed regardless of  . 

But our normalised image still depends on  , and so, to make 

the procedure fully comprehensive we should remove the 

effect of gamma. By definition, the mean of all elements in Y 

must be zero (if the mean of the rows and columns are 

individually 0 then the overall mean must also be 0).But   

cannot be removed by dividing by the mean. Rather we must 

use a second order statistic. For that we can use variance. The 

variance of all the elements in Y can be calculated as: 
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where Y has N rows and 3 columns (there are N pixels in the 

image) and trace( ) is the sum of the diagonal elements of a 

matrix. It follows that gamma can be removed by dividing by 

the standard deviation. 
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In summary, for non-iterative comprehensive normalisation, 

we took the log of the RGB image. Then at each pixel we 

subtracted the pixel mean (of the log R, G, and B 

responses).We then subtracted the mean of all the resulting 

red responses from each pixel and the mean green and blue 

channel responses for the green and blue colour channels. The 

result is an image independent of the light colour and lighting 

geometry. Further dividing by the standard deviation of the 

resultant image renders the representation independent of 

gamma.  

3. PROPOSED WORK 
This section provides an overview of the algorithm used in the 

work. Fig. 2 depicts the overview. The idea behind the 

process of  an illumination invariant stereo matching is to post 

process input image data by forming a logarithm of a set of 

chromaticity coordinates, and then project the resulting 2-

dimensional data in a direction orthogonal to a special 

direction, that best describes the effect of lighting change. We 

perform a non-iterative log normalisation of the image data 

for finding that special invariant direction. It will give an 

invariant image that is independent of lighting without any 

need for a calibration step or special knowledge about an 

image. The last and final step is stereo matching using 

Normalized cross correlation which itself is invariant to linear 

brightness and contrast variations. 

 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 2: Overview of the proposed Algorithm 

4. STEREO MATCHING USING NCC 
Disparity estimation algorithms can be categorized into local 

and global approaches [2]. Local approach determines the 

disparity of a pixel based on the support window similarity. 

The local approach usually has low-computation complexity 

and storage requirement, and has been frequently adopted by 

real-time implementations. Global approach determines the 

disparity of all the pixels in an image as a whole by 

optimizing a global energy function. However, the 

optimization is usually complex and extremely computation 

intensive. But they usually achieve much better performance 

than simple algorithms. However, simple algorithms are very 

much faster than complex algorithms. As a result, most real-

time applications have adopted simple algorithms to trade the 

performance for speed. Hence, we have focused on a local 

method, Normalized Cross Correlation (NCC) for stereo 

correspondence since its normalisation, both in the mean and 

the variance makes it relatively insensitive to radiometric gain 

and bias. 

Let LI  and RI  are corresponding pixel values in the left and 

right invariant images respectively.  NCC [10] is a well-

known similarity measure between two pixels with 

neighbours that is defined by the equation 
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where LI  and RI  are the mean intensity values of pixels and 

d is the disparity. The summation is over a window which is 

centered on the pixel to match. Equation (22) assumes that the 

matches are made along a scan line. Matching a pixel from 

left to right image requires the computation of the matching 

cost with the disparity d varying from its minimum value to 

its maximum value. The lowest cost is taken as the best 

match. 

Simply applying this NCC to raw stereo images in a naive 

fashion does not work well because the various radiometric 

changes caused by ρ, a, b, c, and γ are not taken into 

consideration [6]. The proposed method finds remedy to this 

problem by transforming the nonlinear relationship that exists 

between corresponding pixel color values into a linear one by 

employing log-chromaticity color space. 

5. ERROR ANALYSIS 
The performance of a stereo matching algorithm is usually 

evaluated by the error rate of a disparity map when compared 

to a ground truth disparity map. Lower error rate implies 

higher performance. To analyse the error, a novel method is 

proposed here by dividing the disparity image into two 

regions: Uniform and Discontinuity. The uniform region 

needs a large window support for the effective estimation of 

disparity while discontinuity region requires the window 

support to be small to effectively represent the depth 

discontinuities. In the error analysis we divide the ground 

truth and estimated disparity into uniform and discontinuity 

regions using an edge mask and a uniform mask. The error is 

estimated as given below: 
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where nm  is the total number of pixels, ),( jiE  is the 

estimated disparity and ),( jiG  is the ground truth disparity. 

6. EXPERIMENTAL RESULTS 
In this section, we present some experimental results on 

Baby1 stereo pairs with ground truth from the Middlebury 

Stereo Vision page [1] .The other parameters are window size 

and maximum disparity. In our experiments, a fixed window 

of size 7x7 is selected for the study. The maximum disparity 

value is the maximum value of the pixel in the ground truth 

map, divided by the scale factor. The estimated disparity map 

was compared with the ground truth and the error was 

calculated as described in the previous section. 

There are three different exposures (indexed as 0, 1, 2) and 

three different light sources (indexed as 1, 2, 3) in each data 

set in [1], resulting in total of nine different images. However, 

we avoided the case of the same illumination (or exposure) 

combination for left and right images. For instance, between 

the 1/3 (left/right illumination) and the 3/1 (left/right 

illumination) cases, we experimented only on the 1/3 case 

because the properties of 1/3 and 3/1 cases are similar. 

6.1 Light Source Changes 
For testing the effects of changes in light source 

(illumination), we set index of exposure to 1 for all images 

and varied only the index of illumination from 1 to 3. Figs. 

3(a) and 3(b) depict the Baby1 stereo images taken under 

extremely different illumination condition (the left and the 

right images have been taken at an index of illumination of 1 

and 3, respectively). Fig 3(c) is the ground truth disparity 

map. Fig 3(d) is the disparity map of proposed algorithm for 

input stereo image pair in Figs. 3(a) and 3(b). 

 

    

a)                   b)                   c)                       d) 

Fig 3: Result of proposed algorithm for window size 7x7 

on Baby1 image pair with varying illumination. (a) The 

left image with illumination (1)-exposure (1). (b) The right 

image with illumination (3)-exposure (1). (c) The ground 

truth disparity map. (d) The disparity map of proposed 

algorithm for input stereo image pair in (a) and (b) 

Table1: Error values of the disparity map produced for 

Baby1 image pair by the proposed algorithm according to 

the different left/right image illumination combinations 

for exposure 1. 

Error 

Analysis 

(Left Illumination/Right Illumination) 

(1/1) (1/2) (1/3) (2/3) 

Uniform 

region error 
0.107542 0.104739 0.109191 0.094362 

Discontinuity 

region error 
0.0203056 0.0206676 0.0210402 0.0188883 

6.2 Camera Exposure Changes 
In order to test the effects of changes in camera exposure, we 

fixed the index of illumination to 1, and changed only the 

index of exposure from 0 to 2. Figs. 4(a) and 4(b) show the 

Baby1 stereo images which have undergone extremely 

different exposure conditions (the left and the right images 

have been captured with an index of exposure of 0 and 2, 

respectively). Fig 4(c) is the ground truth disparity map. Fig 

4(d) is the disparity map of proposed algorithm for input 

stereo image pair in Figs. 4(a) and 4(b) 

    

a)                   b)                   c)                       d) 

Fig 4: Results of test stereo algorithms for window size 7x7 

on Baby1 image pair with varying exposure. (a) The left 

image with illumination (1)-exposure (0). (b) The right 

image with illumination (1)-exposure (2). (c) The ground 

truth disparity map. (d) The disparity map of proposed 

algorithm for input stereo image pair in (a) and (b) 
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Table 2: Error values of the disparity map produced for 

Baby1 image pair by the proposed algorithm according to 

the different left/right image exposure combinations for 

illumination 1. 

Error 

Analysis 

(Left Exposure/Right Exposure)  

(0/0) (0/1) (0/2) (1/2) 

Uniform 

region error 
0.167377 0.161286 0.154631 0.0988581 

Discontinuity 

region error 
0.0275638 0.0278884 0.0269872 0.0203633 

6.3 Both illumination and Camera 

Exposure Changes 
For testing the effects of changes in illumination and in 

camera exposure, we set index of exposure to 0 and index of 

illumination to 1 for left images and varied the index of 

illumination and exposure for right images. Figs. 5(a) and 5(b) 

depict the Baby1 stereo images taken under extremely 

different illumination and exposure condition (the left image 

was taken at an index of illumination and exposure of 1 and 

the right image with illumination index 3 and exposure index 

2, respectively). Fig 5(c) is the ground truth disparity map. Fig 

5(d) is the disparity map of proposed algorithm for input 

stereo image pair in Figs. 5(a) and 5(b). 

    

        a)                   b)                       c)                     d)                               

Fig. 5:  Results of test stereo algorithms for window size 

7x7 on Baby1 image pair with varying illumination and 

exposure. (a) The left image with illumination (1)-exposure 

(1). (b) The right image with illumination (3)-exposure (2). 

(c) The ground truth disparity map. (d) The disparity map 

of proposed algorithm for input stereo image pair in (a) 

and (b) 

Table 3: Error values of the disparity map produced for 

Baby1 image pair by the proposed algorithm according to 

the different left/right image illumination and exposure 

combinations. 

Error 

Analysis 
(Left illumination/Right Illumination) 

(Left 

Exposure/

Right 

Exposure) 

(1/2) (1/3) 

Uniform 

region 

error 

Discontinui

ty 
Region 

Error 

Uniform 

region 

error 

Discontinu

ity 
Region 

error 

(0/1) 0.158135 0.027148 0.160088 0.0275397 

(0/2) 0.150862 0.0264031 0.153133 0.0267344 

 

7. CONCLUSIONS AND FUTURE 

WORK 
We have implemented a real time stereo matching technique 

for radiometric changes by finding left and right invariant 

images that is free of radiometric effects without any need for 

a calibration step or special knowledge about an image. This 

method produces promising results that are quite robust to 

various kinds of radiometric changes. The disparity map of 

the proposed method was evaluated using standard datasets 

and the results are comparable to state-of-art techniques in the 

literature. In future, the disparity map can be improved using 

some adaptive window methods whose complexity is low. 

8. REFERENCES 
[1]  Middlebury Stereo Vision Page: 

http://vision.middlebury.edu/stereo 

[2] D. Scharstein and R. Szeliski, “A Taxonomy and      

Evaluation of Dense Two-Frame    Stereo Correspondence 

Algorithms,” Int’l J.Computer Vision, vol. 47, no. 1, pp. 

7-42, 2002. 

[3] Finlayson, Graham D. and Xu, Ruixia (2003) “Illuminant 

and Gamma comprehensive normalisation in log RGB 

space,” Pattern Recognition Letters, 24 (11). pp. 1679-

1690. ISSN 0167-8655 

[4] Finlayson, G.D., Xu, R., “Non-iterative comprehensive 

normalisation,” First European Conference on Color in 

Graphics, Image and Vision (CGIV), 2002 

[5] Y.S. Heo, K.M. Lee, and S.U. Lee, “Illumination and 

Camera Invariant Stereo Matching,” Proc. IEEE Conf. 

Computer Vision and Pattern recognition, 2008. 

[6] Yong Seok Heo, Kyoung Mu Lee, Sang Uk Lee, “Robust 

stereo matching using adaptive normalized cross 

correlation,” IEEE Transactions on Pattern Analysis and 

Machine Intelligence, Vol 33, No. 4, April 2011. 

[7] G. D.Finlayson, Bernt Schiele, and James L.Crowley, 

“Comprehensive Colour Image Normalisation,” 5th 

European Conference on Computer Vision, page 475-490, 

1998. 

[8] Heiko Hirschmüller, Daniel Scharstein, “Evaluation of 

Stereo Matching Costs on Images with Radiometric 

Differences,” IEEE Trans. Pattern Anal. Mach. Intell. 

31(9): 1582-1599 (2009) 

[9] H. Hirschmuller and D. Scharstein, “Evaluation of Cost 

Functions for Stereo Matching,” Proc. IEEE Conf. 

Computer Vision and Pattern Recognition, 2007. 

[10]  O. Faugeras, B. Hotz, H. Mathieu, T. Vie´ville, Z. 

Zhang, P. Fua, E.The´ron, L. Moll, G. Berry, J. 

Vuillemin, P. Bertin, and C. Proy, “Real Time 

Correlation-Based Stereo: Algorithm, Implementations 

and Applications,” Technical Report RR-2013, INRIA, 

1993. 

[11] A.S. Ogale and Y. Aloimonos, “Robust Contrast 

Invariant Stereo Correspondence,” Proc. IEEE Int’l 

Conf. Robotics and Automation, 2004. 

 

[12]  J. Zhang, L. McMillan, and J. Yu, “Robust Tracking and 

Stereo Matching under Variable Illumination,” Proc. 

IEEE Conf. Computer Vision and Pattern Recognition, 

2006. 
 

[13] G.D. Finlayson, S.D. Hordley, and M.S. Drew, 

“Removing Shadows from Images,” Proc. European 

Conf. Computer Vision, 2002. 
 


