
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

1

Digital Compression Technique - A Novel Method of

Implementation

V.J. Rehna
Research Scholar (Noorul
Islam Univ., TN) & Asst.

Prof., ECE Dept., HKBKCE,
B’lore, K’taka

Kehkeshan Jalall S
Sr. Lecturer,
ECE Dept.,

HKBKCE, Bangalore,
Karnataka

T.C.Manjunath
Principal

HKBK College of Engg.,
Bangalore, Karnataka,

India

A A Powly Thomas
Prof. & Head, EEE Dept.,
HKBK College of Engg.,
Bangalore, Karnataka,

India

ABSTRACT

A method of compressing the binary images, i.e., in the form

of 0‟s & 1‟s is presented in this research paper. The starting

pixel value is taken and the lengths of the subsequent runs are

taken into consideration while designing the compression

code. The main advantage of this code is the saving of the

memory space, which will lead to the faster transmission rate

over the communication channels. The simulation results

show the effectiveness of the developed method.

General Terms

Run length code, Compression.

Keywords

Memory space, Binary image, Gray scale image.

1. INTRODUCTION

Compressing an image is significantly different than

compressing raw binary data. Of course, general-purpose

compression programs can be used to compress images, but

the result is less than optimal. This is because images have

certain statistical properties, which can be exploited by

encoders specifically designed for them. Also, some of the

finer details in the image can be sacrificed for the sake of

saving a little more bandwidth or storage space. This also

means that lossy compression techniques can be used in this

area. Lossless compression involves with compressing data

which, when decompressed, will be an exact replica of the

original data. This is the case when binary data such as

executables, documents etc. are compressed. They need to be

exactly reproduced when decompressed [16].

On the other hand, images (and music too) need not be

reproduced „exactly‟. An approximation of the original image

is enough for most purposes, as long as the error between the

original and the compressed image is tolerable. Image

compression is minimizing the size in bytes of a graphics file

without degrading the quality of the image to an unacceptable

level. The reduction in file size allows more images to be

stored in a given amount of disk or memory space. It also

reduces the time required for images to be sent over the

internet or downloaded from web pages. Image compression

is the application of data compression on digital images. In

effect, the objective is to reduce redundancy of the image data

in order to be able to store or transmit data in an efficient

form. Image compression can be lossy or lossless [17].

Lossless compression is sometimes preferred for artificial

images such as technical drawings, icons or comics. This is

because lossy compression methods, especially when used at

low bit rates, introduce compression artifacts. Lossless

compression methods may also be preferred for high value

content, such as medical imaging or image scans made for

archival purposes. Lossy methods are especially suitable for

natural images such as photos in applications where minor

(sometimes imperceptible) loss of fidelity is acceptable to

achieve a substantial reduction in bit rate [18].

In this paper, we discuss about a method of run length

encoding for compression of the binary images. The paper is

organized as follows. A brief introduction about the image

compression technique was presented in the previous

paragraphs. In section 2, a brief introduction about the storing

of images in computers is dealt with. The comparison of

high-resolution images along with that of image compression

is described in section 3. The next section, i.e., section 4

deals with the types of image compression techniques.

Section 5 describes the run length-encoding scheme

developed to compress the binary images along with some

simulation examples. Section 6 gives the simulation results.

The user developed code in C / C++ used for simulation is

presented in section 7. Conclusions are presented in section 8

followed by the references.

2. STORING IMAGES IN COMPUTERS

Camera converts a 3D physical object into the image of the

object. The output of the camera is 2D analog image which is

represented by i (x, y). Computer cannot process this analog

image. They have to be digitized. The analog image i (x, y)

is converted into a digital image (DI) / gray scale image I (k,

j) using the A to D conversion. The digital / gray scale image

is threshold to obtain a BI - binary image B (k, j) which

consists of foreground objects represented by 1‟s and

background objects represented by 0‟s. Each 1 or 0 is a pixel

or an element of a binary image L (k, j) and can be stored

either in 1 bit or in 1 byte. This is how an image is stored in

the memory of the computer [2].

Note that in the memory of the computer or in the CD‟s or in

the DVD‟s or in the floppy disks or in the hard disks, the

images are always stored in the form of 0‟s and 1‟s. Storage

capacity of the images goes on increasing with the size,

brightness, contrast, resolution, colors, whether it is 2D or a

3D image (hologram), etc. The different methods of storing

the pixel values of the binary image are: 1 pixel can be stored

in 1 bit or 1 pixel stored in 1 byte [2].

3. COMPARISON BETWEEN HR

IMAGES AND COMPRESSED IMAGES

High resolution images consume more amount of memory

space for storage, take long time to transmit over the

communication channels, size of memory consumed for

storing is more, & has got good clarity. Hence, images are

often compressed / packed or coded. Images are often

compressed in order to reduce the storage capacity. The

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

2

advantages of image compression being, the memory storage

gets reduced by a factor of 8, takes less time to transmit over

the communication channels. But the main disadvantage is

the retrieval of images takes more time. For example, when

we are downloading the images from the Internet, we can see

that it takes more time to open because the image is getting

decoded [2].

4. TYPES OF IC TECHNIQUES

Image compression aims to reduce the number of bits required

to represent an image by removing the redundancies which

makes it one of the most useful and commercially successful

technologies in the field of digital image processing.

Three principle types of data redundancies that can be

identified are:

A. Coding redundancy: Coding redundancy consists of

variable length code words selected as to match the

statistics of the original source. In the case of digital

image processing, it is the image itself or the processed

version of its pixel values. Examples of image coding

schemes that explore coding redundancy are the Huffman

coding and the Arithmetic coding technique.

B. Spatial redundancy: Spatial reduncancy is sometimes

called interframe redundancy, Geometric redundancy or

Interpixel redundancy. Here, because the pixels of most 2-

D intensity arrays are correlated spatially that is each pixel

is similar to or independent on neighbouring pixels,

information is unnecessarily replicated in the

representation of the correlated pixels. Examples of this

type of redundancy include Constant area coding and

many Predictive coding algorithms.

C. Irrelevant information: Most 2-D intensity arrays contain

information that is ignored by the human visual system.

Image and video compression techniques aim at

eliminating or reducing any amount of data that is psycho

visually redundant. Most of the image coding algorithms

in use today exploit this type of redundancy, such as the

discrete cosine transform based algorithm at the heart of

the JPEG encoding standard.

There are various methods of data compression techniques

such as the Hauffman‟s coding, Lempel-Zev method of

coding, zip / unzip method, WinZip, WinRar, tar and the Run

Length Encoding [RLE]. The different methods of storing

the pixel values of the binary image are 1 pixel can be stored

in 1 bit or in 1 byte. If 1 pixel is stored in 1 bit, then 8 pixels

can be stored in 1 byte, so that the factor of compression is 8.

There are different methods for lossless image compression

such as

 Run-length encoding - used as default method in PCX

and as one of possible in BMP, TGA, TIFF

 Entropy coding

 Adaptive dictionary algorithms such as LZW - used in

GIF and TIFF

 Deflation - used in PNG, MNG and TIFF [2]

5. RUN LENGTH ENCODING (RLE)

In this section, we deal with the RLE, which is a method of

compressing the binary images and uses an encoding scheme

in which a RUN is represented by a sequence of pixels having

the same value and the length of the run represents the total

number of pixels in the sequence. Here, we store the starting

value of the pixel and the lengths of the subsequent runs as the

binary image is scanned from the left to the right and from the

top to the bottom. Hence, we get a coded image or a

compressed image. This run length encoding is a simplest

dictionary based data compression technique. Image files

frequently contain the same character repeated many times in

a row. Images, particularly those having very few gray levels,

often contain regions of adjacent pixels, all with the same

gray levels. Each row of such images can have long runs of

the same gray value. In, such cases, one can store a code

specifying the value of the gray level, followed by the length

of the run, rather than storing the same value many a times

over. As is evident, the run length encoding achieves

considerable compaction in images, which have a fairly

constant background. The RLE also eliminates the inter-pixel

redundancies [2].

 Column  n = 10

 1 2 3 4 5 6 7 8 9 10

R 1 0 0 0 0 0 0 0 0 0 0

O 2 0 0 0 0 0 0 0 0 0 0

W 3 0 1 1 1 0 0 0 0 0 0

 4 0 0 0 1 1 1 0 0 0 0

 5 0 0 0 0 0 1 1 1 0 0

 6 0 0 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0 0 0

m = 8 0 0 0 0 0 0 0 0 0 0

Fig. 1: A (8  10) Binary Image

To consider a simulation example, let us have a binary image

B (k , j) of size (8  10) of 8 rows and 10 columns as shown

in Fig. 1, the foreground represented by 1‟s and the

background represented by 0‟s. Scan the binary image from

left to right and from top to bottom using raster-scanning

technique. Store the first pixel value and the length of the

subsequent runs as the binary image is scanned from left to

right and from the top to bottom using the raster scanning

method [2].

The sequence of storage of the pixel values is shown below in

the form of an algorithm as follows.

1st pixel value is 0.

Store 0 in byte 1

The length of Run 1 is LR1 = 0

There are 21 pixels with value 0

Store 21 in byte 2

The length of Run 2 is LR2 = 21

There are 3 pixels with value 1

Store 3 in byte 3

The length of Run 3 is LR3 = 3

There are 9 pixels with value 0

Store 9 in byte 4

The length of Run 4 is LR3 = 9

There are 3 pixels with value 1

Store 3 in byte 5

The length of Run 5 is LR5 = 3

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

3

There are 9 pixels with value 0

Store 9 in byte 6

The length of Run 6 is LR6 = 9

There are 3 pixels with value 1

Store 3 in byte 7

The length of Run 7 is LR7 = 3

There are 32 pixels with value 0

Store 32 in byte 8

The length of Run 8 is LR8 = 32

Therefore, the sequence of run lengths is given by

 = [0 21 3 9 3 9 3 32] T.

i.e., the memory storage = 8 bytes.

If 1 pixel / byte is used to store the given binary image, then

memory storage = (8  10) = 80 bytes.

If 1 pixel / bit is used to store the given binary image, then

memory storage =
80

8
 = 10 bytes.

If Run Length Encoding (R L E) is used, then memory storage

= 8 bytes. , % saving in memory space if RLE is used = %

S =
80 8

8


 100 = 90 %.

RLE method of compressing the binary images is not always

successful. It depends on the number of 1‟s and 0‟s. For ex.,

when the image has got alternate 1‟s and 0‟s, then the RLE

fails. It is as good as storing the pixel in 1 byte. For a chess

board, the memory storage if RLE is used or 1 pixel / bit is

used, then the memory consumed = 64 bytes as shown in Fig.

2. The shortest run length code is an image having all 0‟s (2

bytes) or an image having all 1‟s (2 bytes) as shown in Fig.

3. Another disadvantage with the run length code is from the

run length code (first value), we cannot know which is the

number of zeros or which is number of ones [2].

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

Fig. 2 : A Chess Board

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1

 = {0, 16}T  = {0, 16}T

Fig. 3 : Shortest RL Code

Let us consider another simulation example as shown in the

Fig. 4.

The run length code of the given binary image is

 = { 0 , 17 , 2 , 1 , 1 , 5 , 4 , 4 , 3 , 27 }T.

The storage of  requires 10 bytes.

At one byte per number, the number of bytes of storage

required to store the (8  8) image is 64 .

, the percentage saving in memory [2]

=  100 64 10

64


 = 84.4 %.

 Col j 

 1 2 3 4 5 6 7 8

 1 0 0 0 0 0 0 0 0

 2 0 0 0 0 0 0 0 0

Row 3 0 1 1 0 1 0 0 0

k 4 0 0 1 1 1 1 0 0

 5 0 0 1 1 1 0 0 0

 6 0 0 0 0 0 0 0 0

 7 0 0 0 0 0 0 0 0

 8 0 0 0 0 0 0 0 0

Fig. 4 : A (8  8) binary image

Fig. 5: A Image Data

Now, consider performing the RLE on the data shown in the

Fig. 5. In RLE, the first value specifies the gray value while

the second value specifies the run. Therefore, the RLE code

is  = [1 1 2 1 5 1 3 1 1 1 2 1] T. The RLE code here is

double than that of the original sequence. Hence, RLE should

only be used if we have the same character gray value

repeated many a times in a row.

6. SIMULATION RESULTS

A graphical user interface program was developed in C / C++

language and many codes was compiled and run. On running

the code, the following screens as shown below appeared, i.e.,

the inputs & the output screens, which are nothing but the

simulation results [2].

Fig. 6 : Data entering for the example 1 (5 ps coin BI)

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

4

Fig. 7 : Simulation result of the Fig. 6

Fig. 8 : Another simulation result of a binary image

7. THE TURBO C / C++ FLOWCHART

 FOR COMPILATION

Fig. 9 : Flow chart of the developed program

To test the effectiveness of the written algorithm, it is applied

on a real digital image. To start with, a (64 × 64) color image

of the eye is considered as shown in the Fig. 10. Next, it is

converted to its gray scale version as shown in the Fig. 11.

Finally, the gray scale image is converted into a binary image

& is as shown in the Fig. 12. This binary image acts as the

input to the run length code algorithm. The flowchart shown

above in the Fig. 9 is used to obtain the run length code,  of

the binary image of the eye.

Fig. 10 : A Colored Image of the eye

Fig. 11 : A Gray Scale Image of the eye

Fig. 12 : A Binary Image of the eye

As the size of the obtained binary file was very big, it could

not be incorporated in this paper. The binary image was given

as input to the developed program & once the written C

program was run, the run length code was displayed along

with the results for the converted binary image.

 = {0, 30, 10, 21, 19, 33, ………., 52, 141} T…… storage

of  requires 16 bytes as each run is stored in 1 byte.

If 1 pixel / byte is used to store the given binary image, then

memory storage = (64 64) = 4096 bytes = 4 KB.

If 1 pixel / bit is used to store the given binary image, then

memory storage =
8

4096
= 512 bytes.

If Run Length Encoding (RLE) is used, then memory storage

for  = 16 bytes.

, % saving in memory space if RLE is used = % S =








 

32

324096
  100 = 127 %. This shows the effectiveness

of the run length code algorithm.

8. CONCLUSIONS

A method of compressing the binary images was developed.

A GUI in C / C++ was also developed for the same. It was

demonstrated that run length encoding is one of the efficient

method of compressing the binary images. Of course, it has

got some drawbacks. Run-Length Encoding, or RLE thus, is

a technique used to reduce the size of a repeating string of

characters. This repeating string is called a run, typically RLE

encodes a run of symbols into two bytes, a count and a

symbol. RLE can thus compress any type of data regardless of

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012

5

its information content, but the content of data to be

compressed affects the compression ratio. RLE cannot

achieve high compression ratios compared to other

compression methods, but it is easy to implement and is quick

to execute. But, some times, the RLE method will not be

successful (chess board, an image having alternate zeros &

ones) & often it depends on the type of the bit pattern of zeros

& ones in the binary image. Thus, run-length encoding is

supported by most bitmap file formats such as JPEG, TIFF,

BMP and PCX. The algorithm is applied on a real digital

image & its effectiveness is obtained, which can be seen from

the simulation results.

9. REFERENCES

[1] Craig J, Introduction to Robotics : Mechanics,

Dynamics & Control, Addison Wessely, USA, 1986.

[2] Robert, J. Schilling, Fundamentals of Robotics - Analysis

and Control, PHI, New Delhi.

[3] Klafter, Thomas and Negin, Robotic Engineering, PHI,

New Delhi.

[4] Fu, Gonzalez and Lee, Robotics: Control, Sensing,

Vision and Intelligence, McGraw Hill.

[5] Groover, Weiss, Nagel and Odrey, Industrial Robotics,

McGraw Hill.

[6] Ranky, P. G., C. Y. Ho, Robot Modeling, Control &

Applications, IFS Publishers, Springer, UK.

[7] Crane, Joseph Duffy, Kinematic Analysis of Robotic

Manipulators, Cambridge Press, UK.

[8] Manjunath, T.C., Fundamentals of Robotics, Fourth edn.,

Nandu Publishers, Mumbai, 2005.

[9] Manjunath, T.C., Fast Track to Robotics, Second edn.,

Nandu Publishers, Mumbai, 2005.

[10] Dhananjay K Teckedath, Image Processing, Third edn.,

Nandu Publishers, Mumbai, 2006.

[11] Gonzalvez and Woods, Digital Image Processing,

Addison Wesseley Publishers.

[12] Anil K Jain, Digital Image Processing, Prentice Hall,

Englewood Cliffs, New Jersey, USA.

[13] http://www.wikipedia.org

[14] Michael Dipperstein, Run Length Encoding (RLE)

Discussion and Implementation.

[15] Amir Said and William A. Pearlman, “An Image

Multiresolution Representation for Lossless and Lossy

Image Compression, IEEE Trans. on Image Processing,

vol. 5, pp. 1303-1310, Sept. 1996.

[16] Armando Manduca and Amir Said, “Wavelet

compression of medical images with set partitioning in

hierarchical trees,” Proc. of the SPIE Symposium on

Medical Imaging, Cambridge, MA, Mar. 1996.

[17] Skodras, A., Christopoulos, C., Ebrahimi, T. “The JPEG

2000 still image compression standard”, IEEE Signal

Processing Magazine, vol. 18, Issue 5, pp. 36 – 58, Sep.

2001.

[18] Majid Rabbani, Rajan Joshi, “An overview of the JPEG

2000 still image compression standard”, Elsevier‟s

Signal Processing: Image Communication, Vol. 17, Issue

1, pp. 3 – 48, Jan. 2002.

