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ABSTRACT 

Object ranking is a popular retrieval task that is concerned 

with the ranking of objects in context of a given user query. In 

relational databases, tuples are ranked using an aggregate 

score function on their attribute values. Spatial databases 

manage large collections of geographic entities, where 

ranking is often associated to nearest neighbor (NN) retrieval. 

A spatial preference query ranks objects based on the quality 

of features in their spatial neighborhood. For example, using a 

real estate agency database of flats for lease, a customer may 

want to rank the flats with respect to the appropriateness of 

their location, defined after aggregating the qualities of other 

features (e.g., restaurants, hospital etc.) within their spatial 

neighborhood. A neighborhood concept can be specified by 

the user via different functions. It can be an explicit circular 

region within a given distance from the object (range score 

function) or a region obtained by assigning higher weights to 

the features based on their proximity to the object (influence 

score function). A wide range of location based applications 

rely upon spatial preference queries. One of the existing 

strategies for processing the spatial preference query is brute 

force, which is not quite adaptable since it is computationally 

inefficient and it is worthy only for small data inputs. In the 

proposed system, indexing techniques and query processing 

algorithms are presented for efficient processing of the top-k 

spatial preference queries.  
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1. INTRODUCTION 
Spatial databases store data that is related to objects in space. 

In addition to spatial data it may contain non-spatial 

information. A top-k spatial preference query return ranked 

set of k best data objects based on the quality of feature 

objects in their spatial neighborhood. Quality may be 

subjective and query parametric.  

There are two basic ways for ranking objects-spatial ranking 

and non-spatial ranking. Spatial ranking orders the objects 

according to their distance from a reference point whereas in 

non-spatial ranking objects are ordered by an aggregate 

function on their non-spatial values. A spatial preference 

query combines both spatial and non-spatial ranking. 

Fig 1 illustrates three locations (p1, p2, p3) of user interest and 

two feature sets (v and t) which are within the spatial 

neighborhood of the location. Feature points are labeled with 

quality values which are obtained from rating providers. The 

qualities are normalized to values in [0, 1]. 

 

 

Fig: 1 Spatial area containing data and feature objects 

Consider an example. A user wishes to retrieve the top-k flats 

from a spatial database maintained by a real estate agency, 

i.e., the user wants to retrieve the top-k flats which are near-to 

a high quality restaurant and a high quality hospital. The 

spatial neighborhood can be specified by the user to restrict 

the distance of the eligible feature objects (in the figure 

depicted as a range around each hotel). Thus, if the user wants 

to rank the flats based on the score of t (let it be restaurants), 

the top-1 flat is p3 (0.8) whose score 0.8 is determined by t4. 

However, if the user wants to rank the flats based on v (let it 

be cafes), the top-1 flat is p1 (0.9) determined by v2. Finally, if 

the user is interested in restaurants and cafes (e.g. summing 

the scores), the top-1 flat is p2 (1.2). 

 In general, the score of a location p is obtained by 

aggregating the maximum quality of each feature in the 

spatial neighborhood of p. The semantics of the aggregate 

function is relevant to the user‟s query. The SUM function 

attempts to balance the overall qualities of all features. The 

MIN function that the top result has reasonably high qualities 

in all features. The MAX function, is used to optimize the 

quality in a particular feature, but not necessarily all of them. 

Top-k spatial preference queries comprise a useful tool for a 

wide range of location based applications. But, processing this 

query is quite complex. Because it may require computing the 

scores of all data objects and select the top-k. This method 

seems to be expensive in terms of large input data sets. The 

proposed system aim at minimizing the i/o accesses to the 

data and feature objects while being also computationally 

efficient. To effectively prune the search space, the technique 

specified in the proposed system compute the upper score 

bounds for the objects indexed by spatial partitioning access 

methods. 

It is not always possible to use multidimensional indexes for 

top-k retrieval. First, such indexes break down in high-

dimensional spaces[10]. Second, top-k queries may involve an 

arbitrary set of user-specified attributes (e.g., size and price) 

from possible ones (e.g., size, price, distance to the beach, 

number of bedrooms, floor, etc.) and indexes may not be 

available for all possible attribute combinations (i.e., they are 

too expensive to create and maintain). Third, information for 
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different rankings to be combined (i.e., for different attributes) 

could appear in different databases (in a distributed database 

scenario) and unified indexes may not exist for them. 

Solutions for top-k queries [2], [8] focus on the efficient 

merging of object rankings that may arrive from different 

(distributed) sources. Their motivation is to minimize the 

number of accesses to the input rankings until the objects with 

the top-k aggregate scores have been identified. To achieve 

this, upper and lower bounds for the objects seen so far are 

maintained while scanning the sorted lists. 

2. BACKROUND KNOWLEDGE 
Object ranking (ordering) is a popular retrieval task in various 

applications. The tuples in relational databases are ordered 

using an aggregate function on their attribute values. Consider 

a real estate agency database maintaining information 

regarding flats available for rent. A customer wishes to view 

the top ten flats with the largest sizes and lowest prices. Here, 

the score of each flat is expressed by the sum of two 

attributes: size and price. Ranking (ordering) in spatial 

databases is often associated to nearest neighbor (NN) 

retrieval. NN query returns the set of nearest objects to a 

given query location that qualify a condition(e.g., restaurants). 

If the set of interesting objects is indexed using an R-tree [3], 

then the index can be traversed in a branch and bound fashion 

to obtain the answer [4]. 

2.1 Spatial Query Evaluation on R-trees 
Several approaches have been proposed for ranking spatial 

data. In order to handle spatial data efficiently, an effective 

indexing mechanism is required. One of the most popular 

spatial access methods is the R-tree [3] which indexes 

minimum bounding rectangles (MBRs) of spatial objects. 

 Fig 2 R-tree index structure 

Fig 2 shows a set of interesting points D= {p1…p8} 

indexed using an R-tree. A spatial range query returns the 

objects in D that intersect the given query region W. For 

example, consider a range query that asks for all objects 

within the shaded area in Fig. 2. Starting from the root of the 

tree, the query is processed by recursively following entries, 

having MBRs that intersect the query region. For instance, e1 

does not intersect the query region, thus the subtree pointed 

by e1 cannot contain any query result. In contrast, e2 is 

followed by the algorithm and the points in the corresponding 

node are examined recursively to find the query result p7.   

A variant of an R-tree is the aR-tree [14]. Here each non-

leaf entry develops an aggregate value (MAX) for some 

attribute measures in its subtree. For instance, a MAX aR-tree 

can be constructed over the point set given in Fig 2, if the 

entries e1, e2, e3 contain the maximum measure values of sets 

{p2, p3}, {p1, p8, p7}, {p4, p5, p6}, respectively. Assume that 

the measure values of p4, p5, p6 are 0.2, 0.1, and 0.4, 

respectively. Then the aggregate measure augmented in e3 

would be max {0.2, 0.1, 0.4} =0.4. 

Given a feature data set F and a multidimensional region 

R, the range top-k query selects the tuples (from F) within the 

region R and returns only those with the k highest qualities. 

Hong et al. [11] indexed the data set by a MAX aR-tree and 

developed an efficient tree traversal algorithm to answer the 

query. Instead of finding the best k qualities from F in a 

specified region, range score query considers multiple spatial 

regions based on the points from the object data set D, and 

attempts to find out the best k regions (based on scores 

derived from multiple feature data sets Fc). 

 

2.2 Feature Based Spatial Queries 
Xia et al. [5] solved the problem of finding top-k sites 

(e.g., restaurants) based on their influence on feature points. 

As an example, Fig.3a shows a set of sites  (white   points), a  

set  of  features (black  points   with weights), such  that  each  

line  links  a  feature point   to  its nearest site. The influence 

of a site pi is defined by the sum of weights of feature points 

having pi as their closest site. For instance, the score of p1 is 

0.9 + 0.5 = 1.4. Similarly, the scores of p2 and p3 are 1.5 and 

1.2, respectively. Hence, p2 is returned as the top-1 influential 

site. 

 

 
 

Fig 3 Influential sites and optimal location queries           

(a) Top-k influential (b) Max-Influence (c) Min-distance 

 

Related to top-k influential sites query are the optimal 

location queries in [6], [7]. The goal is to find the location in 

space (not chosen from a specific set of sites) that minimizes 

an objective function. In Figs. 3b and 3c, feature points   and   

existing   sites are shown as black  and   gray points,  

respectively. Assume that all feature points have the same   

quality.  The  maximum  influence  optimal  location query 

finds  the location  (to insert  to the existing  set of sites)  with   

the  maximum  influence, whereas the minimum distance 

optimal location  query searches  for   the   location   that   

minimizes  the   average distance from  each  feature point   to  

its  nearest site.  The optimal locations   for  both   queries are  

marked as  white points  in Figs. 3b and  3c, respectively. 

The techniques proposed in [5], [6], [7] are specific to 

the particular query types and cannot be extended for top-k 

spatial preference queries. Also, they deal with only a single-

feature data set  

 

3.  PRELIMINARIES 
Let Fc be a feature data set, in  which  each  feature object s ε 

Fc is associated with a quality w(s) and a spatial point. It is 

assumed that the domain of w(s) is in the interval [0, 1]. As an 

example, the quality w(s) of a restaurant s can be obtained 

from a ratings provider. 
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Let D be an object data set, where each object p ε D is a 

spatial point. In other words, D is the set of interesting points 

(e.g., hotel locations) considered by the user. 

Given   an  object  data   set  D  and   m  feature  data   

sets F1, F2, ... , Fm , the top-k spatial preference query retrieves 

the k points  in D with  the  highest score.  Here, the score of 

an object point p ε D is defined as  

 

 
where AGG is an  aggregate function and πθ

c(p) is the (cth) 

component score of  p with   respect to the neighborhood 

condition θ and  the (cth) feature data  set Fc. Typical 

examples of the aggregate function AGG are SUM, MIN, 

MAX. 

The component score function, πc
θ(p) taken is the range 

score function. The range score, πc
rng (p) is taken as the 

maximum quality w(s) of points s ε Fc that are within a given 

parameter distance ε from p, or 0 if no such point exists. 

 

 
The object data set D is indexed by an R-tree and each 

feature data set Fc is indexed using separate aR-tree. The 

reason for indexing different feature data sets by separate aR-

trees is that: 1) A user queries for only few features (e.g., 

restaurants and cafes) out of all possible features (e.g., 

restaurants, cafes, hospital, market, etc.) and 2) Different 

users may consider different subsets of features. 

  

4.  PROPOSED APPROACH 

4.1 Query Processing 
A brute force approach for processing the top-k spatial 

preference query computes the score of every point p ε D in 

order to obtain the query results. Brute-force approach is 

expensive as it examines all objects in D and computes their   

component scores. The algorithm proposed here can 

significantly reduce the number of objects to be examined. 

The  key  idea  is  to  compute,  for non-leaf  entries  e in the 

object tree D, an upper bound T(e)  of the score  for any point  

p in the subtree of e. If T < γ, then need not access the subtree 

of e, thus numerous score computations can be saved. 
Algorithm1 is a pseudocode of the proposed algorithm 

(branch and bound BB), based on this idea. BB is called with 

N being the root node of D. If N is a nonleaf node, Lines 3-5 

compute the scores T (e) for nonleaf  entries  e concurrently.   

T(e) is an upper bound  score   for   any   point   in   the   

subtree  of  e. With the component scores Tc(e) known so far, 

derive   T+(e),  an  upper bound of T(e).  If T+ (e) ≤ γ, then the 

subtree of e cannot contain better results than those in Wk and 

it is removed from the set V. In order to btain points with high 

scores early, sort  the  entries  in  descending order of   T(e)   

before invoking  the   above   procedure recursively on the 

child  nodes  pointed by the entries  in V . If N is a leaf node, 

compute the scores for all points of N concurrently and then 

update the set Wk of the top-k results. Since both Wk and γ are 

global variables, their values are updated during recursive call 

of the BB. 

 

Algorithm1.Branch-and-Bound Algorithm 

     Wk: = new min-heap of size k (initially empty); 

- kth score  in Wk 

      γ :=0 

 

     algorithm BB(Node N ) 

1: V :={e|e ε N}; 

2: If N is nonleaf  then 

3:  for c: = 1 to m do 

4:      compute Tc(e) for all e ε V  concurrently; 

5:       remove entries e in V such that T+ (e) ≤ γ; 

6:   sort entries e ε V in descending order of T (e); 

7:   for each entry e ε V such that T(e) > γ  do 

8:       read the child node N ´    pointed by e; 

9:       BB (N‟); 

10: else 

11:  for c: = 1 to m do 

12:      compute πc(e) for all e ε V concurrently; 

13:       remove entries e in V such that   π+ (e) ≤γ; 

14:  update Wk (and γ) by entries in V 

 

Upper bound scores Tc(e) of nonleaf entries (within the 

same node N) can be computed concurrently (at Line 4). 

Upper bound score is to be computed such that 1) the bounds 

are computed with low I/O cost, and 2) the bounds are 

reasonably tight, in order to facilitate effective pruning.To 

achieve this, only level-1 entries (i.e., lowest level nonleaf 

entries) in Fc are utilized for deriving upper bound scores 

because: 1) there are much fewer level-1 entries than leaf 

entries (i.e., points), and 2) high-level entries in Fc cannot 

provide tight bounds.  

 

5.   IMPLEMENTATION DETAILS 
The proposed algorithm was implemented in Java. The object 

data set is indexed using an R-tree. Two feature data sets were 

taken. Each of them indexed using separate aR-tree. For each 

data set the coordinates of points are random values uniformly 

and independently generated.  The domain of the quality 

attribute is normalized to the unit interval [0, 1]. The 

aggregate function used is SUM. 

 

6. CONCLUSION 

Top-k spatial preference queries, provides a novel type of 

ranking for spatial objects based on qualities of features in 

their neighborhood.  But processing these queries is quite 

complex. The brute force approach computes the scores of 

every data object by querying on feature data sets. This 

method is expensive for large input data sets. The alternative 

technique, branch and bound algorithm, aims at minimizing 

the i/o accesses to the object set. It derives upper bound scores 

for nonleaf entries in the object tree, and prunes those that 

cannot lead to better results. BB is scalable to large data sets 

and it is a robust algorithm with respect to various parameters.   
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