
Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012 

6 

Cognitive Sorting  

 
Pankaj Kumar G 

Dept. of Computer Science & Engineering 
FISAT,Angamaly 
Cochin,Kerala. 

 

Prasad J C 

Dept. of Computer Science & Engineering 
FISAT, Angamaly 
Cochin, Kerala. 

ABSTRACT 
Sorting or ordering a list of items is one of the tasks that occur 

frequently in majority of computer programs. In our work we 

incorporated certain aspects of human cognition into sorting 

algorithms that will improve their performance. This paper 

presents two new variants of Selection sort. The first 

algorithm has a time complexity of O(1) in the best case. The 

second algorithm outperforms Selection sort and its variants 

when sorting a list of items that has a large number of 

duplicates present in it.  

Keywords 
Algorithms, Bingo Sort, Cognition, Selection Sort, Time 

Complexity. 

1. INTRODUCTION 
Sorting is any process that involves arranging of items into   

different sets or in some specific order. Sorting of items is not 

a problem that is specific to computer science. Sorting had 

always been an integral part in human life from an early 

period. The sorting process that occurs in other fields involves 

sorting of sediments by running water, extraction of gold from 

ore etc. However the underlying principles involved in 

performing the sorting are not always essentially the same. 

Sorting algorithms have their importance in undergraduate 

classes to complex engineering problems. For many of the 

applications the performance is mainly determined by the 

underlying sorting algorithms. The earliest works on sorting 

algorithms can be traced back from 1956 [1][2] and still 

researchers are trying to optimize and develop new algorithms 

that can outperform the traditional ones[3][4]. 

A man provided with paper, pencil, and rubber, and subject to 

strict discipline, is in effect a universal machine [5]. Humans 

have the remarkable ability to dynamically adapt and improve   

methods used to solve problems depending on the situation 

[6]. If we do not impose strict constraints and ask a human to 

perform some task, he will try to perform the task efficiently 

by adapting to the situations. The improvements presented in 

this paper are inspired by human cognition. 

2. BACKGROUND 
The major sorting algorithms used today are bubble sort, 

insertion sort, selection sort, quick sort, merge sort etc [7][8].  

Bubble sort is a simple sorting algorithm that starts by 

comparing two elements in the start and performs swapping if 

the condition is evaluated as false. It then proceeds by 

comparing two adjacent elements till the end and the process 

is repeated till no swapping occurs. 

Selection sort is a simple sorting algorithm that has 

advantages over other algorithms in certain situations. 

Selection sort proceeds by finding the minimum element in 

the list and moves the element to the correct position by 

performing a swap operation. 

Insertion sort is efficient in sorting small lists or list that has a 

high degree of sorted data present in them. It proceeds by 

selecting each item in the list and inserting them into their 

correct position.  

Merge sort creates a number of sub lists of the given input list 

having one or two elements by a process of continuous 

partitioning. It then proceeds by sorting sub-lists by 

comparison operation. It then takes advantage of these sorted 

sub lists by merging them to form the final sorted array. 

Quick sort uses the divide and conquer approach. It first 

selects a pivot element and places all elements having value 

lesser than the pivot element to one side and all elements 

having value larger than it to the other side. Then it 

recursively performs the operation on the newly formed sub-

lists till all the elements are sorted. 

There are a number of sorting algorithms and their variants 

that is not covered under the scope of this paper [8]. Major 

variants of sorting algorithms include cocktail sort [10], bingo 

sort, shell sort [11] and enhanced shell sort [12]. 

Cocktail sort is a variant of bubble sort that performs sorting 

in both directions. The advantage of this bi-directional variant 

is that it effectively deals with the turtles present in the input. 

Bingo sort is a variant of selection sort that has two passes. In 

the first pass it finds the minimum element. In the next pass it 

moves all elements equivalent to the minimum element and 

moves them to their correct position. Bingo sort is very 

efficient for sorting inputs containing large number of 

duplicate elements. 

3. COGNITIVE SELECTION SORT 

3.1 Inspiration from Human Cognition 
Humans when asked to perform sorting using the concept of 

selection sort on a list of numbers using a paper and pencil can 

outperform a computer that performs algorithmic 

implementation of selection sort, if computers and humans 

take same time to perform same operation. Our superiority 

here arises due to our ability to make use of already known 

facts. Consider an example in which a person is performing 

sorting on an array in which the element a[i+p] is the smallest 

element and element a[i] is the smallest element occurring  

before a[i+p] where i and p are positive integers. After 

moving a[i+p] to its correct position we set the smallest 

element as a[i] and proceed to look for the smallest element 

from the position i+p because we already know that the 

smallest element between 0 and i+p is a[i].Hence there  is no 

need to check for the minimum element in that range. 



Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012 

7 

3.2 Procedure 
 Insert the elements into the array and call the function 

cognitive selection sort with the array and size as 

parameters. 

 Find the first increasing sequence in the array and store 

the positions of elements in the sequence in a new array 

b. 

 Move the last element in the sequence to its correct place 

by swapping, if the length of new array is same as the 

number of elements algorithm have to sort at that point 

exit from the function. 

 Find the new increasing sequence and modify the new 

array and return to the previous step till the program 

exits. 

3.3 Pseudocode 
function cognitive selection sort (array, size) 

1 var b(size),  i, j, y, temp 

2 y:=-1 

3 i:=0 

4 while i<size do 

5      b(++y):=i 

6      b(y):=i+1; 

7      while y>=0 do 

8            j:=b(y+1) 

9            while j<size do 

10                 if a(j)>=a(b(y)) then 

11                     b(++y):=j 

12                end if 

13            end while     

14            if x-1 == y 

15                 return array 

16            end if 

17            temp:=a(x-1) 

18            a(x-1):=a(b(y)) 

19            a(b(y)):=temp 

20            y:=y-1 

21            x:=x-1 

22       end while 

23 end while 

3.4 Analysis 
The algorithm works by finding the first increasing sequence 

in the input and stores the positions of elements in the 

sequence in a new array. The first element in the sequence 

will always be the first element in the input array. It then 

checks whether the number of elements in the new array is 

same as the number of elements to be sorted. If the condition 

is evaluated to true the algorithm returns from the function 

otherwise it moves the last element in the sequence to its 

correct place by performing a swap and removes the last 

element from the new array. After each swap the number of 

elements to be sorted gets reduced by one. It tries to find the 

first sequence in the modified array and continues till the 

entire input is sorted. The algorithm can also be called as first 

sequence sorting since the sorting algorithm works by 

modifying the first sequence present in the input. To find the 

first sequence in the modified array we need only to extend 

the previous sequence with last element removed. Calculating 

the first increasing sequence for the modified array from the 

beginning will waste CPU cycles. Since the algorithm also 

makes uses information of already known minimal elements 

and avoids unnecessary calculations it can also be called as 

selection sort using dynamic programming.   

The algorithm performs no swapping operation if the given 

input is already sorted. If the given input is in descending 

order the algorithm performs n/2 swapping operations. In 

general depending on the input the number of swaps 

performed can vary from 0 to n-1.The reason for performing 

no swap operation  when the given input is already sorted is 

because the length of the first sequence will be same as 

number of elements to be sorted. The reason for taking only 

n/2 swap operations in case of an input in descending order is 

because for each swap the elements get ordered in the 

begining. Consider the given sequence. 

10 9 8 7 6 5 4 3 2 1 

After the first swap the sequence becomes as shown below. 

1 9 8 7 6 5 4 3 2 10 

After the second iteration the sequence becomes as shown 

below. 

1 2 8 7 6 5 4 3 9 10 

The worst case for the algorithm will be an algorithm similar 

to the one shown below. 

10 1 2 3 4 5 6 7 8 9 

In a sequence similar to the above one the algorithm has to 

perform n-1 swaps. If the elements in the array is already 

sorted from second to last position and if the first element 

have the largest value it can nullify any advantage present in 

the input data. 

4. COGNITIVE BINGO SORT 

4.1 Inspiration from Human Cognition 
Humans when asked to perform sorting using the concept of 

bingo sort on a list of numbers written in paper using a pencil 

and eraser can outperform a computer performing an 

algorithmic implementation like the previous case. Humans 

are capable of performing multiple tracking operations 

simultaneously. We will try to find the maximum and 

minimum element in the input at the same time. In the next 

step we will try to move all the occurrence of maximum and 

minimum element to their correct places. While performing 

this we will also try to find the elements with minimum and 

maximum values for the usage in next step. Consider an 

example in which a person is performing sorting on an array. 

In the first step he finds the maximum and minimum element 

let the elements be min1 and max1.On the next pass he will 

try to move all the elements with value min1 and max1 to 

their current position. While performing this he can also 

search for min2 and max2 where min2 and max2 are the 

minimum and maximum elements in the array respectively if 

min1 and max1 are removed from the array. 

4.2 Procedure 
 Insert the elements into the array and call the function 

cognitive bingo sort with passing the array and size as its 

parameters. 

 Find the smallest and largest element. 

 Move all the elements with minimum and maximum 

value to their correct place and while performing this 

find the next smallest and largest element. 

 Repeat the above step till the array is fully sorted. 



Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012 

8 

4.3 Pseudocode 
function cognitive bingo sort (array,size) 

1 var i,  j,  min, max, cmin, cmax, temp 

2 cmin:=a(0) 

3 cmax:=a(0) 

4 i:=1 

5 while i<size do 

6      if a(i)>cmax then 

7           cmax:=a(i) 

8      end if 

9      if a(i)<cmin then 

10           cmin:=a(i) 

11     end if 

12 end while 

13 i:=0 

14 while i<size do 

15      min:=cmin 

16      max:=cmax 

17      cmin:=max 

18      max:=cmin 

19      j:=i 

20      while j<size do 

21           if a(j)==max then 

22                temp:=a(x-1) 

23                a(x-1):=a(j) 

24                a(j):=temp 

25                size:=size-1        

26           else if a(j)==min then 

27                temp:=a(i) 

28                a(i):=a(j) 

29                a(j):=temp 

30                i:=i+1 

31                j:=j+1           

32           else if a(j)>cmax then 

33                cmax:=a(j) 

34                j:=j+1  

35           else if a(j)<cmin then 

36                cmin:=a(j) 

37                j:=j+1 

38           end if 

39     end while 

40 end while 

41 return array 

4.4 Analysis 
The algorithm works by finding the minimum element and 

maximum element before entering into the main part. It then 

reads each element from the beginning of the array and checks 

whether it is equivalent to the minimum element or maximum 

element. If it is equivalent to the minimum element or 

maximum element the element is moved to their correct 

position via swapping and checking is continued. The 

algorithm do not consider the elements that have been moved 

to their correct positions in any future operations. If the 

element that is under consideration is not the minimum 

element or maximum element algorithm checks whether it is 

the minimum element or maximum element from the elements 

that are not swapped. The number of swap operations 

performed by the algorithm in all case remains same. 

5. EXPERIMENTATION 
In order to evaluate the efficiency of the proposed algorithms 

were implemented in C. The program was compiled using 

GCC 4.4 and the program was run with various set of input. 

Since the performance of CSS varies with the sequence 

present in it we considered seven inputs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

Figure 1. Results obtained on input with no duplicates

A B C D E F G H I

0

10

20

30

40

50

60

SS

CSS

BS

CBS



Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012 

9 

Figure 2.Result obtained on inputs with duplicates.

 

Table 1. Details about the input test cases. 

Case Description 

A Input is already sorted 

B Input is in descending order 

C Elements in the odd position of the input 

constitutes an ascending  sequence and 

elements in the even position constitutes a 

descending  sequence and every element in the 

ascending sequence is smaller than elements in 

other sequence  

D Elements are ordered as in case C but every 

element in the ascending sequence is larger 

than elements in other sequence 

E The first half of the input is in ascending order 

and the second half is in descending order and 

every element in the ascending sequence is 

smaller than elements in other sequence 

F Elements are ordered as in case E but every 

element in the ascending sequence is larger 

than elements in other sequence 

G The first half of the input is in descending 

order and the second half is in ascending order 

and every element in the ascending sequence 

is smaller than elements in other sequence 

H Elements are ordered as in case G but every 

element in the ascending sequence is larger 

than elements in other sequence 

I Worst case for CSS, 

For testing the efficiency of CBS we considered the test cases 

mentioned in Table 1 with 10 percentage duplicates. The 

number of elements in the test cases was 100,000. 

6. RESULT ANALYSIS 
The results obtained after running experiments are shown in 

the graphs. The X-axis of the graph shows the running time 

taken by the various implementations. The Y-axis contains 

various algorithms that were considered. 

 

From the graph we can see that in both cases CSS offers better 

performance when the input is completely sorted. The 

performance of CSS degrades to that of normal selection sort 

only in the worst case scenarios. The reason for the better 

performance of CSS is because it can take advantages of the 

ordering present in the inputs. 

Selection sort offers a consistent performance in all the cases. 

Selection sort cannot take any advantage of the patterns 

inherent in the inputs. Selection sort shows the worst 

performance in all the cases. Bingo sort shows the worst 

performance in case where input does not contain any 

duplicates. It took almost twice the time taken by the selection 

sort in its worst case. But in case of the inputs with larger 

number of duplicate elements bingo sort showed better 

performance than CSS and SS. 

Performance of CBS was similar to that of selection sort in the 

first case where input had no duplicate elements. In the second 

case CBS outperformed all other algorithms. The time taken 

by CBS in the second case was nearly half of the time taken 

by bingo sort. 

7. CONCLUSION  
In this paper two new sorting algorithms were presented. CSS 

has a time complexity of O(1)  in the best case. In the worst 

and average case its time complexity is same as selection sort. 

CSS outperforms selection sort in majority of cases. 

 

CBS offers better performance by performing multiple 

operations in a single iteration. It is the fastest among the four 

algorithms for sorting a list containing high concentration of 

duplicate elements. 

 

These proposed algorithms were implemented and 

experiments were conducted to measure their efficiency in 

varying environments. 

8. ACKNOWLEDGMENTS 
We would like to thank Computer Society of India for 

financially supporting this research project under minor 

research grant.  

A B C D E F G H I

0

5

10

15

20

25

30

35

SS

CSS

BS

CBS



Special Issue of International Journal of Computer Applications (0975 – 8887)  

on Advanced Computing and Communication Technologies for HPC Applications - ACCTHPCA, June 2012 

10 

9. REFERENCES 
[1] Demuth, H. 1956. Electronic Data Sorting. PhD thesis, 

Stanford University. 

[2] Astrachanm O.,2003. Bubble Sort: An Archaeological 

Algorithmic Analysis, Duk University. 

[3] Bender, M. A., Farach-Colton, M., and Mosteiro M. 

2006. Insertion Sort is O(n log n). Theory of Computing 

Systems Volume 39, Number 3. 

[4] Jehad Alnihoud and Rami Mansi. An Enhancement of 

Major Sorting Algorithms. The International Arab 

Journal of Information Technology, Vol. 7, No. 1, 

January 2010. 

[5] Turing, A. M., 1948, Intelligent machinery. 

[6] Mańdziuk, J ,"Towards Cognitively Plausible Game 

Playing Systems" , IEEE Computational Intelligence 

Magazine vol.6 no.4 pp. 38-51, 2011. 

[7] Donald Knuth. The Art of Computer Programming, 

Volume 3: Sorting and Searching, Third Edition. 

Addison-Wesley, 1997. ISBN 0-201-89685-0.  

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. 

Rivest, and Clifford Stein.Introduction to Algorithms, 

Second Edition. MIT Press and McGraw-Hill, 2001. 

ISBN 0-262-03293-7.  

[9] Wikipedia -The free encyclopedia [online] Available: 

http://en.wikipedia.org/wiki/Sorting_ algorithm. 

[10]  Nyhoff L., An Introduction to Data Structures,  Nyhoff 

Publishers, Amsterdam, 2005. 

[11] Shahzad B. and Afzal M., “Enhanced Shell Sorting 

Algorithm,” Computer Journal of Enformatika, vol. 21, 

no. 6, pp. 66-70, 2007 

[12] Shell D., “A High Speed Sorting Procedure,”Computer 

Journal of Communications of theACM, vol. 2, no. 7, pp. 

30-32, 1959. 

 

 

 


