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ABSTRACT 

The symbiotic nitrogen fixing metabolic capacity is known to 

present in several prokaryotic bacterium across taxonomic 

groups.  Experimental detection of nitrogen fixation in 

microbes requires species-specific environment, making it 

complex to achieve a widespread survey of this attribute. 

Rhizobia legume symbiosis is an attractive research field 

because of its importance in agriculture. Rhizobia interact 

with host legume plants in soil to develop root nodules, which 

convert atmospheric nitrogen into ammonia, a form of 

nitrogen used by plants as nutrients. Experimental 

identification of nitrogen fixing proteins (nifu) is labor- as 

well as time-intensive. In this work, we present a Support 

Vector Machine (SVM) based method for the prediction of 

nifu and nifu-like proteins. The SVM models were trained 

PSI-BLAST derived PSSM matrices. The best classifiers are 

based on compositional properties as well as PSSM and yield 

an overall accuracy of 98.16%. This work will aid rapid and 

rational identification of nifu, expedite the pace of 

experimental characterization of novel nifu proteins and 

enhance our knowledge about role of Rhizobia –legume 

interaction. 
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1. INTRODUCTION 
Biological nitrogen fixation is the major route for the 

conversion of atmospheric nitrogen gas (N2) to ammonia [1]. 

However, this process is thought be limited to a small subset 

of prokaryotes named diazotrophs, which have been identified 

in diverse taxonomic groups [2]. This biochemical pathway is 

only manifested when species-specific metabolic and 

environmental conditions are met, thus making it difficult to 

develop a standard screen for detection of this biological 

reaction [3,4]. The complications in experimentally detecting 

nitrogen fixation may be a reason for the relatively low 

number and relatively sparse distribution of known 

diazotrophic species. 

All known diazotrophs contain at least one of the three closely 

related sub-types of nitrogenase: Nif, Vnf, and Anf. Despite 

differences in their metal content, these nitrogenase sub-types 

are structurally, mechanistically, and phylogenetically related. 

Their catalytic components include two distinct proteins: 

dinitrogenase (comprising the D and K component proteins) 

and dinitrogenase reductase (the H protein) [1,2]. The only 

known exception to this rule is the superoxide-dependent 

nitrogenase from Streptomyces thermoautotrophicus, whose 

protein sequence is unknown [5]. 

In the last few years, significant advances have been made in 

the functional assignment of individual gene products 

implicated in the biosynthesis of FeMoco in Azotobacter 

vinelandii [6,7,8]. The current biosynthetic system involves a 

conglomerate of proteins that assembles the individual 

apparatus, iron and sulfur, into Fe-S cluster modules for 

successive change into precursors of higher nuclearity, and 

addition of the heteroatom (Mo) and organic component 

(homocitrate). The creation of FeMoco is completed in a so-

called scaffold protein, NifEN, and shuttled to the concluding 

target by cluster carrier proteins. Interestingly, the scaffold 

NifEN has amino acid sequence similarity to NifDK [9].  

The current growth of genomic databases now including 

nearly 2,000 completed microbial genomes motivated us to 

re-evaluate the diversity of species capable of nitrogen 

fixation. Identification of co-occurrence of nitrogen fixing 

genes in species known to fix nitrogen enabled us to identify 

novel potential diazotrophs based on their genetic makeup. 

Our findings expand the expected occurrence of nitrogen 

fixation and the biodiversity of diazotrophs. In addition we 

have identified a large number of phylogenetically diverse 

nitrogenase-proteins that may represent ancestral forms of the 

enzyme and may have evolved to perform other metabolic 

functions. 

 

2. MATERIALS AND METHODS 

2.1 Datasets for SVM training 
Different keywords like ‘nifu’, ‘symbiosis’ with the limiting 

filter of taxonomy as prokaryotes were used to compile a raw 

pool of nifu sequences from 

UniProtKB(http://www.uniprot.org/uniprot). Proteins with 

known intracellular locations, such as nucleus, cytoplasm, 

mitochondria, endoplasmic reticulum etc. were collected and 

assigned to the non-nifu set. Both the sets were filtered for 

hypothetical proteins and protein fragments and the 

redundancy were removed. Hereupon, we had two sets 

containing full-length and well-annotated sequences of 3224 

nifu proteins and 3224 non-nifu sequences. 

 

2.2 Benchmark dataset for testing 
In order to examine the unbiased prediction efficiency of our 

best SVM models, we tested their performance on 

independent datasets not used in training or testing cycles. 

While one test dataset consisted of 599 nifu, the other had 310 

non-nifu negative dataset. 

 

http://www.uniprot.org/uniprot
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2.3 PSSM (Position Specific Scoring 

Matrices) 
A PSSM is a Position Specific Scoring Matrix and is a 

commonly used for representing the position of biological 

sequence. Biological sequences are converted into machine 

readable form by generating PSSM. This method is 

commonly used for predicting the sequence position. PSI-

BLAST (Position Specific Iterative –BLAST) derives a 

Position Specific Scoring Matrix (PSSM) or profile from the 

multiple sequence alignment of sequences detected above a 

given score threshold using protein-protein BLAST. This 

PSSM is used to further search the database for new matches, 

and is updated for subsequent iterations with these newly 

detected sequences. Thus PSI-BLAST provides a means of 

detecting distant relationships between proteins. PSI-BLAST 

is one of the most powerful and popular homology search 

programs currently available. The position specific scoring 

matrices or profile it is used   in Protein Blast and   obtained 

amino acid substitution scores which is given separately for 

each position in a protein multiple sequence alignment. 

Alignment means extract a segment from each sequence, if  

sequence length is smaller than the other then add gap 

symbols to each segment to create equal length sequence and 

place one padded segment over the other. The PSSM is used 

to get numerical value, if the numerical value is high from the 

previous one then that is the better alignment from the 

previous ones. PSSM scores are normally positive or negative 

integers. Positive scores indicate that the given amino acid 

substitution occurs more frequently in the alignment than 

expected by chance. PSSMs are generated by using PSI-

BLAST, which finds similar protein sequences from the query 

sequences and then construct PSSM from the resulting 

alignment [5]. The dimensionality of the PSSM is 

multidimensional data, but here consider only one feature of 

PSSM.  

  

2.3.1 PSIBLAST Algorithm 
1. Perform initial alignment with BLAST using 

BLOSUM 62 substitution matrix. 

2. Construct a multiple alignment from hits. 

3. Prepare a position specific scoring matrix (PSSM). 

4. Use PSSM profile as the scoring matrix for a second 

BLAST (run against database). 

5. Repeat steps 2-4 until convergence. 

 

2.3.2 Constructing a Position Specific Scoring 

Matrix    (PSSM) 
Dimension of a PSSM: lq × 20, where lq is the length of the 

query protein. 

1. Run BLAST against the database (local alignment). 

2. Collect database sequence segments with E-value 

below threshold (default is 0.01). 

3. Remove similar sequences. 

 Remove sequence segments identical to a 

query segment. 

 Retain one copy for any rows that are >98% 

identical to one another. 

4. Construct the multiple alignment block M with the          

remaining segments (length M = lq)   

 Ignore pair wise alignment columns that 

involve gap characters inserted into the query. 

        5.    For each column C: 

a. Reduce M to MC (1 · C · query length) 

 Let R be the set of sequences with a 

residue in C. 

 Columns of MC are columns of M with 

all sequences in R. In other words, MC 

only contains those database sequences in 

R. Therefore, MC contains a subset of 

M’s columns and rows (see the figure 

below). 

b.  Compute weights for each sequence in R  

c. Compute Pi, the background frequency of 

residue i over MC. 

  Compute weighted frequency fi for each 

residue i. 

d.  Estimate the relative number of independent 

observations NC as the mean number of 

different residue including gap characters. 

e. Compute pseudo count gi for each residue i 

(expectation based on score gi matrix). 

 

                      (2.2.2.1) 

                         (2.2.2.2) 

Where the target frequencies are implicit in the substitution 

matrix, sij is the substitution matrix score for aligning each 

pair of amino acids i and j, and ¸u is a constant parameter for 

ungapped alignments. 

 

f. Compute Qi as the weighted sum of fi and gi. 
 

                                    (2.2.2.3) 

                                       (2.2.2.4) 

 Β=10(empirically)                           (2.2.2.5) 

2.3.3 Matrices Reported in a PSSM Output File 
The PSSM can be saved to a file by using the -Q switch of 

blastpgp. A PSSM file contains two matrices. The first one is 

the regular PSSM that contains the log-odds ratios rounded 

down to the nearest integer. This matrix is the one that is 

computed in the last PSIBLAST iteration. The second matrix 

is the weighted observed percentages rounded down to the 

nearest integer (i.e., 100 × fi values). 

 

2.3.4 Composition of Position specific Scoring 

Matrix (PSSM 400) 
For better accuracy and to get correct position of   amino acid 

convert the PSSM into PSSM 400 units. In PSSM 400, row 

contains 20 amino acids and 20 amino acids in column. Each 

and every element in this vector was divided by the length of 

sequence. The resultant matrix with 400 elements was used as 

input feature of SVM. In this work performance can be 

increased with more metrics using physiochemical properties 

and other amino acid compositions. But consider these 

properties we get more reliable results in PSSM and PSSM 

400.Therefore, PSSM 400 as input feature of our machine 

learning technique 

 

 2.4   SVMs and SVM
light

 
First pioneered by Vapnik in 1995, SVM is a supervised 

machine learning method which delivers state-of-the-art 

performance in recognition and discrimination of cryptic 

patterns in complex datasets [11]. SVM is used in conjunction 
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with kernel functions which implicitly map input data to high 

dimensional non-linear feature space. SVM then constructs a 

hyper plane separating the positive examples from the 

negative ones in the new space representation. To avoid over 

fitting, SVM chooses the Optimal Separating Hyper plane 

(OSH) that maximizes the margin i.e. the minimal distance 

between the hyper plane and the training examples [12]. The 

selected data points supporting the hyper plane are called 

support vectors. We implemented SVM using SVMlight 

package (http://svmlight.joachims.org) which allows us to 

choose a number of parameters and kernels (e.g. linear, 

polynomial, radial basis function, sigmoid or any user-defined 

kernel).  

In this study we used the RBF kernel. For detailed 

descriptions of SVM please refer [12]. In this work the 

positive class for building SVM models implies nifu proteins 

while the negative class signifies localization proteins. We 

performed training testing cycles using in-house shell and 

PERL scripts. We used RBF kernel to train and test our SVM 

models. The values of d, g and regularization parameter C 

were optimized on the training datasets by cross validation. 

The overall strategy was to choose the best parameters in a 

way so as to maximize accuracy along with nearly equal 

sensitivity and specificity, wherever possible. 

To evaluate the accuracy of SVM classifiers developed in 

cross validation cycles, we used the following four measures: 

1) Sensitivity: percentage of nifu protein sequences that are 

correctly predicted as nifu. 

2) Specificity: percentage of non-nifu protein sequences that 

are correctly predicted as non-nifu. 

3) Accuracy: percentage of correct predictions out of total 

number of predictions. 

4) Matthews correlation coefficient (MCC): a measure of both 

sensitivity and specificity, MCC= 0 indicates completely 

random prediction, while MCC= 1 indicates perfect 

prediction. 

 

 

 
 

 

 
      

 

 

 

 

3. RESULTS  

3.1 Performance of similarity-based 

searches 
Position-Specific Iterative-Basic Local Alignment Search 

Tool (PSI-BLAST) is usually the first method of choice for 

the functional annotation of proteins. We carried out the PSI-

BLAST analysis on the non-redundant positive dataset of nifu 

proteins in a manner like leave-one-out cross-validation (LOO 

CV), with the cut-off E-value (-e option of blastpgp) of 0.001 

and the number of iterations as 3. Each sequence was used as 

the query sequence once with the rest forming the target 

database, thus iterating, for each sequence. Herein, no 

significant hits were obtained for 2998 out of 3224 sequences, 

which signify that homology-based searches alone are not 

sufficient to identify these proteins. The brief flow chart of the 

prediction procedure implemented in nifu classification tool is 

show in Figure 1. 

 

3.2 PSSM profile based SVM classifiers 
Apart from encapsulating residue composition, the PSSM 

profiles capture useful information about conservation of 

residues at crucial positions within the protein sequence, 

because in evolution the amino acid residues with similar 

physio-chemical properties tend to be highly conserved due to 

selective pressure. PSSM profiles have been employed for 

training SVMs for a legion of classification problems, like 

prediction of cyclins [13], nucleic acid binding residues [14], 

protein subcellular localization [15] etc. For the model 

generated with PSSM profiles normalized using the logistic 

function (PSSM-a), we got a maximum accuracy of 98.16%.  

 

3.3 Performance on benchmarking datasets 
Table 1 lists the performance of the three classifiers on the 

independent positive and negative test datasets. This was 

assessed at the default thresholds obtained by cross-validation 

studies; however for practical purposes, the higher the scores, 

the higher is the confidence level of prediction. The 

remarkably fair accuracies of the three classifiers for both the 

datasets demonstrate its efficiency and justify its use for 

practical application. The values of d, g and regularization 

parameter C were optimized on the training datasets by cross 

validation using in-house shell and PERL script. This strategy 

helped to find the best parameters in a way so as to maximize 

the accuracy along with nearly equal sensitivity and 

specificity in Radial and polynomial kernel functions (Table 

2).  

 

4. DISCUSSION  
The positive dataset used in the study represents nifu from 29 

different species with diverse taxonomic positions; however 

this certainly does not represent nifu from all prokaryotes. The 

reason for the successful performance of the models on 

sequences of species not included in training, gather sufficient 

information to create classification model based on only a 

small set of the training examples. Though we have tested the 

sensitivity of the approach on species not represented in 

training sequences, the true sensitivity towards extremely 

divergent species may only be tested when such sequences are 

available in future. The prediction method developed in the 

study can expedite the discovery of nitrogen fixing proteins 

and needs to be judiciously used, keeping the SVM scores as 

well as other complementary evidence into consideration. 

Thus SVM based nifu prediction system has the potential to 

be used for scanning nifu-like properties in proteomes. In 

future, availability of additional nifu sequences with a better 

representation of different symbiotic species and inclusion of 

more functional properties would further enhance the 

accuracy of the program. 

     

 

 

 

 

http://svmlight.joachims.org/
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Table -1 Performance of various SVM models 

 

 

 

Table -2 Maximum accuracy of models along with nearly 

equal sensitivity and specificity in Radial and polynomial 

kernel functions by optimizing the values of C, d and g. 

 

Performance   

Parameter 

Polynomial 

(C=.70,d=2) 
Radial(C=.70,g=2.5) 

Accuracy 99% 98.66% 

Sensitivity 98% 98% 

Specificity 100% 99.33% 

MCC 0.980 0.973 

Figure 1: Flow chart of the algorithm implemented in nifu 

classification tool 
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Performance 

Parameter 
Linear model Polynomial Radial 

Accuracy 98.16% 98.16% 98.33% 

Sensitivity 96.33 96.33% 96.66% 

Specificity 100% 100% 100% 

MCC 0.963 0.963 0.967 


