
 
 

International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing, Communication and Networking (ACCNet – 2016) 

 

5 

DKLZSS - A Dynamic KMP String Matching Method for 

Parallel LZSS Compression on GPGPUs 

Vaibhav Tulsyan 
Pune Institute of Computer 

Technology 
Pune-411043, India 

 
 

Aditya Sarode 
Pune Institute of Computer 

Technology 
Pune-411043, India 

 
 

Aaryaman Vasishta 

Pune Institute of Computer 
Technology 

Pune-411043, India 
 

Tarun Notani 
Pune Institute of Computer Technology 

Pune-411043, India 

A.R. Sharma 
Pune Institute of Computer Technology 

Pune-411043, India 
 
 

 
 

ABSTRAT 
Fast data compression is gaining increasing importance in the re- 

cent times. Statistical compression methods and methods pertain- 

ing to textual substitution have been studied in great detail in the 

last few decades, however, the problem of compressing data at 

very high speeds with less compression trade-off still remains un- 

solved to a certain extent. General Purpose Graphic Processing 

Units (GPGPUs) are a powerful tool that allow large-scale parallel 

processing, owing to a large number of Streaming Multiprocessors. 

Recent studies on parallel methods for compression using tex- 

tual substitution show that considerable speed-ups can be obtained 

by using the Lempel-Ziv-Storer-Szymanski(LZSS)[9] lossless data 

compression algorithm on GPUs.In this paper, a parallel, space- 

efficient compression algorithm using GPGPUs for LZSS com- 

pression, along with a dynamic variation of the Knuth-Morris-Pratt 

(KMP) string-matching algorithm[2] is presented. The algorithm 

splits the input data into disjoint data chunks and performs com- 

pression on each chunk using the Dynamic KMP algorithm, inde- 

pendent of the compression of other chunks. 

Keywors 
LZSS,KMP,CULZSS,GPU,GPU 

1. INTRODUCTION TO THE LZSS 

(LEMPEL-ZIV-STORER-

SZYMANSKI) ALGORITHM 
The Lempel-Ziv-Storer-Szymanski(LZSS)[9] is a  loss-less data 

compression algorithm that uses a Macro Encoding technique, also 

known as textual substitution, for compressing data. It factors out 

duplicate occurrences of a sub-string and replaces them with a 

pointer to the original occurrence of the sub-string. The pointer 

consists of the offset of the original sub-string from the start of 

the string, and its length. 

The LZSS algorithm uses a 2-pointer approach find the longest 

matching previously occurred sub-string, for replacement. One 

pointer acts as a look-ahead, which is the starting point of the data 

to be compressed. The other pointer scans the string prior to the 

look-ahead pointer, to find the longest matching replacement. 

2. INTRODUCTION TO GPGPUS 

(GENERAL PURPOSE GRAPHIC 

PROCESSING UNITS) 
Graphic Processing Units are highly parallel computation struc- 

tures, consisting of several cores, which perform computations at a 

very high speed, in a parallel way. GPUs are being used for several 

applications other than video rendering and graphics today. 

The breed of GPUs created for general purpose computing 

are known as GPGPUs. 

We provide experimental results of the algorithm comparing 

perfor- mance on a GPGPU with performance of the 

sequential algorithm on a CPU. 

3. IMPLEMENTATION OF LZSS 

ALGORITHM ON GPGPUS 
LZSS algorithm has been implemented on GPGPUs with a 

consid- erable amount of speed-up[5] as compared to the 

sequential algo- rithm. CULZSS is one approach, in which the 

entire data is divided into chunks. Each GPU core performs 

compression of a chunk, by splitting up the chunk further and 

assigning them to threads. Each thread uses the standard 

LZSS algorithm on the data assigned to it and overwrites the 

original data with the compressed data. Com- pressed data of 

all threads are then combined sequentially. 

The CULZSS algorithm has the following 
limitations: 
 

1. The worst-case time complexity for each thread to 

perform compression is O|S|3 ), where S represents 

the data assigned to the thread and —S— 

represents the size of that data in bytes.[5] 

2. Combination of the small data chunks, post-

compression, is performed sequentially. 

In this paper, the focus is on using a faster technique that 

improves the worst-case compression time by a linear factor, 

described in Section5. 

4. KMP ALGORITHM FOR 

STRINGMATCHING 
Knuth, Morris and Pratt developed an algorithm[2] to solve 

the problem of checking whether a string P  occurs as a sub-

string within a text T , in O(|P |) worst-case time 

complexity. Their al- gorithm is especially useful when the 

the text T is very large in size, but the string P is 

comparatively smaller. This problem is also sometimes referred 

to as finding a needle in the haystack. 

In the KMP algorithm[2],a Failure Table structure π is build. 

This structure is used to store some information about the 

string P , that helps in finding the number of characters to skip 

(π(k))  whenever a mismatch occurs during string matching. 



 
 

International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing, Communication and Networking (ACCNet – 2016) 

 

6 

5. DYNAMIC KMP METHOD  FOR 

STRING MATCHING IN LZSS 

(DKLZSS) 
In this section,a new method, called Dynamic KMP string- 

matching algorithm is  proposed, which speeds up  the  process 

of finding the longest replacement of a sub-string in the LZSS 

algorithm. 

5.1 Construction of  Failure  Table 
If KMP algorithm is used for finding the longest matching sub- 

string for the data D, as it iterate through the data, building the 

Failure Table π for each new byte would generally take O(|D|) 

time, and would hence have a O(|D|)2 worst-case time complex- 

ity. 

However, this process is redundant and can be optimized such that 

as a new byte is processed, the Failure Table is updated in O(1) 

time, and hence takes O(|D|) time overall. 

Let the position of the current byte of data be i - the data is parti- 

tioned into 2 parts D[: i] and D[i  :] respectively, such that D[: i] 

represents the prefix of D  ending at position (i − 1) and D[i :] 

represents the suffix of D starting at position i. 

Let the Dynamic KMP Failure Table be represented by µ.A Failure 

Table pointer j is used to iterate through µ(j) to set the appropriate 

value for µ(i). 

Algorithm 1 Failure Table Construction   

1:  global D, k, 

µ 
2:  procedure FA I L U R E TA B L E(i)                      . Computes 
µ(i) 
3:        j ← 
i 
4:        while T rue 
do 
5:               if j == 0 
then 
6:                      µ(i) ← 
0 
7:                      
break 
8:               if D[µ(j) + k] == D[i + k] 
then 
9:                      µ(i) ← µ(j) + 
1 

10:                      
break 
11:                j ← µ(j)   

The MaxMatch variable is updated with this new value of match. 

To compute the value of the match variable, the Failure Table µ is 

used. 

The F ailureT able()  method is called if the value of µ  for a 

particular index is not computed yet. This is the basis on which the 

algorithm is termed as the Dynamic KMP Method. 

Algorithm 2 Dynamic 

KMP 

1:  global D, k, 

µ 
2:  MaxMatch ← 
0 
3:  procedure DY NA M I C 

KMP 

4:        µ(0) 
← 0 
5:        index 
← 0 
6:        match 
← 0 
7:        while index + match < 
k  do 
8:               if D[index + match] == D[k + match] 
then 
9:                      match ← 
match + 1 

10:                      UPDATE M axM 
atch 
11:               
else 
12:                      if match == 0 
then 
13:                             index ← 
index + 1 
14:                      
else 
15:                             if µ(match) not computed 
then 
16:                                   CALL 
FailureTable(match) 

17:                             index ← index + match − 

µ(match) 
18:                             match = 
µ(match) 
 

5.3 DKLZSS Compression Function 
The C ompress() method takes the input data D as a 

parameter and stores the Compressed Data so far. It initializes 

the values of a global variable k, which is then used by the 

DynamicK M P () function to find out the maximum 

matching sub-string. 

In this function, it is iterated over all k, where k < |D| and 

keep updating the CompressedString variable. 

Algorithm 3 

DKLZSS 

1:  global D, 

k, µ 
2:  CompressedString 
← φ 
3:  procedure CO M P R E S 

S(D) 
4:        k 
← 1 
5:        while k < 
|D| do 
6:               CALL 
DynamicK M P 
7:               if MaxMatch ≥ 3 
then 
8:                      k ← k+ 
MaxMatch 
9:                      UPDATE CompressedString with 
Pointer 

10:               
else 
11:                      k ← 
k + 1 
12:                      UPDATE CompressedString with 
Character 
 
 
 



 
 

International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing, Communication and Networking (ACCNet – 2016) 

 

7 

5 .4  Dynamic KMP Method 
This method finds the maximum matching sub-string for D[k  :], 

inside D[: k]. 

The match variable keeps a count of the current value of matching 

length of sub-string obtained. 

The M axM atch  variable keeps a count of the Maximum Match- 

ing length we have so-far obtained for the sub-string starting at 

index k. If this length is greater than the MaxMatch variable, then 

6 DKLZSS ON GPGPU 
In order to improve the execution time of compression, the data is 

splitted into chunks and delegate the compression of each chunk 

of data using DKLZSS on different GPU threads, on various GPU 

cores. The SIMD architecture of GPUs is exploited by the 

parallel algorithm, so that the chunks perform compression 

independently, without any intermediate synchronization. 

The input data D is stored in the GPU memory and the 

DKLZSS kernel is called on B  blocks, with K  threads per 

block. Each thread, hence, processes at most |D|/(B ∗ K ) 

bytes of data. 

In this scenario, each thread consists of thread-local data DT  , 

that is, the chunk of data to be compressed. The thread stores 

the compressed data CT   in a new memory location. The 

failure table 

µT   is stored in thread memory. 

 
 

Fig. 1.   Block Diagram for DKLZSS 

Algorithm 4 DKLZSS - GPGPU   

1:  Thread-Local DT  , k, 

µT 

2:  CompressedStringT  ← 
φ 
3:  procedure CO M P R E S S(DT  

) 
4:        k ← 
1 
5:        while k < |DT | 
do 
6:               CALL DynamicK M 
P 
7:               if MaxMatch ≥ 3 
then 
8:          k ← k+ MaxMatch 
9:        UPDATE CompressedStringT  with Pointer 

10:             else 
11:                   k ← k + 1 
12             UPDATE CompressedStringT  with Character 

 

After each thread completes compression, the compressed data 
from each thread is combined sequentially, to form the overall 
loss- less compressed data. 

7 EXPERIMENTAL RESULT 

7.1 Experimental Setup 
1. NVIDIA GTX 900 series GPU supporting latest CUDA 

ver- sion. 
2. Intel(R) Core(TM) i7 Haswell CPU - 

2.5GHz 

 

7.2 Observatios 
A prototype for the DKLZSS algorithm was implemented. The 

Fig- ure 2) shows the comparative analysis between the LZSS 

algorithm and DKLZSS. 

The X-axis denotes the respective chunk sizes, into which the 

data 

 

 

Fig. 2.   Compression Time Comparison between DKLZSS 

and LZSS 

was split, in bytes. 

The Y-axis denotes the execution time in 
milliseconds. 

The tests were performed on four images, with varying 
degree of repetitions on the byte-level. 

It was found that in cases of high degree of repetitions in the 
input data, DKLZSS performs with a significant speed-up as 
compared to the LZSS algorithm. 

 



 
 

International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing, Communication and Networking (ACCNet – 2016) 

 

8 

8 CONCLUSION 
In this paper,a parallel, space-efficient compression algorithm is 

presented.The algorithm uses a textual compression algorithm- 

LZSS, along with a dynamic variation of the Knuth-Morris-Pratt 

(KMP) string-matching algorithm.The algorithm splits the input 

data into disjoint data chunks and performs compression on each 

chunk using the Dynamic KMP algorithm, independent of the com- 

pression of other chunks.The compression of each data chunk hap- 

pens in parallel manner on different core of GPGPU hence utilizing 

the parallel power of GPGPUs and acheiving the Compression at a 

 faster rate. The quick application of the proposed algorithm are 

real time web based services which requires high data compression 

rate such as live streaming applications or video chatting 

applications. 

9 REFERENCES 
[1] Ana Balevic. Parallel variable-length encoding on gpgpus. In 

Euro-Par 2009–Parallel Processing Workshops, pages 26–35. 

Springer, 2010. 

[2] Donald E Knuth, James H Morris, Jr, and Vaughan R 

Pratt.Fast pattern matching in strings. SIAM journal on 

computing,6(2):323–350, 1977. 

[3] SR Kodituwakku and US Amarasinghe. Comparison of loss- 

less data compression algorithms for text data. Indian journal 

of computer science and engineering, 1(4):416–425, 2010. 

[4] Adnan Ozsoy. Culzss-bit: a bit-vector algorithm for lossless 

data compression on gpgpus. In Proceedings of the 2014 In- 

ternational Workshop on Data Intensive Scalable Computing 

Systems, pages 57–64. IEEE Press, 2014. 

[5] Adnan Ozsoy and Martin Swany. Culzss: Lzss lossless data 

compression on cuda. In Cluster  Computing 

(CLUSTER),2011  IEEE  International  Conference on,  

pages  403–411. IEEE, 2011. 

[6] Adnan  Ozsoy,  Martin  Swany,  and  Anamika  

Chauhan.Pipelined parallel lzss for streaming data 

compression on gpgpus. In Parallel and Distributed 

Systems (ICPADS), 2012IEEE 18th International 

Conference on, pages 37–44. IEEE,2012. 

[7] Adnan Ozsoy, Martin Swany, and Arun Chauhan. 

Optimizing lzss compression on gpgpus. Future  

Generation Computer Systems, 30:170–178, 2014. 

[8] Akhtar Rasool and Nilay Khare. Parallelization of kmp 

string matching algorithm on different simd 

architectures: Multi- core and gpgpu’s. International 

Journal of Computer Appli- cations, 49(11):26–28, 2012. 

[9] James A Storer and Thomas G Szymanski. Data 

compres- sion via textual substitution. Journal  of the 

ACM (JACM),29(4):928–951, 1982. 

[10] Annie Yang, Hari Mukka, Farbod Hesaaraki, and  Martin 

Burtscher. Mpc: A massively parallel compression 

algorithm for scientific data. In Cluster Computing 

(CLUSTER), 2015IEEE International  Conference on, 

pages 381–389. IEEE,2015. 

[11] Jacob Ziv and Abraham Lempel. Compression of 

individual sequences via variable-rate coding. 

Information Theory, IEEE Transactions on, 24(5):530–

536, 1978. 

[12] Yuan Zu and Bei Hua. Glzss: Lzss lossless data 

compression can be faster. In Proceedings of Workshop 

on General Pur- pose Processing Using GPUs, page 46. 

ACM, 2014. 

 

 

IJCATM : www.ijcaonline.org 


