
International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing Communication and Application (ACCA-2015) 

22 

An Infrastructure for Detecting Malware 

Habeeb P 
Sullamussalam Science College 

Areacode 

 

ABSTRACT
A malware is a program that has a malicious intent. 

Nowadays, attack from malwares is rising in alarming fashion 

and thousands of malwares are injected to the Internet. 

Malware authors use many techniques like obfuscation and 

packing to avoid detection. A number of techniques for 

malware detection are available and none of them able to 

detect all types of malwares. In this paper, a more efficient 

malware detection framework is presented. This framework 

utilizes the ability of sandbox to analyze files in an isolated 

environment. A group of sandbox is arranged parallel and 

process each incoming file from the Internet to internal 

network. A credit is assigned to each operation made by the 

file under inspection. Report generated by each sandbox is 

converted into a general intermediate format.  Average credit 

of a specific file is calculated based on average credit from 

individual reports. Files are classified as malicious or benign 

based on this final average credit. This system increases the 

efficiency of malware detection by using multiple dynamic 

analysis technics. 

General Terms 

Security, malware detection, malware analysis, sandbox, 

advanced persistent threat. 

Keywords 
Malware detection and analysis, sandbox, apt malwares. 

1. INTRODUCTION 
Attacks from malwares are rising in alarming fashion. Each 

day thousands of malwares are injected into the network 

world. In early time malwares are written by hobbyist and 

programmers for fun but these days malware authors are 

mainly focused on profit. For example, an early malware 

named “brain”, tailored by two programmers Bazith and 

Amjad from Pakistan, just affect a boot sector of a floppy 

drive. However, recent disclosure of stuxnet malware that 

affects industrial control system shown us the ability of 

current malwares and changes in the domain of target. A new 

era of cyber-attacks is emerging: moving from the traditional 

viruses to sophisticated attacks like the advanced persistent 

threat (APT). Internet users need some techniques to protect 

from these threats. 

Security vendors offer some tools that aim to detect and report 

malicious files. Most of the security tools use signature 

matching to detect malwares. These techniques required the 

vendor to provide a database of signatures. Signatures are 

compared against files under inspection in order to check 

whether malicious or not. Security vendors obtain malware 

samples by using techniques like honeypot. Once a sample of 

malware obtained to analysis, the first step is for a human 

analyst to determine whether this sample poses a threat to 

users by analyzing the sample. If the sample identified as the 

malicious, then analyst tries to create a pattern or signature 

that allows to identify this sample. The analysis of the file and 

generation of signature by human is very time consuming 

while compare to the malware generation rate. It furthermore, 

may be the generated signature is a false one due to human 

fault.   

It is not extraordinary for an anti-virus vendor to receive 

thousands of unknown malware samples per day. Panda labs 

[2] report says that 15 million new malware samples were 

generated, at an average rate of 160,000 every day. This 

extensive quantity requires an automated approach to detect 

and analyze. Two ways to perform automated analysis: 

dynamic analysis and static analysis. Dynamic malware 

analysis log and watch malware while running on the system. 

Sandboxes and virtual machines are commonly used for 

dynamic malware analysis. Static malware analysis is done by 

extracting static details available in the file. Reverse 

engineering is commonly used to read code from an 

executable.  

Most of the antivirus techniques are failed to detect targeted 

attacks and advanced persistent threat. A targeted attack is one 

that has been targeted a specific company or organization or a 

specific person. These attacks are not detectable by using 

traditional antimalware techniques. Advanced persistent threat 

has three steps; initially, the attacker thoroughly studies the 

target by using several techniques like social engineering. 

Once enough details are collected in reconnaissance phase, 

then the attacker tries to find out vulnerabilities to exploit. 

Exploitation of vulnerability is the third step. One of the main 

techniques used by attackers in order to get access to a 

particular organization is spear phishing, by which the 

attacker sent mail, with malicious attachment or links that 

moves target to vulnerable services or vulnerable websites. 

Compromised systems are used to get persistent access to 

network. Cost of data breach cause by this type of attack is 

thousands of dollars. 

In this paper, I propose a framework for detection and 

analysis of malware. The proposed system uses a plurality of 

sandbox technologies. Motivation behind this system is that, a 

single antimalware technology is not enough to detect all 

malwares and if a group of antimalware techniques are used 

simultaneously, then the detection rate will increase 

dramatically. The proposed system uses both static and 

dynamic malware analysis techniques. 

 The rest of this paper is ordered as follows. Section II 

provides a brief description on what is a malware and types of 

malwares. An overview of sandbox technology is also given 

in second section. Section III discuss existing techniques for 

malware detection and analysis. Section IV provide detailed 

description of the proposed system. Section V concludes this 

paper. 

2. MALWARE AND SANDBOX  
Any software that does something that causes harm to a user, 

computer, or network can be considered malware [1], 

including spyware, viruses, worms, Trojan horses and 

rootkits. Malware analysis [1] is the process of dissecting 

malware to understand how it works, how to identify it, and 



International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing Communication and Application (ACCA-2015) 

23 

how to defeat or eliminate it. The following section briefly 

explains different types of malware. 

Spyware: Software that collects information from another 

computer and transfers this information to the attacker is 

known as spyware. Information that might be interesting for 

the attacker includes contents of documents and emails, 

history of visited web pages and bank account credentials. 

Some spywares are capable of record and transmit key strokes 

of a victim. The presence of malware is normally hidden from 

the victim and difficult to detect. 

Virus: a virus is a piece a program that adds itself to other 

programs. A virus cannot run independently – it requires that 

its host program be run to activate it. Viruses perform some 

harmful activities on infected hosts. 

Worms: a worm is a program that replicates itself in order to 

spread to other systems.  A worm can run independently and 

can propagate a fully working version of itself to other 

computers. The Morris Worm is the first publicly known 

instance of a program that exposes worm like behavior on the 

Internet.  

Trojan horse: a Trojan horse is a program that appears to be 

useful or safe, but in reality, it performs malicious actions in 

the background. While a Trojan horse can disguise itself as 

any legitimate program, usually they pretend to be useful 

browser plug-ins, screensavers, or downloadable games. Once 

installed, their malicious part might download additional 

malware, modify system settings or infect other files on the 

system. Trojan horses are one of the common methods 

criminal uses to infect target's computer and collect sensitive 

information.  

Rootkit: rootkit is a type of malware that designed to hide the 

existence of certain processes or programs from normal 

methods of detection and enable continued privileged access 

to a system. Rootkits are normally activated before the actual 

completion of Operating system loading.  

Sandbox is a security mechanism for separating running 

programs. Sandboxes run programs in an isolated 

environment and provide as many privileges it can. 

Sandboxes are normally used dynamic analysis of programs 

under consideration of bad behavior.  

A sandbox is a tightly controlled environment where 

programs can be run. Sandboxes restrict what a piece of code 

can do, giving it just as many permissions as it needs without 

adding additional permissions that could be abused.  

3. EXISTING TECHNIQUES 
Malware detectors implement some malware detection 

techniques. The malware detection can be divided into two 

broad categories; signature based system, and behavior based 

systems.  Malware detectors normally take two inputs; one 

input is the knowledge of the malicious behavior. If the 

malware detector works based on a signature based, then it`s 

knowledge base is a collection of signatures produced 

manually. Behavior based system has a rule set or some 

specification of what is malicious in-order to decide whether a 

program under inspection is valid or not. The other input 

malware detector takes as input is the file under assessment. 

Signature based systems try to create a signature of the file 

under inspection by using a pre-agreed algorithm. Generated 

signature compares with the existing database to determine 

whether the file under inspection is malicious or not. Behavior 

based system executes the program under inspection and 

monitor activities of the file. The activities are then compared 

with rule set to identify malicious behavior. The remainder of 

this section provides an overview of some available malware 

detection techniques. 

Steven A. Hofmeyr et al. [3] introduced a method for 

detecting maliciousness of a program by monitoring system 

calls made by the file under inspection. A rule set of normal 

behaviors must need to develop before starting the actual 

inspection. Here normal behavior is specified in terms of 

system calls. Hamming distance is used to find out the 

deviation of a system call sequence with another. A threshold 

or critical value must be specified to determine whether a 

process is malicious or not. Processes with large Hamming 

distance are considered as malicious. Authors are able to 

detect intrusion attempts that exploits various UNIX programs 

like lpr, sendmail and ftpd. 

N. L. Petroni [6] present a technique to detect kernel integrity 

violation by monitoring system with a software. The 

monitoring software run on a separate PCI card and take 

snapshots of the system memory periodically. The grabbed 

memory copy is analyzed to determine integrity violation.  

Later in [7] a specification based integrity checker is 

proposed. This system can examine the integrity of dynamic 

kernel data. These systems only grab snapshots of volatile 

memory. 

Wei-Jen Li et al. [4] introduced Fileprints analysis for 

detecting malicious files. During the training phase, a 

specification or a set of specifications is derived based on the 

byte composition of the files. These specifications are used to 

categorize various file's types the system intends to handle. 

For example, benign .exe files have a unique distribution of 

bytes that is entirely different from the byte distribution of 

.doc or .pdf files. During the inspection files with large 

deviation from the given specification is considered as 

malicious.  Author’s technique showed detection rates 

between 72.1 percent and 94.5 percent for PDF file that had 

embedded malware. But, the technique failed to detect some 

malicious file with embedded code and authors believe that 2-

gram or 3-gram approaches may increase the detection rate.  

Yi-Min Wang et al. [5] proposed a GhostBuster system that 

detects malicious files by the view comparison method. Their 

method compares two system scans- one internal scan and an 

external clean scan. The external scan is performed by 

restarting the system being examined with clean Operating 

System. The internal scan is otherwise, with execution of files 

under inspection. The clean boot or external scan destroys all 

non-persistent states, and it reduces the detection rate of the 

system. 

In [8] Kreibich and Crowcroft introduced a honeycomb 

system. In honeycomb, honeypots are used to detect malware 

stemming from network traffic. Honeycomb generate 

signatures from detected malicious files. Honeycomb works 

on the assumption that traffic which stopped at a honeypot is 

suspicious. Each connection information store in a database 

and honeycomb use anomaly in the connection streams to 

create signatures. 



International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing Communication and Application (ACCA-2015) 

24 

 

Fig 1:  Overview of the proposed system 

4. PROPOSED SYSTEM 
Proposed system uses a group of sandboxes, and they are 

configured to process in parallel. Data from the Internet to 

internal network initially pass through a firewall for blocking 

unauthorized connections. Firewall direct successfully 

scanned data to an initial decision making server. Decision 

making server collect stream of data and analyze to determine 

whether it contains files or links. Connections without any 

files or links forward to internal network. Fig: 1 depicted an 

overview of the system.  

Data for further processing are put into a waiting queue by the 

initial decision making server. A unique id is assigned to each 

file or link under consideration. Sandbox has also had a 

waiting queue. Initial server place a copy of file to waiting 

queue of sandbox.   Sandbox executes files from the queue in 

a first-come-first-serve order and generates a report of 

processing. Reports are signed with unique id of the processed 

file and then forward to the intermediate report translator 

(IRT). IRT converts received reports into a general format and 

transfer to the secondary decision making system (DMS).  

Secondary DMS finds out credit of each operation specified in 

the report from the rule set database. Rule set database contain 

tables with operations and corresponding credits. The values 

of credit assigned for operations are directly proportional to 

the importance of the operation. Once credit for each 

operation assigned then average credit of an entire report is 

calculated by using following equation. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑟𝑒𝑑𝑖𝑡 𝑜𝑓 𝑎 𝑟𝑒𝑝𝑜𝑟𝑡  𝐶𝑅𝑤 

=
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑒 𝑐𝑟𝑒𝑑𝑖𝑡 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙  𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑎𝑡𝑖𝑜𝑛𝑠
 

𝐶𝑅𝑤 =  
 𝐶𝑟 𝑂𝑃𝑖 

𝑛
𝑖=0

𝑛
   

𝑤𝑒𝑟𝑒𝑟 𝐶𝑟 𝑂𝑃  𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡𝑜 𝑔𝑒𝑡 𝑐𝑟𝑒𝑑𝑖𝑡 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

𝑂𝑃 𝑎𝑛𝑑  𝑛 𝑖𝑠 𝑡𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 

Secondary DMS combines average credit from files with 

same signature id to find out the final credit of file under 

inspection. The below given equation is used to calculate 

average credit of a file.  

𝐹𝑖𝑛𝑎𝑙 𝐶𝑟𝑒𝑑𝑖𝑡 𝑜𝑓 𝑡𝑒 𝑓𝑖𝑙𝑒  𝐶𝑅𝑓 

=
𝑆𝑢𝑚 𝑜𝑓 𝑡𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑟𝑒𝑑𝑖𝑡 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑠
 

𝐶𝑅𝑓 =  
 𝐶𝑅𝑤𝑖

𝑁
𝑖=0

𝑁
   

𝑤𝑒𝑟𝑒𝑟 𝑁 𝑖𝑠 𝑡𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑝𝑜𝑟𝑡𝑠 

The final credit of the file (CRf) is compared with predefined 

critical credit (CRc). If the CRf is greater than CRc then the 

file is determined as malicious and selected for manual 

analysis. If the CRf is less than or equal to CRc then the file is 

benign and forward to internal network.  Malicious files are 

forward to expert malware analyst for dissecting it. Fig: 2 

depicts the data flow of in the proposed system. 

Outgoing 

Connection 

 

Primary decision 

making system Secondary decision 

making system 

Sandbox 

Benign file 

Malicious File 

Manual Analyst 

Intermediate 

report translator 

Re

po

rt 

Report 

Re

por

t 
Sandbox 

Sandbox 

 

 

Firewall 

Internal Network 

Internet 

Connection 

without 

file or links 

 



International Journal of Computer Applications (0975 – 8887)  

National Conference on Advances in Computing Communication and Application (ACCA-2015) 

25 

 

Proposed sandbox based system uses both static malware 

analysis and dynamic analysis. Which improve the detection 

rate of the malicious file. In this system, each files are 

processed by each sandbox, and generate a unique report. This 

multiple scanning also contributes to increased efficiency of 

the system. Parallel running of sandboxes provides fast 

processing of files and report generation. 

5. CONCLUSION 
An efficient and effective malware analysis and detection 

system is still not available, and malware generation rate 

skyrocketed in last years.  This paper proposed an overview of 

a malware detection framework by using a group of parallel 

working sandboxes. The detection rate of the malware 

definitely increased by this framework. Several features like 

parallel processing and intermediate report translation 

improved the quality and efficiency of the system. Actual 

implementation of this framework is kept as my future work.  

6. REFERENCES 
[1] Sikorski, Michael, and Andrew Honig. Practical 

Malware Analysis: The Hands-On Guide to Dissecting 

Malicious Software. No Starch Press, 2012. 

[2] Quarterly report – Panda Security, 

http://mediacenter.pandasecurity.com/mediacenter/wp-

content/uploads/2014/07/Quarterly-Report-Q2-2014.pdf, 

December 2014 

[3] S. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion 

detection using sequences of system calls. Journal of 

Computer Security, pages 151 – 180. 

[4] W. Li, K.Wang, S. Stolfo, and B. Herzog. Fileprints: 

Identifying file types by n-gram analysis. 6th IEEE 

Information Assurance Workshop, June 2005. 

[5] Y.-M. Wang, D. Beck, B. Vo, R. Roussev, and C. 

Verbowski. Detecting Stealth Software with Strider 

GhostBuster. Proc. of the 2005 International Conference 

on Dependable Systems and Networks, June 2005. 

[6] N. L. Petroni, T. Fraser, J. Molina, and W. A. Arbaugh. 

Copilot - a Coprocessor-based Kernel Runtime Integrity 

Monitor. Proc. of the 13th USENIX Security 

Symposium, Aug. 2004. 

[7] N. L. Petroni, T. Fraser, A. Walters, and W. Arbaugh. An 

Architecture for Specification-Based Detection of 

Semantic Integrity Violations in Kernel Dynamic Data. 

Proc. of the 15th USENIX Security Symposium, Aug. 

2006. 

[8] C. Kreibich and J. Crowcroft. Honeycomb – creating 

intrustion detection signatures using honeypots. In 2nd 

Workshop on Hot Topics in Network, 2003. 

 

No 

Yes 

Yes 

No 

Deliver file to network 

Success  

Deliver file to malware analyst 

Collect report from sandboxes 

Process file in unprocessed sandbox 

Received report 

from each 

sandbox 

File/Link  

Put to processing queue 

Calculate the final Credit ( CRf ) 

If CRf > CRc 

Stop  

Fig 1: Data flow diagram 


