
International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Communication and Application (ACCA-2015)

20

A Robust Method for Prevention of Second Order and

Stored Procedure based SQL Injections

Anju Muraleedharan
M.Tech Student, Dept. of Computer Science

Adi Shankara Institute of Engg and Tech, Kalady,
India

Neetha K N
Asst.Professor, Dept. of Computer Science

Adi Shankara Institute of Engg and Tech, Kalady,
India

ABSTRACT
Today's interconnected computer network is complex and is

constantly growing in size . As per OWASP Top10 list

2013[1] the top vulnerability in web application is listed as

injection attack. SQL injection[2] is the most dangerous

attack among injection attacks. Most of the available

techniques provide an incomplete solution. While attacking

using SQL injection attacker probably use space, single

quotes or double dashes in his input so as to change the

indented meaning of the runtime query generated based on

these inputs. Stored procedure based and second order SQL

injection are two types of SQL injection that are difficult to

detect and hence difficult to prevent. This work concentrates

on Stored procedure based and second order SQL injection. It

uses a Similarity analysis technique to detect injection. The

runtime generated query is checked against a query model for

similarity analysis and if both are similar then the runtime

query is free from injection else query is vulnerable and the

further processing of the query is blocked.

Keywords
SQL Injection, Web application, Stored procedure, Second

order injection.

1. INTRODUCTION
Over the past decade WEB-BASED services and applications

have increased in both popularity and complexity. Daily tasks

such as banking, shopping, bill payment, travel, social

networking etc. are all done through web. Due to their wide

use for personal and/or corporate data, attackers are attracted

towards it. To compromise a database, SQL injection is one of

the techniques used by attackers. It allows attackers to insert

SQL characters or keywords into a SQL statement via

unrestricted user input parameters to change the intended

query's logic, so that attackers can obtain unauthorized access

to a database.

2. SQL INJECTION
Structured Query Language (SQL) is a textual language

which is used to communicate with relational Database. SQL

statements can be used to modify the structure of databases

and manipulate its contents by using various commands. The

typical unit of execution of SQL is the „query‟, which is a

collection of statements that returns a single „result set‟. SQL

injection is a technique that exploits a vulnerability that

occurs in the database layer of an application. It happens

when user input is either filtered incorrectly or is not strongly

typed and thereby unexpectedly executed. In short it occurs

when the data provided by user is not properly validated and

is directly used to generate runtime SQL query. Thus an

attacker is able to submit SQL commands that can directly

access database. SQLIA compromises the confidentiality and

integrity of user's sensitive data. [2,3].

Login page is common point of attack for attackers. On that

page legitimate user is filling form with his username and

password in order to gain access in his secure area with

personal details.

Code for checking the username and password from database

is as follows : SELECT * from users WHERE name=‘ ’

and password= ‘ ’; Instead of providing genuine Username,

attacker uses the following code to manipulate the original

query. [3,5,8] ' or '1' ='1'--'

Now the meaning of the manipulated query will be SELECT

* FROM users WHERE name = ''or '1'='1'—'' and

password='null'; The term, ' or '1'='1' --' does two things.

First, it causes the first term in the SQL statement to be true

for all rows of the query; second, the -- causes the rest of the

statement to be treated as a comment and therefore ignored

from further processing. As a result all details in the database

from table users up to the limit the web page can list, are

returned.

Attack techniques are the ways in which an attacker carries

out attacks using malicious code. Various SQL injection

attacks techniques [3,5,7,12] includes Tautology, Piggy-

backed query, Logically Incorrect/Illegal query, Union query,

Stored Procedure, Inference Attack, Alternate Encodings and

Second Order Injection.

3. RELATED WORK
Related works [12] on SQL injection can be classified into

two major divisions : Injection detection and Injection

prevention. Former aims at identifying vulnerable locations

in the application . It includes all types of input validation

and filtering techniques to detect injection attempts.

Techniques proposed in [13,14,15] explains some static

analysis techniques for injection detection. Main

disadvantage of using these techniques is its limited accuracy

in identifying potentially not validated inputs. They lacks

way to check the correctness of the input validation

techniques, and programs using incomplete input validation

techniques may pass these checks and cause SQL injection.

Prevention techniques provide a way to prevent SQL

injection. Techniques proposed in [16,17,18] explains some

of the available prevention mechanisms. They can act as a

first level of defense against the attack, but they cannot

defend against sophisticated attack techniques (Stored

procedure based injection, Second order injection) that inject

malicious inputs into SQL queries.

Stored procedure based attack is a type of SQL injection that

try to execute stored procedures stored inside the database. A

stored procedure is a set of codes directly stored inside

database. Typically, stored procedures are written in SQL. As

stored procedures are stored on the server side, they are

always available to all clients. Stored procedure is capable of

accepting input parameters and a single procedure can be

used by several clients using different data. Main issue in

preventing injection in stored procedure is that it is difficult

to extract the runtime query from stored procedure as it is

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Communication and Application (ACCA-2015)

21

directly stored inside the database. Earlier stored procedures

where considered as a solution for SQLIAs. But they are also

vulnerable to injection attacks.

Table1: Existing Methods for stored procedure

Technique Prevention mechanism

Preventing SQL Injection

Attacks in Stored Procedures

Static analysis and runtime

validation

Using Positive Tainting and

Syntax Aware Evaluation to

Counter SQL Injection

Attacks

Positive tainting

SQLStor
Dynamic query structure

validation

Second order injection is a type of SQL injection in which

the attacker submits some crafted input in the request. The

application then stores this input for future use (usually in the

database), and responds to the request. The attacker then

submits a second (different) request. To process the second

request, the application calls the stored input and processes it,

causing the attacker‟s injected SQL query to execute.

The below scenario provides an example for second order

injection.Consider an update password screen. It will ask the

user for providing these information: username, old password

and new password. The SQL query for updating the

password in this application is as follows:

UPDATE user set password='newpass’ where

name=‘admin' and password='oldpass’;

Instead of a normal user an attacker is trying to update the

password. First attacker will create a dummy user as admin’-

- After that attacker will try to update the password of this

newly created user. Then the background query will become,

UPDATE user set password='newpass’ where

name='admin'-- ‘ and password='pass’;

Here the crafted username leads to injection. Everything after

-- is ignored by the SQL engine and the query get reduced to

UPDATE user setpassword=‘newpass’ where

name=‘admin’; Thus the password of the user admin can be
updated successfully without even knowing the actual

password that is the old password of the user.

4. PROPOSED METHOD
This work offers a technique, dynamic similarity

analysis[11], that validates programmer-intended query

structures at each SQL query location, thus providing a

simple and efficient solution to the problem. The idea

requires that the application will not allow the user to enter

any part of SQL query directly. Two statements are said to be

similar, if they perform similar activities, once they are

executed on the database server. So if it can be determined

that both Runtime Query and Reference Query are similar,

then by definition the Runtime Query is bound to have an

expected behaviour and there is no possibility of SQL

injection. Here similarity implies a particular activity like

comparison, retrieval etc and not the lexical equality. The

proposed technique for SQL injection detection can be

explained as follows: First the runtime query and user inputs

are extracted from the application. User inputs are then

passed on to a pre-processing function which pre-process

them. This is done with the help of a regular expression . The

regular expression consists of the blacklisted characters in

SQL that may lead to injection. User inputs are filtered using

this regular expression. Then a reference query is generated

from the runtime query. This is done by replacing the user

inputs with safe inputs. Next step is to generate a parse tree

of both runtime and reference query model. Parse tree is a

tree like structure which specifies the syntax of the query. It

has the entire query as root and its components as leaves.

Once both trees are generated they are compared to check

whether both are similar.

This work mainly focuses on injection through stored

procedure and second order injection as it is difficult to

detect and prevent them. Most of the available techniques are

not able to provide a solution for these issues. Main issue in

preventing injection in stored procedure is that it is difficult

to extract the runtime query from stored procedure as it is

directly stored inside the database. And the main issue with

prevention of second order injection is that point of attack is

different from point of injection. Thus it is very difficult to

detect second order injection and hence to prevent.

This technique can be applied successfully to all kinds of

injections discussed above. The first order injections types

prevented by similarity analysis includes Tautology, Piggy-

backed query, Logically Incorrect/Illegal query, Union query,

and Inference Attack.

Extension to prevent Second order injection: As explained

earlier second order injections are difficult to prevent as the

point of injection is different from point of attack. Hence

more care should be taken in order to detect and prevent the

same. Both attack points should be validated carefully. Point

of injection as well as point of attack are checked using

similarity analysis technique in order to prevent second order

injection.

Extension to prevent injection through stored procedure: As

discussed the main issue in preventing injection through

stored procedure is that it is difficult to extract the runtime

query from stored procedure as it is directly stored inside the

database.

A sample stored procedure is given below

 DELIMITER $$

USE `demo`$$

DROP PROCEDURE IF EXISTS `LoginChk`$$

CREATE DEFINER= `root`@`localhost`

PROCEDURE `LoginChk` (IN uname

VARCHAR(20), IN passwrd VARCHAR(20))

BEGIN

SET @aaa=CONCAT('select * from user where

name=',uname,' ',' and password=',passwrd);

 PREPARE stmt FROM @aaa;

 EXECUTE stmt;

 DEALLOCATE PREPARE stmt;

END$$

DELIMITER ;

Here, the procedure name is „LoginChk‟ with two input

arguments, uname and passwrd. According to the inputs

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Communication and Application (ACCA-2015)

22

given by users, the query will be formed as a string and

executed through „EXECUTE‟ statement.

Now, the way of calling this procedure from the web page is

as follows:

1. String uname = request.getParameter("username");

2. String pwd = request.getParameter("password");

3. CallableStatement calstat = con.prepareCall("{call

LoginChk(?,?)}");

4. calstat.setString(1, uname);

5. calstat.setString(2, pwd);

6. ResultSet rs = calstat.executeQuery();

First two statements are for accepting input arguments. The

third statement will create an object of „CallableStatement‟

for calling stored procedure. The next two statements will set

the values of the arguments of the stored procedure. The last

statement will execute and produce required result.

The mechanism of SQLIA is same for both application layer

program and stored procedure, but the same detection

technique will not work for stored procedures, because of its

limited programmability. SQL injection attack is possible by

injecting specially crafted user inputs to the stored procedure.
For prevention, the method proposed in this work is dynamic

similarity analysis. For doing that query structure being

formed within the procedure is required. It is very difficult to

get the query structure out of the stored procedure for

similarity analysis. In order to obtain the query structure, an

additional procedure is constructed , which is similar to the

one being considered, but, with one additional output

argument „qry‟ for getting the dynamic query structure . This

runtime is then passed on to the similarity analyser and

checked for any vulnerability. This technique provides a two

stage checking for the detection of SQL injection. At the first

stage the user inputs are checked for any blacklisted

characters . In the second stage, the runtime generated

queries are validated using similarity analysis. Sample

procedure that returns the query structure is given below.

DELIMITER $$

USE `demo`$$

DROP PROCEDURE IF EXISTS `LoginChk1`$$

CREATE DEFINER=`root`@`localhost` PROCEDURE

`LoginChk1`(IN uname VARCHAR(20), IN passwrd

VARCHAR(20),OUT qry TEXT)

BEGIN

SET @aaa=CONCAT('select * from login where

id=',uname,' ',' and pass=',passwrd);

SET qry=@aaa;

END$$

DELIMITER ;

Thus we have extracted the runtime query. Newly developed

stored procedure will return the runtime query for validation.

This query is then passed on to the similarity analyser for

detailed analysis. It will process the query in 5 steps and

block the query in case of any issues.

An automated technique is being used for checking the

presence of SQL injection. It has two sections. Purpose of the

first section is to identify vulnerable points in the application.

These are the points from which SQL queries are passed on

to the database for execution. Once the vulnerable points are

identified, all user inputs that pass through this points are

monitored. The second part works on the SQL query

generated using these user inputs and checks the query using

above explained similarity analysis technique.

Fig 1: Proposed system

5. RESULTS AND DISCUSSION
The proposed solution was developed using Java as front end

and MySQL as backend. Application server used was

Apache Tomcat. Proposed technique was tested using test

suite obtained from an independent research group [11],

AMNESIA test bed developed by University of Southern

California. This test bed provides a set of web applications

developed by third party that are vulnerable to SQL Injection

Attacks. It also includes safe as well as vulnerable set of test

inputs. The purpose of the test bed is to evaluate detection

and prevention techniques. The test bed consists of a set of

applications . It includes seven web applications that accept

inputs from user and use this input to generate queries to an

underlying database which will lead to SQL injection.

Our attack list contained attacks from the AMNESIA test

bed, which includes both attack and non-attack inputs for

each application. Attack inputs were based on different

vectors of SQL code injections. Overall, the attack suite

contained 30 different attack string patterns (such as

tautology-based attacks, UNION SELECT–based attacks,

that were constructed based on real attacks obtained from

sources US/CERT and CERT/CC advisories).

For testing the proposed method the application selected

from test suite was Book Store.

Table 2: Applications from the AMNESIA Test Suite

Application LOC Servlets SCL

Employee Dir 5658 10 23

BookStore 16959 28 71

Events 7242 13 31

Classifieds 10949 14 34

Portal 16453 28 67

The column SCL reports the number of SQL Command

Locations, which issue either a sql.executeQuery (mainly

SELECT statements) and sql.executeUpdate (consisting of

INSERT, UPDATE or DELETE statements) to the database.

Also two sets of URLs(Total: 3520) is used for testing, one

set with attack URLs(3026) and other set with legitimate

URLs(494). Test results can be summarized in a table as

follows:

Identify vulnerable

points

Similarity Analyzer

International Journal of Computer Applications (0975 – 8887)

National Conference on Advances in Computing Communication and Application (ACCA-2015)

23

Table 3: Test Results

 Bookstore-

Without

Prevention

Bookstore-

With

Prevention

Bookstore-With

Prevention(Stored

Proc)

Total URLs 3520 3520 3520

Valid URL

requests 3159 3159 3159

SQLIA

detected 0 3026 3026

Undetected 3026 0 0

Error URL

requests 361 361 361

AMNESIA test suite was unable to replicate any type of

second order injection and hence second order SQL injection

was tested using the standard patterns obtained from

OWASP and other online sites. As part of testing 50 attack

patterns were tested. Out of this 20 patterns were attack

patterns and the proposed method was able to prevent all

these patterns from accessing the underlying database.

Table 4: Test Results - Second order injection

 Application

without

prevention

Application

with

prevention

Total input

patterns
50 50

Valid patterns 25 25

SQLIA detected 0 20

SQLIA

Undetected
20 0

Syntax Errors 5 5

Thus the proposed method provides a robust technique to

prevent all types of SQL Injection - Tautology, Piggy-backed

query, Logically Incorrect/Illegal query, Union query, Stored

Procedure, Inference Attack, Alternate Encodings and

Second Order Injection.

6. CONCLUSION
SQL injection is one of the dangerous vulnerability in web

application that can lead to loss of confidentiality, integrity

and authentication. Existing techniques available for

preventing SQL injection uses a combination of static as well

as dynamic methods. The proposed method provide a novel

dynamic methodology for detecting and preventing SQL

injection. Similarity analyzer is a simple but efficient

technique to detect and prevent SQL injection.

As a future enhancement the technique can be extended so as

to detect blind injection, which is another form of SQL

injection attack. The technique can also be automated by

developing a tool which accepts application code and identify

the vulnerable points in it and updates code to prevent

injection. In order to validate application source code, byte

code form will be needed. Main steps for identification of

injection includes converting the source code into byte code

format and analyze this byte code for any vulnerabilities.

When any vulnerable points are identified, it automatically

updates the code so as to prevent any form of injection. As

the tool automatically identifies and prevents vulnerability, it

will be very useful for the end user.

7. REFERENCES
[1] https://www.owasp.org/index.php/Category:OWASP_T

op_Ten_Project

[2] C. Anley. (more) Advanced SQL Injection. White

paper, Next Generation Security Software Ltd., 2002.

[3] S. McDonald. SQL Injection: Modes of attack, defense,

and why it matters. White paper,

GovernmentSecurity.org, April 2002.

[4] https://www.owasp.org/index.php/What_are_web_appli

cations%3F

[5] W.G.J. Halfond, J. Viegas, and A. Orso, “A

Classification of SQL Injection Attacks and

Countermeasures,” Proc. Int‟l Symp. Secure Software

Eng. (ISSSE 06), IEEE CS, 2006;

www.cc.gatech.edu/fac/Alex.Orso/papers/halfond.viega

s. orso.ISSSE06.pdf.

[6] Ke Wei, M. Muthuprasanna and Suraj Kothari (Iowa

State University). „Preventing SQL Injection Attacks in

Stored Procedures‟ .Software engineering conference

2006.

[7] Justin Clarke, “SQL Injection Attacks ” 2nd

Edition,2012.

[8] William G.J. Halfond, Alessandro Orso, and Panagiotis

Manolios College of Computing – Georgia Institute of

Technology.' Using Positive Tainting and Syntax Aware

Evaluation to Counter SQL Injection Attacks', 2006

ACM

[9] S Mamadhan, T Manesh, V Paul, SQLStor: Blockage of

stored procedure SQL injection attack using dynamic

query structure validation, IEEE ,Nov 2012

[10] Sandeep Nair Narayanan, Alwyn Roshan Pais, &

Radhesh Mohandas. Detection and Prevention of SQL

Injection Attacks using Semantic Equivalence. Springer

2011.

[11] http://www-bcf.usc.edu/~halfond/testbed.html

[12] Lwin Khin Shar and Hee Beng Kuan Tan, Defeating

SQL Injection, IEEE Computer Society, March 2013

[13] Preventing SQL Injections in Online Applications:

Study, Recommendations and Java Solution Prototype

Based on the SQL DOM .Etienne Janot, Pavol Zavarsky

Concordia University College of Alberta, Department of

Information Systems Security

[14] Xie, Y., and Aiken, A. Static detection of security

vulnerabilities in scripting languages. In USENIX

Security Symposium (2006).

[15] Mcclure, R. A. and Kr¨Uger, I.H. 2005. SQL DOM:

Compile time checking of dynamic SQL statements.In

Proceedings of the 27th International Conference on

Software Engineering (ICSE‟05).ACM, New York, 88–

96.

[16] Boyd, S. W., and Keromytis, A. D. Sqlrand: Preventing

sql injection attacks. In ACNS (2004), pp. 292–302.

[17] Halfond, W., and Orso, A. AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks. In

ASE (2005), pp. 174–183.

[18] Buehrer, G., Weide, B. W., and Sivilotti, P. A. G. Using

parse tree validation to prevent sql injection attacks. In

SEM (2005)

