
International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

41

Deadlock Detection Techniques in Distributed Database

System
Swati Gupta

 Lecturer, Department of Computer Science
Amity School of Engineering and Technology

Amity University, Gurgaon

ABSTRACT

Distributed database system provides resource sharing

environment for optimal performance of various database

activities, especially when data is spread over a large number of

sites. Distributed nature of transactions occurring at different

sites and requiring resources from diverse sites pose various

operational problems, such as deadlocks, concurrency and data

recovery. A deadlock may occur when a transaction enters into

wait state which request resource from other blocked

transactions. The deadlocks are handled in three phases namely

deadlock detection, deadlock avoidance and deadlock detection.

Various algorithms have been discussed in the literature for

deadlock detection and resolution. These algorithms quite often

fail to detect deadlock over distributed database. In this paper

an attempt has been made to develop an algorithm for

distributed deadlock detection at local and global levels. The

author have developed local transaction structure to deal with

deadlock at local level and distributed transaction structure at

global level

Keywords

Wait-For-Graph, Deadlock, Local Transaction Structure, Global

transaction Structure, Distributed database system.

1. INTRODUCTION
Distributed database systems (DDBS) consist of a database

which is distributed over several sites which are interconnected

by a communication network. It provides resource-sharing

environment where database activities can be performed

optimally in global as well as local framework. The distributed

nature of the database demand full proof control structure for

the proper effective functioning of the database. Therefore if the

allocation of the resources is not properly controlled then it may

lead to several anomalies such as concurrency of transaction,

synchronizing of events and deadlocks. Users interact with the

database via transactions. A transaction is a sequence of

actions, which can be read, write, lock, or unlock operations. If

the actions of a transaction involve data at a single site, the

transaction is called local, on the other hand a distributed

transaction involve resources at several sites.

A deadlock may occur when a transaction enters into wait

state,i.e. when a request is not granted due to the non-

availability of the resources as the requested resource is being

held by another waiting transaction.

In such a situation, waiting transaction may never get a chance

to change its state. Deadlock representation techniques for their

easy detection have been discussed widely in the literature and

graphical representation has been found to be suitable and

effective technique.

A deadlock can be indicated by a cycle in the directed graph

called Wait-for-Graph (WFG) [4] that represents the

dependencies among the processes. A node in the graph G

represents a transaction and a directed edge from vertex i to

vertex j exist in G, if Ti (Transaction i) needs a resource, which

is being held by Tj (Transaction j). For example, in Fig 1 a

transaction T1 has locked data item X and needs to lock item Y,

T2 has locked item Y and needs to lock item X. In this case the

transactions are waiting for each other and no transaction can

continue resulting into a deadlock.

Fig 1: Transaction Wait for Graph

In distributed database system three techniques are generally

used for handling the deadlocks: Deadlock avoidance, Deadlock

prevention and Deadlock detection

Deadlock Avoidance: Deadlock avoidance is an approach in

which deadlocks are dealt before they occur. When a

transaction requests a lock on the data item that has already

been locked by some another transaction in an incompatible

mode, the deadlock avoidance algorithm decides if the

requesting transaction can wait or if one of the waiting

transactions need to be aborted.

Deadlock Prevention: It is an approach that prevents the

system from committing an allocation of locks that will

eventually lead to a deadlock. This technique requires pre-

acquisition of all locks. The transactions are required to lock the

entire data item that they need before execution. Deadlock

prevention deals with deadlock ahead of time.

Deadlock Detection: In this approach, deadlock may have

already occurred and the deadlock detection technique tries to

detect it and gives the process by which it can be resolved. Thus

the system periodically checks for them. The existence of a

directed cycle in the Wait-for-Graph indicates a deadlock.To

break the deadlock cycle the victim transaction is selected,

which is then aborted to make the system deadlock free.

In this paper an algorithm have been proposed that is based on

the concept of creating a Local Transaction Structure (LTS) and

Distributed Transaction Structure (DTS) to find and resolve

local and distributed deadlocks respectively

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

42

2. DISTRIBUTED TRANSACTION

MODEL
We next take up a distributed transaction model [1, 3] its

general structure is shown in Fig 2. In this each node has the

following modules: a Transaction Manager (TM), a Data

Manager (DM), a scheduler (S), and a Transaction Process (T).

The Transaction Manager (TM) present at each distributed site

controls the execution of each transaction process (T). The

transactions communicate with TMs, and in turn TMs

communicate with Data Managers (DMs), the Data Manager,

manages the actual data at each distributed site. A single TM

supervises each transaction executed in the DDBMS. The

transaction issues all of its database operations to its particular

transaction manager.

Fig 2: Distributed Transaction Model

The Transaction manager controls the execution of the

transaction process by providing the necessary data item

required by the transaction process. It does so by contacting

with the data manager present at that particular site. But if the

transaction process requires a data item, which is not present at

the site where it originates, the transaction manager contacts the

data manager of the other site where the required data item

actually resides. The scheduler in turn, at each site,

synchronizes the transaction requests and performs deadlock

detection. A transaction may request multiple data objects

simultaneously.

3. RELATED WORK
Different distributed deadlock detection and resolution

algorithms have been proposed in the literature. The

contributions of other researchers and the algorithms they have

used for dealing with deadlocks have been discussed

Chandy et. al. [3] used a Transaction Wait-for-Graph (TWFG)

to represent the status of transaction at the local sites and

probes to detect global deadlock. They called the algorithm, as

probe computation by which a transaction Ti determines if it is

deadlocked or not. A probe is issued if a transaction begins to

wait for another transaction and gets propagated from one site

to another based on the status of the transaction that received

the probe. The probes are meant only for deadlock detection. A

transaction sends at most one probe in any probe computation.

If the initiator of the probe computation gets back the probe,

then it is involved in a deadlock. They found that this scheme

does not suffer from false deadlock detection.

Menasce D. A. et. al. [8] describes two protocols for the

detection of deadlocks in distributed data bases: a hierarchically

o and a distributed. A graph model, which depicts the state of

execution of all transactions in the system, is used by both

protocols. A cycle in this graph is a necessary and sufficient

condition for a deadlock to exist.

Qinqin et. al. [13] have used the principle of adjacency matrix,

path matrix and strongly-connected component of simple

directed graph in graph theory. They have proposed a model for

detecting deadlock by exploring strongly-connected component

from resource allocation graph. The experiment shows that it

can detect resources and processes involved in deadlock

effectively.

Mehdi et. al. [7] have proposed a distributed deadlock detection

algorithm in which the chance of phantom deadlocks detection

is minimized by using a new approach and some improvements

to resolution of deadlocks. The algorithm can manage the

simultaneous execution of the algorithm by nodes involved in

deadlocks, prevents the detection of same deadlock and

minimize the number of useless messages in simultaneous

execution of the algorithm by giving the priorities to the

processes.

4. PROPOSED TECHNIQUE
The author has developed a deadlock detection and resolution

technique which can detect both local and global deadlocks in a

distributed database system.

A Local Transaction Structure (LTS) is maintained for all the

transactions executing at each local site. The existence of cycle

in LTS represents the local deadlock.

The Distributed Transaction Structure (DTS) is used to handle

the global deadlocks among the distributed sites. Each

transaction is assigned a unique timestamp by the local

transaction manager (TM).

The proposed technique uses Transaction Wait-for-Graph

(TWFG) to represent the transaction data request and to

indicate the deadlock situation in a distributed database

environment. This technique assures that global deadlock is not

dependent on local deadlock. The victim transaction is a

youngest transaction based on the timestamp value and is

aborted in order to resolve the deadlock.

In the proposed technique if any transaction Tp requests a data

item that is held by another transaction Tq, values of p and q

are stored on the local transaction structure (LTS), where p and

q represent their corresponding transaction numbers.

The Global Transaction Manager (GTM) will keep record of the

transactions whose request for the resource is not satisfied at a

single site. The GTM will create a distributed transaction

structure and find the global deadlock cycle using the same

procedure as LTS

Distributed Transaction Structure (DTS) stores all the

transactions that are interconnected from one site to another

site. The transactions in both LTS and DTS are arranged in the

increasing order of their timestamp value. The algorithm for the

distributed deadlock detection and resolution is presented as:

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

43

4.1 Detection and Resolution Technique

Local Deadlock Detection:

1) Create an input LTS table for each transaction Tp

requesting for a data item Tq in the increasing order of

their timestamp value. The following data structures are

used:

a. Array P to store the p value of LTS

b. Array Q to store the q values of LTS

c. Array vector that is initially empty is used to

store the scan values of LTS.

d. Stack Temp.

2) Take the first value from the Array P and store the selected

first value in the vector array.

3) Choose corresponding q value and assign the value of q to

the variable temp.

4) Search temp in array P. For each successful search put

value of P in a stack.

5) Repeat until stack is empty:

a. Pick the top most value from the stack, select the

corresponding index in array q, compare it with value

stored in the vector array if the match occurs (same

value) than there exist a deadlock and put the

corresponding index of array P in the vector array.

For each deadlock cycles that are detected the victim

is selected based on lowest timestamp value. It is then

aborted from the old LTS and vector array so as to

resolve the deadlock and a new LTS structure is

created.

b. Else if comparison fails than store the value of P at

that index in the vector array and than goto step 3.

6) For unsuccessful search if temp is not found in array P then

make the stack empty.

Global Deadlock Detection: Create an input DTS table to

record different transaction request communicating among

different sites, Apply the local deadlock detection technique in

each DTSi to resolve the global deadlock cycle

4.2 Illustrative Example

The proposed technique can be explained with the help of

an example as shown in Fig 3. In this example there are

three sites S1, S2 and S3. The TWFG in the Fig 3 shows

local deadlocks and global deadlock cycles. The

transaction managers assign a unique timestamp to each

of the transactions at site S1, S2 and S3 as shown in

Table 1.

Fig 3: TWFG with three Sites S1, S2 and S3.

Table1: The Timestamps of Transactions at different sites

Site 1 T4→2 T1→3 T2→4 T3→5

Site 2 T6→2 T8→3 T7→4 T9→5 T5→6

Site 3 T12→

2

T14→

3

T11→

4

T10→

5

T13→6

The Local Transaction Structure for the sites S1, S2 and S3

have been created in the increasing order of their timestamp

value from the Transaction Wait-for-Graph (TWFG) as shown

in the Table 2.

Table 2: LTS at Site S1, S2 and S3

Site S1 Site S2 Site S3

P q p q p q
4 2 6 7 12 11

1 3 8 9 12 14

2 1 8 5 14 13

3 4 7 8 11 10

3 2 9 5 10 14

 9 7 10 12

5 6 13 12

 13 11

a) At Site S1

The first (p, q) pair (4, 2) is selected. The P value is placed in

the vector array and Q value is assigned to variable temp. Now

temp is searched in array P and for each successful search the

pair (p, q) is placed on a stack .Now Q value of the (p, q) pair

on the top of the stack is compared with values on the vector

array. If no match found then P value of the (p, q) pair is stored

on the vector array and Q value is assigned to variable temp. If

match found it means a deadlock is present. The vector

array is shown in Fig 4 depicts a deadlock cycle

(4→2→1→3→4)

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

44

Fig 4: Vector array for the deadlock cycle at site S1

Finally the transaction pair with lowest timestamp (3→4) is

aborted to resolve the deadlock. The same procedure is repeated

until stack is not empty. Since {3→2} value exist in the stack

so, next we check whether any deadlock cycle exist using

{3→2}, we find the deadlock cycle {2→1→3→2} as shown in

Fig 5.

Fig 5: Vector array for the deadlock cycle at site S1

Now the transaction pair 3→2 (having the lowest timestamp

value) is aborted to resolve the deadlock.

b) At Site S2

Next we take up deadlock detection algorithm to detect the

local deadlock cycles and create the vector array for each

deadlock cycle present at the site S2. The deadlock cycle

(6→7→8→9→5→6) is detected as shown in the vector array in

Fig 6. Finally the transaction pair with lowest timestamp (5→6)

is aborted so as to resolve the deadlock.

Fig 6: Vector array for the deadlock cycle at site S2

Next we find the deadlock cycle (6→7→8→9→7) as shown in

the vector array in Fig 7. We abort the transaction pair 9→7

(having the lowest timestamp value) so as to resolve the

deadlock.

Fig 7: Vector array for the deadlock cycle at site S2

Next we select the last value (8→ 5) present in the stack since

no deadlock cycle exist using this transaction pair, we delete

(8→5) from the stack.

c) At Site S3

Next we detect the local deadlock cycle and create the vector

array for each deadlock cycle present at site S3. The deadlock

cycle (12→11→10→14→13→12) is detected as shown in

vector array in Fig 8. Finally the transaction pair with lowest

timestamp (13→12) is aborted to resolve the deadlock.

Fig 8: Vector array for the deadlock cycle at site S3

Next we find the deadlock cycle (11→10→14→13→11) as

shown in vector array in Fig 9. We abort the transaction pair

13→11 (having the lowest timestamp value) so as to resolve the

deadlock.

Fig 9: Vector array for the deadlock cycle at site S3

Next we select the last value (10→12) present in the stack and

check for the deadlock cycle using this transaction pair we find

the deadlock cycle (12→11→10→12) as shown in the vector

array in Fig 10. We abort the transaction pair 10→12 (having

the lowest timestamp value) so as to resolve the deadlock.

Fig 10: Vector array for the deadlock cycle at site S3

We finally create a new deadlock free LTS for site S1, S2 and

S3 after all the deadlock cycle are detected and the victim from

all the deadlock cycles is aborted as shown in Table 3.

Table 3: Deadlock Free LTS for Site S1, S2 and S3

To find global deadlock we have created Distributed

Transaction Structure (DTS) as shown in Table 4. After

creating the DTS same procedure is repeated to find the global

deadlock as it is done to find the local deadlock cycle by

creating the LTS.

Table 4: DTS at Site S1, S2 and S3

 Site S1, S2 Site S1, S2 and S3

P q p q

1 3 11 10

3 9 3 9

9 5 9 11

5 1 10 3

We detect the global deadlock cycle and create the vector array

for each deadlock cycle present at site S1 and site S2. The

deadlock cycle (1→3→9→5→1) is detected as shown in vector

array in Fig 11. Finally the transaction pair (5→1) is aborted so

as to resolve the deadlock.

Site S1 Site S2 Site S3

p q p q p q

4 2 6 7 12 11

1 3 8 9 12 14

2 1 8 5 14 13

 7 8 11 10

9 5 10 14

12 11 10 12

12 11 10 14 13 11

12 11 10 14 13 12

 6 7 8 9 7

 6 7 8 9 5 6

 4 2 1 3 4

 4 2 1 3 2

International Journal of Computer Applications (0975 – 8887)

Volume 74– No. 21, July 2013

45

Fig 11: Vector array for the deadlock cycle at site S1 and

site S2

We detect the global deadlock cycle and create the vector array

for each deadlock cycle present at site S1, site S2 and site S3.

The deadlock cycle (11→10→3→9→11) is detected as shown

in vector array in Fig 12. Finally the transaction pair with

(9→11) is aborted so as to resolve the deadlock.

Fig 12: Vector array for the deadlock cycle at site S1, S2 and

site S3

5. CONCLUSIONS
In this paper the author has presented an approach to detect

both local deadlocks and global deadlocks by creating the LTS

and DTS structure for local and global deadlock cycles. This

technique assures that global deadlock detection is not

dependent on local deadlock detection. The proposed algorithm

eliminates the dependency of LTS and DTS on the directed

edges of transaction wait for graph by assigning unique

timestamp to each transaction.

The paper have compared the results of proposed algorithm

with that of Alom B. M. et. al.[1]. The algorithm proposed

by[1] have dependency on the WFG when creating LTS and

DTS. The transaction pairs have to be placed on LTS and DTS

in a particular order to detect deadlock cycles. The algorithm

proposed by author is free from any such dependency.

6. REFERENCES
[1] Alom B.M. Monjurul, Frans Alexander Henskens, Michael

Richard Hannaford,“Deadlock Detection Views of

Distributed Database”, IEEE Sixth International

Conference on Information Technology: New Generations,

Page(s):730–737, 2009

[2] Carlos F. Alastruey, Federico Fariña, Jose Ramon

Gonzalez de Mendivil, “A Distributed Deadlock

Resolution Algorithm for the AND Model” IEEE

transactions on parallel and distributed systems, Vol. 10,

No. 5, pp. 433-447, May 1999.

[3] Chandy K. M., Hass L. M and Misra J, Distributed

Deadlock Detection, ACM Transaction on Computer

Systems, Vol.1, No.2, pp.144-56, 1983.

[4] Elmagarmid A. K. A Survey of Distributed Deadlock

Detection Algorithms, SIGMOD RECORD, Vol. 15, No.3,

pp. 37-45, 1986.

[5] Gray J., A Straw Man Analysis of the Probability of

Waiting and Deadlocks in a Database Systems, IBM

Research Report, 1981

[6] Ho G. S. and Ramamoorthy C. V., Protocols for Deadlock

Detection in Distributed Database Systems IEEE

Transaction on Software Engineering, Vol. 8, No. 6, pp.

554-557, 1982.

[7] Mehdi Hashemzadeh, Nacer Farajzadeh, Abolfazl T.

Haghighat, "Optimal Detection and Resolution of

Distributed Deadlocks in the Generalized Model," 14th

Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing (PDP'06),

pp.133-136, 2006

[8] Menasce D. A. and Muntz R. R., Locking and Deadlock

Detection in Distributed Data Bases, IEEE Transaction on

Software Engineering, Vol. 5, No.3, pp. 195-202, 1979.

[9] Merritt M. J. and Mitchell D. P. "A Distributed Algorithm

for Deadlock Detection and Resolution," in ACM, Vol. 2,

No. 3, pp. 95-99, 1984.

[10] Singhal Mukesh “Deadlock Detection in Distributed

System” IEEE transaction on Software Engineering, Vol.

4, No. 3, pp. 195-199, 1989.

[11] Jain Kamal, MohammadTaghi Hajiaghayi and Kunal

Talwar, The Generalized Deadlock Resolution Problem,

autoomata, Languages and Programming, Lecture Notes

in Computer Science, 2005, Volume 3580/2005, 103,

DOI: 10.1007/11523468_69

[12] Nacer Farajzadeh, Mehdi Hashemzadeh, Morteza

Mousakhani, Abolfazl T. Haghighat, An Efficient

Generalized Deadlock Detection and Resolution Algorithm

in Distributed Systems, Fifth International Conference on

Computer and Information Technology (CIT'05), pp.303-

309, 2005

[13] Qinqin Ni, Weizhen Sun, Sen Ma, Deadlock Detection

Based on Resource Allocation Graph, Fifth International

Conference on Information Assurance and Security, vol. 2,

pp.135-138, 2009

[14] Selvaraj Srinivasan, R. Rajaram, A decentralized deadlock

detection and resolution algorithm for generalized model

in distributed systems, Distributed and Parallel Databases,

Vol. 29, No. 4,pp. 261-276, DOI: 10.1007/s10619-011-

7078-7

[15] Soojung Lee, Junguk L. Kim, Performance Analysis of

Distributed Deadlock Detection Algorithms, IEEE

transactions in Knowledge and data engineering, Vol. 13,

no. 4, pp. 623-636, August 2001

[16] T. Ozsu and Valduriez P., "Principle of Distributed

Database Systems," Prentice Hall, 1999.

 1 3 9 5 1

11 10 3 9 11

IJCATM : www.ijcaonline.org

