
International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

42

Load Balancing Approaches in Grid Computing

Environment

Neeraj Pandey

Department of Computer
Science & Engineering

G. B. Pant Engineering College
Ghurdauri, UK, India

Shashi Kant Verma
Department of Computer
Science & Engineering

G. B. Pant Engineering College
Ghurdauri, UK, India

Vivek Kumar Tamta
Department of Computer
Science & Engineering

G. B. Pant Engineering College
Ghurdauri, UK, India

ABSTRACT

Grid computing is a kind of distributed computing that

involve the integrated and collaborative use of distributed

resources. It involves huge amounts of computational task

which require reliable resource sharing across computing

domains. Load balancing in grid is a technique which

distributes the workloads across multiple computing nodes to

get optimal resource utilization, minimum time delay,

maximize throughput and avoid overload. It is a challenging

problem that has been studied extensively is the past several

years. This paper attempts to provide a comprehensive

overview of load balancing in grid computing environment

and also analyses the job distribution and system behavior.

Furthermore, this survey various load balancing algorithms

for the grid computing environment, identify several

comparison metrics for the load balancing algorithms and

carry out the comparison based on these identified metrics

between them. it also reviews the latest research activities in

the area of grid computing, including characteristics,

capabilities, architecture, applications, design constraints,

scheduling and load balancing and presents a set of challenges

and problems.

Keywords

Survey, Grid Computing, Load Balancing, Scheduling, Job

distribution, Performance evaluation

1. INTRODUCTION
In past several years the demand for computing power in

computational grid environments is continuously increasing.

The popularity of the Internet and the availability of powerful

and high-speed computing resources and network

technologies with optimal and low-cost changes the way of

computing. Grid computing is concerned with the exchange of

computer power, data storage, and access to large databases,

without searching for those shared resources manually by grid

user. Like the distributed system a grid system can also be

accessed and operated over the internet or other networking

technology and provides scalable storage and computational

capability without the cost of available resources. Load

balancing is one of the primary challenges of existing and

future grid based applications and services.

 The design of load balancing algorithm requires completed

understanding of the grid system and the scheduling strategies

used, the heterogeneity between available nodes, the

challenges and issues, and their limitations within the grid

Architecture. In this article, we analyze and focus on the

various load balancing algorithm for grid computing

environment and identify challenge and key issues related to

them. In grid computing environment the problem of load

balancing are closely related to scheduling of jobs to

computing nodes because scheduling of jobs get affected by

how and which manner a computing node (CN) is utilized.

Grid environment generally consist heterogeneous networks

and computing nodes. Computing nodes are individual

computer or machine consists of different hardware and

architectures and various operating systems. This form of grid

system can be viewed as aggregation of resources dedicated to

a particular task, e.g. virtual organization.

Various services such as resources allocation, job execution,

scheduling, and security information etc. are required for a

computational grid system. A grid-enable software tool,

commonly known as grid middleware or simply middleware

provide various amenities and link the resources to support

distributed exploration. For various application including

collaborative engineering, data exploration, high-throughput

computing, and distributed supercomputing the grid

infrastructure are great advantageous. [22].

This article review the literature over the period of 2000–2012

for load balancing problem. The survey is organized as

follows. Section 2 covers all points related to the grid

computing, followed by the load balancing in Section 3. The

discussion of the various approaches used in load balancing,

parameters etc. is provided in Section 4 and finally Section 5

conclude the paper, followed by the Appendix and

References.

2. GRID COMPUTING CONCEPT
A computational grid environment consists of several

software and hardware resources such as: computing nodes,

storage system, databases, network resources and files system

etc. A simple view of grid computing environment in given in

figure 1. It consist 4 primary components: Grid User, Grid

Resources, Resource Broker, and Grid Information Service

(GIS). Initially the grid user interact with the Resource broker

and send their task to computation. After then the discovery of

the resources, scheduling strategies, and task processing is

performed. The Grid information service (GIS) worked as an

agent. It collects all the relevant information such as resource

availability, node capacity etc. and provide it to the resource

breaker to make the scheduling decision.

Resource broker has been implemented in the form of a Web

service [45] and provide an abstraction to the complexity of

grids by ensuring transparent access to computational

resources for executing a job on grid [2]. Regarding system

components the GIS provide access to all static and dynamic

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

43

Grid Information Service

 (GIS)
Resource Information

Task/Job

Application

Grid User Resource Broker Grid Resources

(Computing Nodes)

Computational

 Result

Fig 1:A Grid Computing Environment

information. Grid resources are end system or entity that are

able to execute multiple jobs on the behalf of the grid user and

after execution of job provide computational result to the

user.To create a computational grid system we generally

require software services (e.g., Globus toolkit) on a set of

networked computers. The software services provides facility

to share resources, authentication and scheduling of job etc.

There are various tools are available for computational grid

such as Globus toolkit, and GridSolve etc. that provides

solutions to load balancing problem. The main goal of these

tools are to provide various functionality and easy access to

shared resources. The tentative list of software tools with a

small description for computational grid environment is given

in table 1.

Table 1. List of tools for grid computing

Tools Description

Globus [52] Packaged as a set of components that can be used

either independently or together to develop

applications.

NetSolve/
GridSolve

[53]

A RPC based client/agent/server system that
solve computational problem, and bring together

disparate computational resources connected by

computer networks.

EGI-

InSPIRE

[54]

Ideally placed to join together the new Distributed

Computing Infrastructures (DCIs) such as clouds,

supercomputing networks and desktop grids
within the European Research Area.

Cactus [55] An open source problem solving environment,

enables parallel computation across different

architectures and collaborative code development
between different groups.

Legion [56] An object-based, meta-systems software project

at the University of Virginia.

Unicore [57] (Uniform Interface to Computing Resources) A
part of the European Middleware Initiative.

Condor [58] Support High Throughput Computing (HTC) on

large collections of distributively owned
computing resources.

GridSim

[59]

Java based Grid Simulation Toolkit For

Modelling, Simulation, and Application
Scheduling for Grid Computing

As given in figure 1 the interaction between various grid

components are done using multiple steps[2], which are as

follows:

 The grid user run their application and after analysis

and specifying their requirement, submit their jobs

to grid resource broker (GRB).

 GRB collects all resource information and perform

resource discovery.

 After authorizing user and resource(s) GRB

schedule the job to appropriate resource(s) or

computing nodes.

 Resource(s) execute the job and return

computational result to GRB.

 The GRB collects result and provide it to the grid

user.

2.1 Grid Characteristics
Scalability, Heterogeneity, adaptability, and multiple

administrative domain are the primary aspect to characterized

a grid [23]. The primary characteristic of a computational grid

system is described as follows:

 Heterogeneity: A grid system includes both

software and hardware resources that are

heterogeneous in nature.

 Scalability: Ability to handle a huge amount of job

in a smooth and controlled manner.

 Transparent access: A grid might be seen as a single

virtual computing node.

 Coordination: To provide aggregated computing

capability, computing nodes must be coordinated.

 Consistent and Pervasive access: A grid system

must be built with standard services, protocols, and

interfaces and must grant access to available shared

resources by adapting to a dynamic environment.

 Reliability: A grid system must be reliable in terms

of node failure etc.

2.2 Grid Middleware
The grid middleware is backbone of the grid computing

system which provides a set of core services such as resources

authorization, authentication, and mechanisms for job

submission, and file transfer etc. on the Grid. There are

various core program such as 'e-Science' [9] that move

forward the development of robust and generic Grid

middleware in collaboration with industry.

A grid is created by installing software services, or

middleware e.g. Globus Toolkit [52] on a set of networked

computers to provides various facilities such as hardware and

software resource location, user authentication, and

distributed scheduling of resources and jobs.A view of grid

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

44

middleware is shown in figure 2. It is a software tool that

provide GUI to grid user to run their application program and

consistent and homogeneous access to the shared resources.

Bookkeeping or transection service is a daemon process

running with root or administrator privileges on each

computational node involve in the Grid. Middleware provides

the access and information about the grid resources [50]. The

Operations performed by the middleware are as follows:

 Map the resources

 Perform mutual authentication

 Provide secure and transparent access

 Resource allocation

 Job scheduling

 Initiate job process etc.

Grid

User

Application Program

Resource
Broker

Replica

Cluster ClusterCluster

Transactions

Service

Information

Service

Disk Server

User
Interface

GRID MIDDLE WARE

Job

Job

Fig 2: Grid Middleware

2.3 Grid Architecture
A grid architecture follows the "hourglass" model as

described by Ian Foster. It identifies basic system

components, specifies the purpose and function, and indicates

how the interaction between these components are done. The

layered architecture of grid system in given in the figure 3.

Application

Fabric

Connectivity

Resource

Collective

Application

Transport

Internet

Link

In
tern

et P
ro

to
co

l A
rch

itectu
re

Fig 3: Layer of Grid Architecture [1]

It consists of five layers, which is described as follow:

 Application Layer: It operate in a virtual

organization environment.

 Collective Layer: It provide various services such as

monitoring, scheduling, broking and directory

services etc.

 Resource Layer: Resource layer consist information

and management protocol. Information protocol

obtain all information related to the grid resources

and management protocol used to negotiate access

to a shared resources. Generally resource layer

provide interactions with a single resource.

 Connectivity Layer: This layer consist several

authentication and communication protocol required

for communication and exchange of data between

computing nodes.

 Fabric Layer: A grid system has several

heterogeneous resources and it can be a single

machine, cluster or distributed system. The layer

provide shared access to the resources required for

completion of a task

2.4 Grid Computing Issues and Challenges
All the resource available in the grid environment are

basically owned and managed by multiple organization [44].

For the efficient operation of computational grid various

factors must be considered such as resources sharing, and

load balancing etc. The primary challenges that should be

taken into account for grid system are as followed:

 Administration & Security

 Solution Development

 Resource heterogeneity

 Accounting infrastructure

 Programming for application development

 Resource Management

3. LOAD BALANCING
The gaining popularity of high speed and distributed system

emerges the problem of load balancing. A load is the number

of jobs in the waiting queue and can be light, moderate and

heavy according to their work. Load balancing is a process of

improving the performance of computational grid system in

such a way that all the computing node involve in the grid

utilized equally as much as possible. Load balancing is an

important function of grid system to distribute the workload

among available computing nodes to improve throughput,

minimize execution times, maximize node utilization and

overall system performance.

According to nature of the work load balancing algorithm is

fall into two classes: static and dynamic. In static load

balancing the decision information are made in advance. All

the information related to scheduling such as node

information are known previously before scheduling the job.

In case of dynamic load balancing the scheduling decisions

are made when there is need to schedule the job for further

processing. The static load balancing algorithm are much

simpler than dynamic in terms of implementation and load

monitoring. A dynamic task scheduling can use either

centralized or distributed control. In a centralized approach,

all scheduling decision are made at one site and the failure in

central site cause entire system down. In a distributed or non-

cooperative approach, each site makes its own scheduling

decisions and the control is much scalable as well as more

reliable [26].There are some issues related to load balancing,

some of them are as follows:

 Software solution design

 Partitioning of data or job

 Design of perfect or optimal load balancer

 Job assignment or load distribution

 Load estimation

3.1 Load Balancing Model
This paper present, a quite simple yet sufficiently realistic

abstraction of load balancing model is presented. As given in

figure 4 computational work or job arrived from grid user are

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

45

first placed in a job queue. And according to the load

balancing scheme the job scheduler schedule the job from job

queue to appropriate computing node. The computing node

execute the task and send computational result back to the

associated grid user. Several parameters are used to measure

the performance of the load balancing algorithm such as

resource utilization, response time, throughput, waiting time,

and reliability etc. Since nodes are heterogeneous in nature so

every node has its own capability to process a job.

Job Queue

Grid

User

Scheduler

Resources

Dispatch Queue

Fig 4: Load Balancing Model

In grid system a computing node can be a single machine,

computer or a cluster and focus of a load-balancing strategies

is to minimize the variance of the load among all the

participating nodes. Various policies such as location policy,

selection policy, and information policy has been proposed for

load balancing to optimize system performance.

A computational grid system model as a queuing systems. As

shown in figure 1, the system consist multiple computing

nodes or resources which are connected by a communication

network such as Ethernet. A network could be a private

network, public network, or internet. Similarly a node could

be a single computer/machine or a clusters (group of several

computers). When a job is transferred from one node to

another, a communication delay may occur. Several

assumptions are taken and given as follow:

 Arrival rate (λ): Job arrive and enter into the system,

according to a Poisson Process (exponential

distribution) with the rate λ.

 Computing nodes are independent of one another.

 A job can be executed on any computing nodes.

 The service time distribution (the average time

required to service one job) for completing jobs

follow exponential distribution.

A job possible could be either a dependent job or mutually

independent. In a mutually independent job, there is no

precedence constraint exists between jobs while in dependent

jobs their exist a precedence.If jobs are arriving at the

exponentially distributed rate λ, then the probability that there

will be n jobs after time t is given as:

!

n

t

n

t
P t e

n

 (1)

The inter-arrival time, 𝒯, is the average time between

job arrivals, measured in time per job and given as:

𝒯 = 1 / λ (2)

3.2 Load Sharing
A workload or load simply defined as number of job in

waiting queue and could be light, moderate, or heavy

according to node status. The load index or capacity for any

computing node belongs to capability of node and describe as

a 3 tuple element {I1, I2, I3}, where Ii is one of the following

load matrices:

{Node utilization, Memory utilization, I/O utilization}

The definition of a load is depicted in table 2. The load

sharing involve transferring the workload form heavily loaded

computing node to lightly loaded node to improve the

performance of grid system.

Table 2. Load Definition

 Load (L) Node Utilization

Light Load L < Llow Low

Medium Load Llow< L < Lmax Moderate

Heavy Load L > Lmax High

Load sharing simply attempt to avoid ideal nodes and

sometime known as process migration. The load sharing

approach is quite simpler than load balancing as it attempts to

migrate the heavily loaded node to lightly loaded nodes and

ensure that no node is idle when heavily node exists in the

system. Before scheduling the job it determine available

nodes and then monitor it. At a given time stamp t the load Li

on a computing node N is define as the sum of the loads at

that time t. The processing speed of node generally define the

capacity Ci of the node and given as:

{ Ci ≥ 1| 1 ≤ i ≤ number of nodes } (3)

The node utilization U for a given node is generally defined as

the ratio of busy time (Tbusy) and sum of ideal time (Tideal) and

Tbusy of that node and given as:

busy

ideal busy

T
U

T T

(4)

The disadvantage of load sharing approach is that more than

one processor looks for job at the same time therefore a

bottleneck exist there.

3.3 Job Characteristics
There are two types of jobs- sequential and parallel. A

sequential job require a single node to execute whether a

parallel job require more than one node to complete its

operation and known as job parallelism. The degree of

parallelism for a job J is given as number of tasks consists by

J. The primary characteristic of a job is described as follows:

 Memory, I/O, and Network requirements.

 Job dependency (modeled as dependency graph).

 Runtime or execution time: a required time period.

to process or execute the job.

 Arrival time: time at which a job arrives.

 Finish time: time at which a job leaves/complete its

execution.

 Waiting Times: time spend at job queue.

3.4 Grid Agent
An agent collects the real time information used for

processing of job and also monitors the waiting tasks [3]. The

real time information includes the status of current task

execution status, computing capabilities and node behavior

etc. Each agent provides a high-level representation of a grid

resource. It consist a layered architecture [10] with the

following layer:

 Communication layer: provide communication

using common data models and communication

protocols and interface to heterogeneous networks

and operating systems.

 Coordination layer: Accept request form above

layer (e.g. service discovery) and act according to

request.

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

46

 Local management layer: performs agent functions

such as scheduling for local grid load balancing and

provide information to above layer for decision

making.

Agent

Broker

Coordinator

Agent Coordinator

AgentAgent

Computation

Computation

Remote

Communication

Local

Communication

Time

Fig 5: Hierarchy (a) and Structure (b) of Grid Agent

Since there may be multiple agent for a grid computing

system, therefore all agents are organized in a hierarchical

manner. A coordinator is an agent that heads a sub-hierarchy.

The structure of a grid agent [28] and grid hierarchy [10] are

given in figure 5.A agent process is distinct form a traditional

process in various properties. Ka-Po Chow et al. in [28] define

the following properties for a grid agent:

Table 3: Properties of grid agent

Properties Meaning

Reactive responds in timely fashion to change in the

environment

Autonomous exercises control over its own action

Temporally

continuous

continually running process

Communicative communicate with other agents

Adaptive change its behaviour based on previous
experience

Proactive does not simply act in response to the

environment

Cloning duplicate itself to achieve better performance

Mobile Transport itself from one machine to another

4. DISSCUSSION
In this section, we provide the discussion and comparative

analysis of the load balancing algorithms. For comparison we

take six algorithm and provide some small description and

then compare these algorithm. The comparison chart for these

algorithms is provided in table 6. The performance of load

balancing algorithm is measured by various parameters, some

of these parameters are given in table 4. The main purpose of

all load balancing policies is distribute equal workload in each

and every node as much as possible therefore it require exact

state information of nodes.

Table 4: Algorithm parameter

Parameters Description

Nature Static vs. dynamic

CPU overhead Less to moderate or moderate to high

Node utilization Low to high

Implementation Easy Vs. complex

Cost Less to high

Response time Less to moderate

Algorithm reliability Less to moderate or high

Decision information After/before scheduling

Policy Centralized Vs. de-centralized

Complexity Easy Vs. Complex

Job behaviour Pre-emptive Vs. non pre-emptive

Load monitoring Continuous Vs. fitful

Fault tolerance Yes or no

Cost Low to medium or Medium to high

Clustering Homogeneous Vs. heterogeneous

Since behavior of node in the system is not static due to node

failure or node removal etc., therefore a temporal unbalance

among the nodes exists. Due to dynamic nature of grid system

a job replication approach [5] are suitable to deal with job

processing. A job replication scheme is same as job

distribution but send a copy of job to each processor for

processing instead of different types of jobs. Tables 5 gives a

comparative analysis of replication and distribution of job in

compute grid system.

Table 5: Job replication Vs. Job distribution

Parameters Job replication Job distribution

Description Same types of job are

processed by each
node.

Each node process

different types of job.

Job type Similar types of job

(job replica)

Dissimilar

No. of copies
of job

No. of node-1 1

Dataset appli-

ed to each job

Same types Different Types

Processing
overhead

More Less than replica-tion

Implementa-

tion detail

Easy to implement Between Easy (static)

& complex
(dynamic)

Speedup Moderate Moderate to high

Reliability Moderate Moderate to high

4.1 Fuzzy Based Approach
Fuzzy logic is a multivalued logic control and the rules are in

the form of IF-THEN (fuzzy conditional statements). For

example: IF the node1 IS lightlyLoaded AND the node2 IS

heavilyLoaded THEN the UnbalancedLoad. The mapping

of input to output is provided by fuzzy inference system (FIS).

The advantage using fuzzy based approach is that, first it

detect the imbalance between nodes and second avoid the

unnecessary load. Fuzzy based load balancing firstly analyse

information passed from the load monitor, and then make a

decision. It use a domain expert’s knowledge for creation of

rule base. A fuzzy load balancer provide faster response time

than average or periodic load balancer.

4.2 Genetic Algorithm Based Approach
For a large scale optimization problem the GA is a well-

known and robust search technique. The primary goal of

genetic based scheduling algorithm is to minimize the

completion time of the job as well as the maximize the node

utilization. The GA starts with randomly generated initial

population called chromosome. Solutions from one population

are taken and used to form a new population. After several

generation final solution or optimal solution is generated.

Three basic operation used in GA are: selection, crossover,

and mutation.

4.3 Agent Based Approach
In agent based approach an agent hierarchy is exists there for

agent based scheduling. A centralized control mechanism is

used by agent. An agent search suitable nodes for execution

of job. A system with multiple agent dispatched the agents to

multiple nodes to obtain service. All agent have pre or earlier

knowledge of all other agent and whenever an agent receive a

job, it connect all the agent to determine the job execution

time. Q. Long et al. [21] describe the 3 most important policy

for agent based policy as follow:

 Migrated agent sets selection,

 Target containers selection, and

 Agent migration

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

47

Table 6: Load Balancing Approach : Comparative Analysis

Approach Description Primary Consideration Advantage

Fuzzy Based

[6,7,8,46]

Rule based methods use a domain expert’s

knowledge for the creation of rule base.

Membership function,

Fuzzy rule,

Fuzzy sets.

Easy to implement,

Fastest response time,

Better load balance.

Genetic
Algorithm Based

[3,4,25,56]

Search methods based on the principles of
evolution and natural genetics.

Encoding scheme,
Selection & fitness evaluation,

Crossover & mutation

Work better when number of job
increases,

Better performance,

Minimize job completion time.

Agent Based

[10,21]

Agent hierarchy consists of a number of

agents that work together to find load

balancing solution.

Agent implementation

Task Allocation,

Scheduling Scheme,
Partial information

Agent hierarchy consists of a number

of agents that work together to find

load balancing solution.

Hybrid Approach

[11,13]

Combination of static and dynamic load

balancing algorithm.

Job scheduling scheme,

Re-distribution of job

More effective,

Reduce job completion time

Improved job execution performance

Policy Based [45] Allocates grid resources to an application

under the constraints with resource usage

policies.

Resource allocation,

Scheduling algorithm

Improves the completion time of Job,

Optimized scheduling.

History Based

[39]

A history of job-execution is used to

estimate the start time of job.

Time estimation,

Job allocation mechanism

Improve the utilization efficiency of

computing nodes.

4.4 Hybrid Approach
Sometimes a node may be in ideal state and sometime in busy

state. To effectively utilize the participant node and overall

system a hybrid approach is beneficial. In static approach

there is no need to continuously collect system information .

In other hand in dynamic approach to assign a task to

appropriate node a continues monitoring of system

information needed. The effectiveness of nodes may vary with

time therefore a dynamic job assignment must be done there.

4.5 Policy Based Approach
The scheduling problem require best resource allocation to a

set of job in an efficient way. A policy based approach handle

different computation time of a job on various nodes. The

initial execution time of a job set with the mean value. Mean

value is taken by using the different time values on a set of

available nodes. When the algorithm change its scheduling

decision this time is updated by using iterative scheduling

approach.

4.6 History Based Approach
In this approach the scheduler first estimate the start time for

job and then allocates it to appropriated computing node.

Estimation of start time is done using execution history. The

scheduler contain various module such as resource select,

reservation map, and information service. For a queuing based

system the start time estimation following steps are taken:

 When a job complete its execution, the

corresponding node send job execution status to

grid agent.

 Agent stores the information, and provide it to

scheduler to make decision

Execution status consists of all information related to that job

including name, id, type, execution time taken and account

information

5. CONCLUSION
In current scenario, compute grid involves sharing of variety

of heterogeneous resources. To distribute the workload using

any application effectively on grid computing systems, load

balancing algorithm must be selected and design carefully. In

this study, a survey of load balancing in the computational

grid environment is presented. In addition, a qualitative

comparison of load balancing algorithms is provided. The

focus in this paper is to provide all relevant information

related to load balancing in computational grid environment.

6. APPENDIX
This section gives some definition related to load balancing in

computational grid environment used in this paper.

Definition 1: Since each task T has a start time Ts, end time

Te, arrival time Ta, and a computational duration Td, therefor a

task can be expressed as a four tuple element as:

T = { Ts, Te, Ta, Td }(5)

Definition 2: The resource or computing node involve in grid

system are heterogeneous in nature therefore each node has a

its own capacity to execute a job. Since each job require some

memory M, processing power Pw, and Input/output IO to

complete its processing therefore the capacity of a node can

be express as a three tuple element as:

C = { M, Pw, IO }(6)

Definition 3: If the capacity of two nodes N1 and N2 are C1

and C2 respectively. Then a task which takes m units of time

on the node N1 to be processed would take m* (C1/C2) unit of

time on the N2.

Definition 4: The latest completion time (sum of execution

time of all job processed) among all the node N involved in a

grid system is known as makespan M.

M = { Max (Load (Ni), ∀ 1 ≤ I ≤ no of node) } (7)

Definition 5: The node utilization (individual) Nu for a node

is achieved by dividing the sum of completion time Tc by the

makespan value.

c

u

T
N

makespan

 (8)

Definition 6: The node utilization (average) Navg is achieved

by sum of node utilization (individual) divided by the total

number of node (m) involve in grid system.

1

m

u

avg

N
N

m

 (9)

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

48

7. REFERENCES
[1] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of

the grid: Enabling scalable virtual organizations, The

International Journal of High Performance Computing

Applications, 15 (3) (2001) 200-222.

[2] Rajkumar Buyya, and Srikumar Venugopal, A Gentle

Introduction to Grid Computing and Technologies,

Computer Socity of India, CSI Communication, July

(2005).

[3] Yajun Li, Yuhang Yang, Maode Ma, and Liang Zhoy, A

hybrid load balancing strategy of sequential tasks for grid

computing environments, Future Generation Computer

Systems, 25 (2009) 819-828

[4] Albert Y. Zomaya, Yee-Hwei Teh, Observations on

Using Genetic Algorithms for Dynamic Load-Balancing,

IEEE Transections on Parallel and Distributed System,

Vol. 12, No. 9, Sept. (2001) 899-911.

[5] Menno Dobber, Rob van der Mei, Ger Koole, Dynamic

Load Balancing and Job Replication in a Global-Scale

Grid Environment: A Comparison, IEEE Transections on

Parallel and Distributed System, Vol. 20, No. 2, Feb.

(2009) 207-218.

[6] Yu-Kwong Kwok, Lap-Sun Cheung, A new fuzzy-

decision based load balancing system for distributed

object computing, Journal of Parallel and Distributed

Computing, 64 (2004) 238–253

[7] Mika Rantonen, Tapio Frantti, Kauko Leiviska, Fuzzy

expert system for load balancing in symmetric

multiprocessor systems, Expert Systems with

Applications 37 (2010) 8711–8720.

[8] R.P. Prado, S. Garcia-Galan, A.J. Yuste, and J.E. Munoz

Exposito, A fuzzy rule-based meta-schedular with

evolutionary learning for grid computing, Engineering

Applications of Artificial Intelligence 23 (2010) 1072–

1082.

[9] Tony Hey, Anne E. Trefethen, The UK e-Science Core

Programme and the Grid, Future Generation Computer

Systems 18 (2002) 1017–1031.

[10] Junwei Caoa, Daniel P. Spooner, Stephen A. Jarvis,

Graham R. Nudd, Grid load balancing using intelligent

agents, Future Generation Computer Systems 21 (2005)

135–149.

[11] K.Q. Yan, S.C. Wang, C.P. Chang, J.S. Lin, A hybrid

load balancing policy underlying grid computing

environment, Computer Standards & Interfaces 29

(2007) 161–173.

[12] Jun Wang, Jian-Wen Chen, Yong-Liang Wang, Di

Zheng, Intelligent Load Balancing Strategies for

Complex Distributed Simulation Applications, 2009

International Conference on Computational Intelligence

and Security, 2009 (182-186).

[13] Kuo-Qin Yan, Shun-Sheng Wang, Shu-Ching Wang,

Chiu-Ping Chang, Towards a hybrid load balancing

policy in grid computing system, Expert Systems with

Applications 36 (2009) 12054–12064.

[14] Sonesh Surana, Brighten Godfrey, Karthik

Lakshminarayanan, Richard Karp, Ion Stoica, Load

balancing in dynamic structured peer-to-peer systems,

Journal of Performance Evaluation 63 (2006) 217–240.

[15] Luis Miguel Campos, Isaac D. Scherson, Rate of change

load balancing in distributed and parallel systems,

Parallel Computing 26 (2000) 1213-1230.

[16] Karen D. Devine, Erik G.Boman, Robert T. Heaphy,

Bruce A. Hendrickson, James D. Teresco, Jamal Faik,

Joseph E. Flaherty, Luis G. Gervasio, New challenges in

dynamic load balancing, Applied Numerical

Mathematics 52 (2005) 133–152.

[17] Arjen Schoneveld, Peter M.A. Sloot, Martin Lees, Erwan

Karyadi, A framework for dynamic load balancing: A

case study on explosive containment simulation, Parallel

Computing 26 (2000) 737-751.

[18] Xiao Qin, Performance comparisons of load balancing

algorithms for I/O-intensive workloads on clusters,

Journal of Network and Computer Applications 31

(2008) 32–46.

[19] Daniel Grosu, Anthony T. Chronopoulos,

Noncooperative load balancing in distributed systems,

Journal of Parallel and Distributed Computing 65 (2005)

1022 – 1034.

[20] Yin-Fu Huang, Chih-Chiang Fang, Load balancing for

clusters of VOD servers, Information Sciences 164

(2004) 113–138.

[21] Qingqi Long, Jie Lin, Zhixun Sun, Agent scheduling

model for adaptive dynamic load balancing in agent-

based distributed simulations, Simulation Modelling

Practice and Theory 19 (2011) 1021–1034.

[22] Bruce Hendrickson, Karen Devine, Dynamic load

balancing in computational mechanics, Computer

methods in applied mechanics and engineering 184

(2000) 485-500.

[23] Mark Baker, Rajkumar Buyya, and Domenico Laforenza,

Grids and Grid technologies for wide-area distributed

computing, Software practice and experience 2002;

(DOI: 10.1002/spe.488)

[24] Sara Kardani-Moghaddam, Farzad Khodadadi, Reza

Entezari-Maleki, Ali Movaghar, A Hybrid Genetic

Algorithm and Variable Neighborhood Search for Task

Scheduling Problem in Grid Environment, Engineering

00 (2011) 3808-3814.

[25] Zhongju Zhang, Weiguo Fan, Web server load

balancing: A queueing analysis, European Journal of

Operational Research 186 (2008) 681–693.

[26] Jiannong Cao, Graeme Bennett, Kang Zhang, Direct

execution simulation of load balancing algorithms with

real workload distribution, The Journal of Systems and

Software 54 (2000) 227-237.

[27] Vladimir V. Korkhov, Jakub T. Moscicki, Valeria V.

Krzhizhanovskay, Dynamic workload balancing of

parallel applications with user-level scheduling on the

Grid, Future Generation Computer Systems 25 (2009)

28–34.

[28] Ka-Po Chow and Yu-Kwong Kwok, On Load Balancing

for Distributed Multiagent Computing, IEEE

Transactions on parallel and distributed systems, Vol. 13,

No. 8, Aug. (2002) 787-801.

[29] Wang Lei, Chen Qing, Gao Zhanjun, Power Systems

Fault Diagnosis Based On Grid Computing, The

International Journal of Computer Applications (0975 – 8887)

Volume 72– No.12, June 2013

49

International Conference on Advanced Power System

Automation and Protection, IEEE (2011) 1557-1561.

[30] Ruchir Shah, Bhardwaj Veeravalli, and Manoj Misra, On

the Design of Adaptive and Decentralized Load-

Balancing Algorithms with Load Estimation for

Computational Grid Environments, IEEE Transactions

on parallel and distributed systems, Vol. 18, No. 12, Dec.

(2007) 1675-1686.

[31] Alpana Rajan, Anil Rawat, Rajesh Kumar Verma,

Virtual Computing Grid using Resource Pooling,

International Conference on Information Technology,

IEEE (2008) 59-64.

[32] Nirmalya Roy, and Sajal K. Das, Enhancing Availability

of Grid Computational Services to Ubiquitous

Computing Applications, IEEE Transactions on parallel

and distributed systems, Vol. 20, No. 7, July (2009) 953-

967.

[33] S. Luo, X. Peng, S. Fan, P. Zhang, Study on Computing

Grid Distributed Middleware and Its Application,

International Forum on Information Technology and

Applications, IEEE (2009) 441-445.

[34] M. Ali, Z.Y. Dong, and P. Zhang, Adoptability of grid

computing technology in power systems analysis,

operations and control, IET Generation, Transmission &

Distribution, Vol. 3, Iss. 10 (2009) 949-959.

[35] Kuo-Chan Huang, On Effects of Resource Fragmentation

on Job Scheduling Performance in Computing Grids,

10th International Symposium on Pervasive Systems,

Algorithms, and Networks, IEEE (2009) 701-705.

[36] Lizhe Wang, G. V. Laszewski, Dan Chen, Jie Tao, and

M. Kunze, Provide Virtual Machine Information for Grid

Computing, IEEE Transactions on systems, man, and

cybernetics-part a: Systemand Humans, Vol. 40, No. 6,

Nov. (2010) 1362-1374.

[37] P. G. S. Tiburcio, M. A. Spohn, ad hoc Grid: An

Adaptive and Self-Organizing Peer-to-Peer Computing

Grid, 10th International Conference on Computer and

Information Technology (CIT) IEEE (2010) 225-232.

[38] Liang Bai, Yan-Li Hu, Song-Yang Lao, Wei-Ming

Zhang, Task Scheduling with Load Balancing using

Multiple Ant Colonies Optimization in Grid Computing,

Sixth International Conference on Natural Computation

(ICNC), IEEE (2010) 2715-2719.

[39] Y. Murata, R. Egawa, M. Higashida, H. Kobayashi, A

History-Based Job Scheduling Mechanism for the Vector

Computing Cloud, 10th Annual International Symposium

on Applications and the Internet, IEEE (2010) 125-128.

[40] Alexandru Iosup and Dick Epema, Grid Computing

Workloads, IEEE Internet Workloads March/April

(2011) 19-26.

[41] Shuai Zhang, Shufen Zhang, The Comparison Between

Cloud Computing and Grid Computing, International

Conference on Computer Application and System

Modeling (ICCASM), IEEE (2010) 72-75.

[42] Rajkumar Rajavel, De-Centralized Load Balancing for

the Computational Grid Environment, Proceedings of the

International Conference on Communication and

Computational Intelligence, India (2010) 419-424.

[43] K. Hasham, A. D. Peris, A. Anjum, D. Evans, S. Gowdy,

J. M. Hernandez, E. Huedo, D. Hufnagel, F. van Lingen,

R. McClatchey, and S. Metson, CMS Workflow

Execution Using Intelligent Job Scheduling and Data

Access Strategies, IEEE Tranasaction on nuclear science,

Vol. 58, No. 3, June (2011) 1221-1232.

[44] Naidila Sadashiv, S. M Dilip Kumar, Cluster, Grid and

Cloud Computing: A Detailed Comparison, The 6th

International Conference on Computer Science &

Education (ICCSE), IEEE Aug. (2011) 477-482.

[45] Jang Uk In, Soocheol Lee, Seungmin Rho, and Jong

Hyuk Park, Policy-Based Scheduling and Resource

Allocation for Multimedia Communication on Grid

Computing Environment, IEEE Systems journal, Vol. 5,

No. 4, Dec. (2011) 451-459.

[46] W. Cheng, J. Congfeng, Liu Xiaohu, Fuzzy Logic-Based

Secure and Fault Tolerant Job Scheduling in Grid,

Tsinghua Science and Technology, Vol. 12 N0. S1

(2007) 45-50.

[47] Malcolm Irving, Gareth Taylor, and Peter Hobson, Plug

in to Grid Computing Moving Beyond the Web, IEEE

power & energy magazine, March/April (2004) 40-44.

[48] G.Manimaran, M. Shashidhar, Anand Manikutty, C.Siva

Ram Murthy, Integrated Scheduling of Tasks and

Messages in Distributed Real-time Systems, IEEE (1997)

64-71.

[49] Angelo Boccia, Gianluca Busiello, Luciano Milanesi,

and Giovanni Paolella, A Fast Job Scheduling System for

a Wide Range of Bioinformatic Applications, IEEE

Transactions on Nanobioscience, Vol. 6, No. 2, June

(2007) 149-154.

[50] M. Ali, Z. Y. Dong, X. Li, and P. Zhang, RSA-Grid: A

Grid Computing based Framework for Power System

Reliability and Security Analysis, IEEE (2006) 1-7.

[51] Zeng Zeng,and Bharadwaj Veeravalli, Design and

Performance Evaluation of Queue-and-Rate-Adjustment

Dynamic Load Balancing Policies for Distributed

Networks, IEEE Transactions on Computers, Vol. 55,

No. 11, Nov. 2006) 1410-1422.

[52] Globus, http://www.globus.org, accessed March 2013.

[53] NetSolve/GridSolve, http://icl.cs.utk.edu/netsolve, 2013.

[54] EGI - European Grid Infrastructure,

http://www.egi.eu/about/egi-inspire//, 2013

[55] Cactus, http://cactuscode.org, 2013.

[56] Legion: A Worldwide Virtual Computer,

http://legion.virginia.edu, accessed Jan. 2013.

[57] UNICORE-Distributed computing and data resources,

http://www.unicore.eu, accessed Jan. 2013.

[58] Condor-High Throughput Computing,

http://research.cs.wisc.edu/htcondor/, 2013.

[59] Grid Simulation Toolkit ,

http://www.cloudbus.org/gridsim/, 2013.

IJCATM : www.ijcaonline.org

