
International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

12

Non Slicing Floorplan Representations in VLSI
Floorplanning: A Summary

Leena Jain,Ph.D

Associate Professor & Head-MCA,
Global Institute of Management. &. Emerging

Technologies, Amritsar (India)

Amarbir Singh

Ph. D., Research Scholar,
Punjab Technical University Jalandhar (India),

Assistant Professor, Guru Nanak dev University,
Amritsar (India)

ABSTRACT
Floorplan representation is a fundamental issue in designing a

VLSI floorplanning algorithm as the representation has a great

impact on the feasibility and complexity of floorplan designs.

This survey paper gives an up-to-date account on various non-

slicing floorplan representations in VLSI floorplanning.

General Terms
VLSI floorplanning, non-slicing floorplan, slicing floorplan.

Keywords
VLSI floorplanning, non-slicing floorplan.

1. INTRODUCTION
A floorplan is a rectangular dissection which describes the

relative placement of electronic modules on the chip. In the

design of VLSI (Very Large-Scale Integrated) circuits

floorplanning is an important phase. It determines the topology of

layout and this is known to be NP-hard problem, and has received

much attention in recent years [1]. The major objective of

floorplanning is to allocate the modules of a circuit into a chip to

optimize some design metric such as area, wire length and

timing. During floorplanning the designers have additional

flexibility in terms of size shape and orientation of the modules

on chip. The shape of the chip and that of the modules is usually

a rectangle. Accordingly VLSI floorplanning is the application of

Rectangle packing problem. For solving these problems various

heuristic, metaheuristic and optimal approaches are available in

the literature [2, 3, 4, 5]. The representation has a great impact on

the feasibility and complexity of floorplan designs. The

redundancy of the representations and the complexity of the

transformation between a representation and its corresponding

floorplan can determine the execution time and the quality of the

results.

In this paper authors have summarized the details about

various floorplan representations that have been used for VLSI

floorplanning. Results of area-minimization on MCNC

benchmarks of different representations have been listed along

with summary of search spaces and computational complexity for

easy comparison.

2. VLSI FLOORPLAN DESIGN

PROBLEM

2.1 Problem Description
VLSI floorplan is to arrange the modules on a chip and the set of

modules can be represented as S ={M1;M2; . . .;MN}, where N is

the number of the modules and Mi (i =1,2,…,N) represents the

ith module. There are two different types of modules:

 1. Hard module: - The hard module‘s shape is fixed, and is

denoted as (W, H), where W is the width and H is the height of

the module.

2. Soft module: - Area is again fixed in case of Soft module, but

the ratio of width/height is included in a given range. It can be

denoted as (S, L, U), where S represents the area, L and U the

lower and upper boundary of the width/height ratio.

 In case that the modules are given, the objective of VLSI

floorplanning is to arrange the modules on a chip under the

constraints that any two modules are not overlapped, and the

area, wire length and other performance indices are optimal [6].

2.2 Floorplan Structure
There are two layout structures in floorplan, namely, slicing and

non-slicing floorplan. A slicing floorplan can be obtained by

repetitively cutting the floorplan horizontally or vertically,

whereas a non-slicing floorplan cannot [7]. The given dimension

of each hard module must be kept. All modules are free of

rotation; if a module is rotated, its width and height are

exchanged. Figure 1 shows a slicing floorplan. A slicing tree is

used to represent a slicing floorplan, it is a binary tree with

modules at the leaves and cut types at the internal nodes. There

are two cut types, V and H. The H cut divides the floorplan

horizontally, and the left (right) child represents the bottom (top)

sub-floorplan. Similarly, the V cut divides the floorplan

vertically, and the left (right) child represents the left (right) sub-

floorplan.

2 2 5

 4

 1 3

 Fig. 1: Slicing floorplan Fig. 2: Non-Slicing floorplan

The non-slicing floorplan is more general than the slicing

floorplan as shown in Figure 2. However, because of its non-

slicing structure, it cannot be modeled using a slicing tree.

Instead, we can use a horizontal constraint graph (HCG) and a

vertical constraint graph (VCG) to model a non-slicing

floorplans. The horizontal constraint graph defines the horizontal

relations of modules separately, and the vertical constraint graph

defines the vertical ones.

3. REPRESENTATION SCHEMES FOR

NON-SLICING FLOORPLANS

3.1 Bounded Slicing Grid Structure (BSG)
The bounded slicing grid structure (BSG) can be obtained as

follows [8]: make a row of non-overlapping horizontal line

segments of two unit length and repeat them row by row, shifting

by one unit length between the adjacent rows. A set of columns

of vertical line segments with two unit length can be constructed

in a similar way. Those line segments are called Bounded Slice

 2 4

 3 6

 1 5

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

13

Lines, or BS-lines. None of the BS-lines are intersecting each

other. The rectangle region enclosed by four BSlines is called a

room. With BSG model, a floorplanning is represented by an

assignment of blocks to rooms and this assignment is referred to

as a BSG-seed. An empty room contains no block. Otherwise, the

room is called occupied room. Given a BSG-seed, a

floorplanning can be realized by stretching or shrinking,

collectively called sizing, the BS-lines [9].

3.2 Corner Block List (CBL)
Floorplan divides the chip into rectangular rooms with several

horizontal and vertical segments and each room is assigned to no

more than one module. If the room of a module is along the

boundary as required, the module can be moved within the range

of the room to reach the boundary without changing the area. In a

no empty space floorplan, T-junctions are formed when the

internal segments intersect. A T-junction is composed of two

segments: a non-crossing segment and a crossing segment. The

non-crossing segment has one end touching point in the interval

of the crossing segment. The Corner Block is the block packed in

the upper right comer room of the floorplan. The joint of the left

and bottom segments of the corner block is contained in a T-

junction called corner T-junction and the comer block‘s

orientation is defined by the orientation of the corner T-Junction.

(Figure3). The T-junction has only two kinds of orientations: T

rotated by 90 degrees counterclockwise and by 180 degrees

counter clockwise. If T is rotated by 90 degrees counter

clockwise, we define the corner block to be vertical oriented, and

it is denoted by a ―0‖ (Figure 3(a)) [10]. Otherwise, we define the

corner block to be horizontal oriented, and it is denoted by a ―1‖

(Figure 3(b)) [10].

 (a) Corner block is vertical oriented

 (b) Corner block is horizontal oriented

Fig.3 The orientation of the corner block

The corner block list is constructed from the record of a recursive

corner block deletion. The corner block deletion is based on the

constraint graph G = (V,E), in which the nodes in V are segments

which slice the space and form the rooms of the floorplan with

additional nodes used for edges of the placement modules, and

the edges in E are the rooms of placement modules. The

transformation from corner block list to floorplan can be

achieved by scanning the CBL in linear time of O(n) [10].

3.3 Corner Sequence (CS)
The CS representation CS= < (S1,D1) (S2,D2),….,(Sm,Dm) > uses

a packing sequence S of the m modules, as well as the

corresponding bends D formed by the modules to describe a

compacted placement. We refer to each two-tuple (Si,Di) 1≤ i ≤ m

as a term of the CS. Derivation of a CS representation from a

compacted placement which can be seen in [11].

3.4 Sequence Pair (SP)
An elegant coding scheme called sequence-pair (SP) has been

proposed for RP [12]. A sequence pair is an ordered pair of Γ+

and Γ- where each of Γ+ and Γ- is a permutation of names of

given n modules. For example, (Γ+;Γ-) = (abcd;bdac) is a seq-pair

of module set {a, b, c, d}. If module x is the ith module in Γ+,

we denote Γ+ (i) = x as well as Γ+
-1(x) = i. Similar notation is

used also for Γ-_. To help intuitive understanding, we use a

notation such as (Γ+; Γ-_) = (..a..b..;..a..b..) by which we mean

Γ+
-1(a) < Γ+

-1(b) and Γ-
-1(a) < Γ-

-1(b). A sequence-pair

corresponds to a relative position of the module pair as follows

[12]. For every module pair {a, b}, a is left of b (equivalently, b

is right of a) if (Γ+; Γ-_) = (..a..b..;..a..b..). Similarly, a is below b

(equivalently, b is above a) if (Γ+; Γ-) = (..b..a..;..a..b..). For

example, (abcd ; bdac) corresponds to a packing in Figure 4 [13].

(a) four modules

 b) packing (c) floorplan

Fig. 4: (Γ+, Γ-) = (abcd; bdac) needs empty-room

A sequence pair is easily utilized as the representation of a

candidate solution for stochastic algorithms such as genetic

algorithm (GA) and simulated annealing (SA). According to

some authors Sequence Pair can represent both slicing and non-

slicing floorplans using two permutations (Γ+, Γ-) of the module

indices.

3.5 B*Tree
A B*tree is an ordered binary tree for modeling non-slicing

floorplans. Given an admissible placement (in which no blocks

can move left or down), one can construct a unique B*tree in

linear time to model the placement. Further, given a B*tree, one

can also obtain a legal placement by packing the blocks in

amortized linear time with a contour structure [14]. Figure 5(a)

and 5(b) [15] show an admissible placement and its

corresponding B*tree of an example floorplan. A ‗B*tree‘ is an

ordered binary tree with its root corresponding to the block at the

bottom left corner. Similar to the Depth First Search (DFS)

procedure, it is possible to construct a B*tree T for an admissible

placement in a recursive fashion. Starting from the root,

recursively, the left subtree is first constructed and then the right

subtree [15].

 a

d

b

c

b

 a

 d

c

left blocks corner
 block

 lower

 blocks

The other packed blocks

 left blocks corner

 Block

 lower blocks

The other packed blocks

b

 a

d

c

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

14

 (a) Admissible floorplan (b) B*tree representation

Fig. 5: An example floorplan and its corresponding B*tree

representation

3.6 Transitive Closure Graph (TCG)
The transitive closure of a directed acyclic graph G is defined as

the graph :)n,{(nEwhere),E(V,G ji
''' there is a path from

node ni to node nj in G}. The transitive closure graph (TCG)

representation describes the geometric relations among modules

based on two graphs, a horizontal transitive closure graph Ch and

a vertical transitive closure graph Cv. Figure 6 shows the

placement and corresponding TCG [16].

 (a) (b)

Fig. 6: Placement in a chip TCG

TCG consists of a horizontal transitive closure graph to define the

horizontal geometric relations between modules and a vertical

one for vertical geometric relations. In Contrast to SP, the

geometric relations between modules are transparent to TCG as

well as its operations, it helps in the convergence to a desired

solution. Apart from this, TCG supports incremental update

during operations and keeps the information of boundary

modules as well as the shapes and the relative positions of

modules in the representation. Nevertheless, just like SP, the

constraint graphs are also needed for TCG to evaluate its packing

cost, but unlike SP, there is need to perform extra operations to

obtain the module packing sequence. Therefore, an interesting

question arises: Is it possible to develop a representation that can

combine the advantages of SP and TCG and at the same time

eliminate their disadvantages? The answer of this question is

TCG-S, a combination of SP and TCG representation [17].

3.7 Integer Coding
Literature [18] introduces integer coding representation in the

format of < V1,V2,…,Vi,…,Vn >, where 1 ≤ Vi ≤ n, Vi = j and it

denotes that the i-th module is placed at j-th position. Literature

[19] adopted the integer coding representation proposed in [18],

and modified the heuristic adjustment method.

3.8 O-Tree
An n-node O-tree is a tree with n+l nodes encoded by (E,x),

where E is a 2n bit string that identifies the branching structure of

the tree, and x is permutation of the n node labels (excluding the

root). In the representation, string E gives a traversing sequence.

‗0‘ means descending an edge, and a ‗1‘ means ascending that

edge. There is exactly a ‘0‘ and ‗1‘ in E for each edge. x is a

permutation of the n node labels (excluding the root). A

compaction algorithm is also given in [20]. Since each node has

and only has one edge from its parent to it, in the following

discussion we will say a 0-1 pair corresponds to a node, which

means the 0-1 pair corresponds to the edge lead to the node.

4. BRIEF LITERATURE REVIEW OF NON-

SLICING FLOORPLANS
Maggie and Wayne (1997) [9] proposed a new method

of non-slicing floorplanning, which is based on the new

representation for non-slicing floorplans proposed by [8], called

bounded slicing grid (BSG) structure. They developed a new

greedy algorithm based on the BSG structure, which runs in

linear time, in order to select the alternative shape for each soft

block so as to minimize the overall area for general floorplan,

including non-slicing structures. Based on BSG structure, they

extended SIA-based local search and GA-based global crossover

to L-shaped, T-shaped blocks and obtain high density packing of

rectilinear blocks.

Yuchun Ma et. al. (2001) [10] implemented the

boundary constraint algorithm for general floorplan by extending

the Corner Block List (CBL) - a new efficient topology

representation for nonslicing floorplan. Their contribution is to

find the necessary and sufficient characterization of the modules

along the boundary represented by Corner Block List. So that the

boundary constraints can be checked by scanning the

intermediate solutions in linear time during the simulated

annealing process and fix the corner block list in case the

constraints are violated. The experimental results show that

performance is remarkable.

Liang Huang, Yici Cai, Xianlong Hong (2004) [21]

presented a parallel algorithm for non-slicing floorplan using

Corner Block List (CBL) topological representation. In this

paper, a parallel interconnection cost calculation algorithm with

load balancing strategy is initiated in order to speed up the

especially time consuming wire length calculation in

floorplanning. Multiple Markov chains strategy is also embedded

in their algorithm. The experiment results obtained from the tests

on MCNC benchmarks indicate considerable speedup and

preserved floorplanning quality.

Jai-Ming Lin et. al. (2003) [11] presented a P-

admissible representation, called corner sequence (CS), for

nonslicing floorplans. It consists of two tuples that denote the

packing sequence of modules and the corners to which the

modules are placed. It is very effective and simple for

implementation. It also supports incremental update during

packing. In particular, it induces a generic worst case linear-time

packing scheme that can also be applied to other representations.

Hiroshi Murata, Kunihiro Fujiyoshi (1997) [12]

proposes such a solution space where each packing is represented

by a pair of module name sequences, called a sequence-pair. By

searching this space using simulated annealing, large numbers of

modules have been packed efficiently as demonstrated by them.

For applications to VLSI layout, they used the biggest MCNC

benchmark ami49 with a conventional wiring area estimation

method, and obtain a highly promising placement.

Koichi haua et. al. (1999) [22] proposed the adaptive

GA for the rectangular packing problem RP and designed new

crossover and mutation operators based on sequence-pair

representation of individuals. They proposed an adaptive strategy

to select appropriate genetic operators during the GA execution.

Experimental results showed the effectiveness of their proposed

GA in comparison to Simulated Anealing (SA).

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

15

Koji kiyota, Kunihiro fuiiyoshi (2000) [13] proposed a

novel solution space of floorplans for simulated annealing (SA)

which consists of the all general floorplans with exact n rooms,

where n is the number of given modules, using sequence-pair. By

using ingenious data structure, a feasible adjacent floorplan can

be obtained in O(n2) time and the reachability from any floorplan

to any other in the proposed solution space will be proved.

Ning Xu‘ et. al. (2003) [23] applied Tabu search

algorithm to solve module placement problem. Firstly, all

modules are merged into some clusters according to the ratio-

connectivity of circuit modules, the placement of the large

modules (are included by some modules) is then represented by

sequence-pairs. The searching of optimal solution of placement is

performed by the tabu search algorithm.

Chikaaki kodama et. al. (2004) [24] proposed a novel

method to encode a given rectangle packing into a sequence-pair

in O(n log n) time, as encoding methods are not found except the

original one called ―gridding‖. The gridding requires almost

O(n3) time for a packing of n rectangular modules and it is hard

to implement. Apart from it they also proposed a linear time

method to obtain a sequence-pair from a given rectangular

dissection represented by a Q-sequence. The proposed methods

can be used for the compaction keeping topology, for example, in

the post-process of the Force Directed Relaxation, a method used

in module placement.

Pradeep Fernando and Srinivas Katkoori (2008) [25]

proposed a multi-objective genetic algorithm for floorplanning

that simultaneously minimizes area and total wirelength. The

proposed genetic floorplanner is the first to use non-domination

concepts to rank solutions. In this paper two novel crossover

operators are presented that build floorplans using good sub-

floorplans. Efficiency of the proposed approach is illustrated by

the 18% wirelength savings and 4.6% area savings obtained for

the GSRC benchmarks and 26% wirelength savings for the

MCNC benchmarks for a marginal 1.3% increase in area when

compared to previous floorplanners that perform simultaneous

area and wirelength minimization.

Dipanjan Sengupta et. al. (2011) [26] presented a new

floorplanning algorithm based on the sequence pair

representation that can floorplan blocks in the form of islands.

When the possible supply voltage choices are given for each

block, the floorplanner simultaneously attempts to reduce power

and area of the chip. Their floorplanner integrates the tasks of

assigning blocks to different supply voltages and the placing of

the blocks in the chip. In comparison to previous work, the

proposed floorplanner on average reduces the area overhead of

the chip by 13.5% with 34% runtime improvement.

Zhen Chen et. al. (2012) [27] proposed a co

evolutionary multi objective particle swarm optimization

(CMOPSO) algorithm to solve a VLSI (Very Large Scale

Integrated) Floorplanning problem which is a multi objective

combinatorial optimization and has been proved to be a NP-hard

problem. The algorithm imports the concept of co evolutionary

algorithm and elitist strategy into basic PSO algorithm, It takes

both the layout area and total interconnection wire length into

consideration simultaneously.

Samsuddin et. al. (2008) [28] proposes an optimization

approach for macro-cell placement which minimizes the chip

area size. The binary tree method for non-slicing tree

construction process is utilized for the placement and area

optimization of macro-cell layout in very large scaled integrated

(VLSI) design. Different types of genetic algorithms: simple

genetic algorithm (SGA), steady-state algorithm (SSGA) and

adaptive genetic algorithm (AGA) are employed in order to

examine their performances in converging to their global

minimums. Apart from it, the robustness of genetic algorithm

also has been investigated in order to validate the performance

stability in achieving the optimal solution for every runtime.

Yun-Chih Chang et. al. (2000) [14] presented an

efficient, flexible, and effective data structure, B*-trees, for non-

slicing floorplans. Inheriting from the nice properties of ordered

binary trees, B*-trees are very easy for implementation and can

perform the respective primitive tree operations search, insertion,

and deletion in only O(1), O(1)and O(n) times while existing

representations for non-slicing floorplans need at least O(n) time

for each of these operations, where n is the number of modules.

They further show the flexibility of B*-trees by exploring how to

handle rotated, pre-placed, soft, and rectilinear modules. The

Experimental results on MCNC benchmarks show that the B*-

tree representation runs about 4.5times faster, consumes about

60% less memory. They also develop a B*-tree based simulated

annealing scheme for floorplan design; the scheme achieves near

optimum area utilization even for rectilinear modules.

Tung-Chieh Chen, and Yao-Wen Chang (2006) [15]

studied two types of modern floorplanning problems: 1) fixed-

outline floorplanning and 2) bus-driven floorplanning (BDF).

This floorplanner uses B*-tree floorplan representation based on

fast three-stage simulated annealing (SA) scheme called Fast-SA.

The authors proposed an adaptive Fast-SA for fixed-outline

floorplanning that can dynamically change the weights in the cost

function to optimize the wire length under the outline constraint.

For the BDF, the authors explore the feasibility conditions of the

B*-tree with the bus constraints, and developed a BDF algorithm

based on the conditions and Fast-SA. The experimental results

show that this floorplanner obtains much smaller dead space for

the floorplanning with hard/soft macro blocks, compared with the

most recent work.

Fubing Mao et. al. (2009) [29] proposed hybrid

algorithm which based on B*-tree representation to improve the

area utilization. The simulated annealing was embedded into tabu

search for floorplanning. Experimental results show that their

approach can improve the area utilization in shorter time. It

shows that the method they proposed is effective and efficient.

Jiarui Chen, Jianli Chen (2010) [30] presented a hybrid

evolution algorithm for VLSI floorplanning based on B*-tree. In

this method, BFS sequence of B*-tree is adopted as the

individual encoding, and the crossover is constructed. Based on

the concept of evolutionary algorithm and simulated annealing, a

hybrid evolutionary algorithm (ESA) is proposed. Furthermore,

A fast SA is embedded into the evolution iteration for more

accurate search and faster convergence. Experimental results

show that our algorithm is efficient and effective. To further

study the method presented in this paper, we will apply it to a

multilevel floorplanning framework for larger scale circuit.

Jianli Chen, Wenxing Zhu (2010) [31] described that

HGA uses an effective genetic search method to explore the

search space and an efficient local search method to exploit

information in the search region. Experimental results on MCNC

benchmarks show that the HGA is effective and promising in

building block layout application.

 S. Anand et. al. (2010) [32] developed Simulated

Spheroidizing Annealing Algorithm (SSAA) based on a

Simulated Annealing Algorithm (SAA) heuristic and

improvements in the proposed heuristic algorithm are also

suggested to improve its performance. Exploration capability of

the proposed algorithm is due to the mechanism of reducing the

uphill moves made during the initial stage of the algorithm,

extended search at each temperature and the improved

neighborhood search procedure. The proposed SSAA algorithm

is also found more efficient for problems of larger sizes.

Jianli Chen et. al. (2011) [1] presented a hybrid

simulated annealing algorithm (HSA) for non slicing VLSI

floorplanning. The HSA uses a new greedy method to construct

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

16

an initial B*-tree, a new operation on the B*-tree to explore the

search space, and a novel bias search strategy to balance global

exploration and local exploitation. Experimental results show that

the HSA can quickly produce optimal or nearly optimal solutions

for all the tested problems.

Yiding Han et. al. (2011) [33] proposed a novel

floorplanning algorithm for GPUs. Floorplanning is an inherently

sequential algorithm, far from the typical programs suitable for

Single Instruction Multiple Thread (SIMT) style concurrency in a

GPU. They propose a fundamentally different approach of

exploring the floorplan solution space, where they evaluate

concurrent moves on a given floorplan. Compared to the

sequential algorithm, their techniques achieve 4-30X speedup for

a range of MCNC benchmarks.

Jai-Ming Lin and Yao-Wen Chang (2001) [34]

proposed a transitive closure graph-based representation for

general floorplans, called TCG, and show its superior properties.

TCG combines the advantages of popular representations such as

sequence pair, BSG, and B*-tree. More importantly, the

geometric relation among modules is transparent not only to the

TCG representation but also to its operations, facilitating the

convergence to a desired solution. All these properties make TCG

an effective and flexible representation for handling the general

floorplan/placement design problems with various constraints.

Jai-Ming Lin and Yao-Wen Chang (2002) [17]

proposed the equivalence of the two most promising P*-

admissible representations, SP and TCG, and integrated TCG

with a packing sequence (part of SP) into a new representation,

called TCG-S. It combines the advantages of SP and TCG and at

the same time eliminates their disadvantages. By using TCG-S

placement with position constraints becomes much easier, and

incremental update for cost evaluation can be realized. All these

nice properties make TCG-S a superior representation which

exhibits an elegant solution structure to facilitate the search for a

desired floorplan/placement.

Jai-Ming Lin and Yao-Wen Chang (2005) [16]

introduced the concept of the P*-admissible representation,

presented the P*-admissible TCG representation for general

floorplans, and shown its superior properties. Experimental

results have shown that TCG is very efficient, effective, and

stable in floorplan optimization. As revealed in the

representation, TCG keeps the information of boundary modules

as well as the shapes and the relative positions of modules.

Guolong Chen et. al. (2008) [35] proposed a novel

floorplanning algorithm based on Discrete PSO (DPSO)

algorithm, in which integer coding based on module number was

adopted. The principles of mutation and crossover operator in the

Genetic Algorithm (GA) are also incorporated into the proposed

PSO algorithm to achieve better diversity and break away from

local optima. The proposed algorithm can avoid the solution from

falling into local minimum and have good convergence

performance.

Guolong Chen et. al. (2009) [36] proposed a novel

intelligent decision algorithm based on the particle swarm

optimization (PSO) technique to obtain a feasible floorplanning

in VLSI circuit physical placement. The PSO was applied with

integer coding based on module number and a new recommended

value of acceleration coefficients for optimal placement solution.

Inspired by the physics of genetic algorithm (GA), the principles

of mutation and crossover operator in GA are incorporated into

the proposed PSO algorithm to make this algorithm to break

away from local optima and achieve a better diversity.

Experiments employing MCNC and GSRC benchmarks show

that the proposed algorithm is effective.

Pei-Ning Guo et. al. ((2001) [37] presented an ordered

tree (O tree) structure to represent non slicing floorplans. The O

tree representation uses only n (2 + log (n)) bits for a floorplan of

n rectangular blocks. Given an O tree, it takes only linear time to

construct the placement and its constraint graph. They have

developed a deterministic floorplanning algorithm utilizing the

structure of O tree. Empirical results on MCNC (www.mcnc.org)

benchmarks show promising performance with average 16%

improvement in wire length and 1% less dead space over

previous central processing unit (CPU) intensive cluster

refinement method.

Hiroshi ninomiya et. al. (2006) [38] described the two-

staged Tabu search for the non-slicing floorplan problem using

the ordered tree representation called O-tree. The floorplan

problem is a part of VLSI layout design problem. Furthermore,

they combine ideas from the simulated annealing into the two-

staged Tabu search and proposed a novel hybrid algorithm for

floorplan represented by O-tree. Finally, they demonstrated the

validity of two-staged search and hybrid method for MCNC

benchmark tests through the computer simulations.

Maolin Tang and Xin Yao (2007) [39] proposed a

memetic algorithm (MA) for a nonslicing and hard-module VLSI

floorplanning problem. This MA is a hybrid genetic algorithm

that uses an effective genetic search method to explore the search

space and an efficient local search method to exploit information

in the search region. The exploration and exploitation are

balanced by a novel bias search strategy. The MA has been

implemented and tested on popular benchmark problems. In

addition, it only takes O(n) to transform between an O-tree

representation and its corresponding floorplan.

Maolin Tang, Raymond Y.K. Lau (2007) [40]

presented a parallel genetic algorithm (GA) for floorplan area

optimization. This parallel GA is based an island model with an

asynchronous migration mechanism, and is implemented using

Web services and multithreading technologies. Furthermore,

parallel GA is compared with a sequential GA and experimental

results show that the parallel GA can produce better results than

the sequential GA when they use the same amount of computing

resources.

Table 1: Summary of search spaces and computational

complexity

Floorplan

representations

Search space Computational

complexity

B* Tree O[(n!22n−1)/n1.5] O(n)

O-Tree O[(n!22n−1)/n1.5] O(n)

 TCG O((n!)2) O(n2)

TCG-S O((n!)2) O(n·logn)

SP O((n!)2) O(n2)

Fast-SP O((n!)2) O(n·log(logn))

CBL O[(n!23n−3)/n1.5] O(n)

CS O((n!)2) O(n)

5. CONCLUSION
In this paper authors have presented a detailed study on

representations for non-slicing floorplans and these

representations are much harder for implementation and

operation and incur more restrictions in comparison with

representations for slicing floorplans. It is clear from Table 2, that

B*-Tree representation has more advantages over other types and

results of area-minimization on MCNC benchmarks for this

representation are also very competitive as displayed in Table 3.

The summary of search spaces and computational complexity is

given in Table 1, to help in making selection of representation

scheme for a floorplanning problem.

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

17

Table 2: Representation Comparison

Floorplan

Representation

Advantages Dis-Advantages

TCG

 No need to construct additional constraint

graphs for the cost evaluation during packing

 Implies faster runtime

 Supports incremental update during operations

 Memory usage is smaller

 Cannot handle the slicing

structure

TCG-S

 Implies faster convergence to a desired

solution.

 The placement with position constraints

becomes much easier.

 Can support incremental update for cost

evaluation.

 Cannot handle the slicing

structure

CS Effective and simple for implementation

 It supports incremental update during packing

 Cannot handle the slicing

structure

Sequence Pair

 Can handle both slicing and non-slicing

structure

 Very flexible in representation

 Time-consuming

 The solution space is large

 Sequence encoding cost is high

 Difficult to transform between a

sp and a placement

 Cannot handle soft modules

directly

CBL Can handle non-slicing structure

 Very flexible in representation

 Many infeasible solutions may be

generated before a feasible

solution is found

 It is not p-admissible

BSG

 Can handle non-slicing structure

 Placement becomes easy

 Very flexible in representation

 Time-consuming

 The solution space is large

 Incurs redundancies

O-Tree

 Can handle non-slicing structure

 The solution space is smaller

 Transformation between representation and

placement takes only linear time

 Encoded by fewer bits than sequence pair and

BSG

 Less flexible than sequence pair

in representation

 Tree structure is irregular and

harder for implementation

 Required to encode and operate

on module sequence

 Inserting positions are limited and

might deviate from the optimal

during solution perturbation

B*-tree

 Efficient and flexible to deal with hard, pre-

placed, soft, and rectilinear modules, etc

 Smaller encoding cost

 Takes only linear time

 Can evaluate area cost incrementally

 The solution space is smaller

 Compact placement

 Lesser flexible than sequence pair

in representation

 It may not be feasible to find a

placement corresponding to its

original representation

Table 3: Published results of area-minimization on MCNC benchmarks of different representations

Floorplan

Representations

Published Results

Publishing

Details

apte xerox hp ami33 ami49

Optimal [41] 46.9 19.8 8.95 time-out time-out

CBL [21] 47.614 20.641 NA 1.2581 38.507

TCG [16] 46.92 19.83 8.947 1.20 36.77

TCG-S [17] 46.9 19.796 8.947 1.185 36.40

CS [11] 46.92 19.83 8.947 1.18 36.28

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

18

B*-Tree

 [14] 46.92 19.83 8.95 1.27 36.80

 [31] 47.01 20.14 9.13 1.19 37.49

 [32] 48.47 20.42 9.48 1.23 38.10

 [1] 48.12 21.86 9.43 1.25 40.01

O-tree [37] 48.3 20.4 9.71 1.26 41.3

Integer Coding [35] 46.92 20.44 NA 1.29 39.27

Fast-SP [42] 46.92 19.80 8.94 1.20 36.50

GPE [43] 45.9 20.14 9.12 1.18 36.45

Sequence Pair (SP) [44] 47.07 19.83 9.14 1.19 37.27

6. REFERENCES
[1] Jianli Chen, Wenxing Zhu, and M. M. Ali, ‖A Hybrid

Simulated Annealing Algorithm for Nonslicing VLSI

Floorplanning‖, IEEE transactions on systems, man and

cybernetics—part c: applications and reviews, VOL. 41,

NO. 4, 2011, pp. 544-553.

[2] Jain L. and Singh G., ―A Review: Meta- heuristic

Approaches for solving Rectangle Packing Problem‖,

International Journal of Computer Engineering and

Technology, Volume 4, Issue 2, 2013, pp. 410- 424.

[3] Singh K. and Jain L., ―Experimenting Genetic approach

to extend rectangular packing heuristic solutions‖,

International Journal of Computer Applications. Special

Issue on ―Evolutionary Computation for Optimization

Techniques‖, 2010, pp. 1-7.

[4] Singh K. and Jain L., ―An improved Heuristic for 2D

Rectangular packing problem‖, Proceeding of IEEE

International Advance Computing Conference, March-

2009, Thaper University, Patiala, IEEE Delhi Section,

2009, pp. 1185-1190.

[5] Singh K. and Jain L., ―Optimal Solution for 2-D

Rectangle Packing Problem‖, International Journal of

Applied Engineering Research. VOL. 4, NO. 11, 2009,

pp. 2203–2222.

[6] Guolong Chen, Wenzhong Guo, Yuzhong Chen, ―A

PSO-based intelligent decision algorithm for VLSI

floorplanning‖, Springer, Soft Computing, 2010, pp.

1329–1337.

[7] D. F. Wong, C. L. Liu, ―A new algorithm for floorplan

design.‖ Proceeding of the ACWIEEE Design

Antomation Conference, 1986, pp. 101-107.

[8] S. Nakatake, K. Fujiyoshi, H. Murata and Y. Kajitani,

―Module placement on BSG-structure and IC layout

applications‖, Proceedings of 1996 IEEE/ACM,

International Conf. on Computer Aided Design, 1996,

pp. 484-491.

[9] Maggie Kang, Wayne W. M. Dai, ―General

floorplanning with L-shaped, T-shaped and Soft Blocks

Based on Bounded Slicing Grid Structure‖ In

proceedings of Design Automation Conference 1997

Asia and South Pacific, IEEE, 1997, pp. 265 – 270.

[10] Yuchun Ma', Sheqin Dong', Xianlong Hong', yici Cai',

Chung-Kuan Cheng2, Jun Gu3,‖ VLSI Floorplanning

with Boundary Constraints Based on Corner Block List‖,

IEEE, 2001, pp 509-514.

[11] J.-M. Lin, Y.-W. Chang, S.-P. Lin,‖Corner sequence: a

P-admissible floorplan representation with a worst case

linear-time packing scheme‖, IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 2003, pp. 679–

686.

[12] H. Murata, K. Fujiyoshi and Y. Kajitani: ―VLSI module

placement based on rectangle-packing by the sequence-

pair,‖ IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, V01. 15, N0. 12, 1996,

pp. 1518-1524.

[13] Koji kiyota, Kunihiro fuiiyoshi, ‖Simulated Annealing

Search Through General Structure Floorplans Using

Sequence-Pair‖, Symposium On Circuits And Systems,

Geneva, Switzerland , IEEE, 2000, pp. 77-80.

[14] Yun-Chih Chang, Yao-Wen Chang, Guang-Ming Wu,

and Shu-Wei Wu,‖B*-Trees: A New Representation for

Non-Slicing Floorplans‖ (c) ACM, 2000.

[15] Tung-Chieh Chen, and Yao-Wen Chang,‖ Modern

Floorplanning Based on B*-Tree and Fast Simulated

Annealing‖ IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, VOL. 25,

NO. 4, APRIL 2006, pp. 637-650.

[16] Jai-Ming Lin and Yao-Wen Chang, ‖ TCG: A Transitive

Closure Graph-Based Representation for General

Floorplans‖, IEEE transactions on very large scale

integration (VLSI) systems, VOL. 13, NO. 2, 2005, pp.

288-292.

[17] J.-M. Lin and Y.-W. Chang, ―TCG-S: Orthogonal

Coupling of P*-admissible Representations for General

Floorplans,‖ IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2004, pp.968

- 980.

[18] B. H. Gwee, and M. H. Lim, ―A GA with heuristic-based

decoder for IC Floorplanning‖, The VLSI journal, 1999,

pp. 157-172.

[19] X. G. Wang, L. S. Yao, and J. R. Gan, ―VLSI

Floorplanning Method Based on Genetic Algorithms‖,

Chinese Journal of Semiconductors, 2002, pp. 330-335.

[20] P. -N Guo, C. -K. Cheng, T., Yoshimura, ―An O-tree

representation of non-slicing floorplan and its

applications‖, Proc. 36th ACWIEEE Design AutoNation

Cont., 1999, pp.268-273.

[21] Liang Huang, Yici Cai, Xianlong Hong, ‖A Parallel

VLSI Floorplanning Algorithm Using Corner Block List

Topological Representation‖, IEEE, 2004, pp. 1208-

1212.

[22] Koichi Haua, Shin‘ichi Wakabayashi, Tetsushi Koide,

―Solving the Rectangular Packing Problem by an

Adaptive GA Based on Sequence-Pair‖, ASP-DAC,

1999, pp. 181-184.

http://www.informatik.uni-trier.de/~ley/pers/hd/k/Koide:Tetsushi.html
http://www.informatik.uni-trier.de/~ley/db/conf/aspdac/aspdac1999.html#HattaWK99
http://www.informatik.uni-trier.de/~ley/db/conf/aspdac/aspdac1999.html#HattaWK99

International Journal of Computer Applications (0975 – 8887)

Volume 71– No.15, June 2013

19

[23] Ning Xu‘, Xian-Long Hong‘.She-Qin Dong‘, he-Bang

Yu‘,‖ TSCSP: Tabu Search Algorithm for VLSI Module

Placement Based on the Clustering Sequence-Pair‖,

IEEE, 2003.

[24] Chikaaki KODAMA, Kunihiro FUJIYOSHI, and Teppei

Koga, ―A Novel Encoding Method Into Sequence-Pair ―,

ISCAS, IEEE, 2004, pp. V329 – V332.

[25] Pradeep Fernando and Srinivas Katkoori, ―An Elitist

Non-Dominated Sorting based Genetic Algorithm for

Simultaneous Area and Wirelength Minimization in

VLSI Floorplanning‖ In 21st International Conference

on VLSI Design, 4-8 January 2008, Hyderabad, India,

IEEE Computer Society, 2008, pp. 337-342.

[26] Dipanjan Sengupta, Andreas Veneris, Steve Wilton,

Andre Ivanov, Res Saleh, ‖Sequence Pair Based Voltage

Island Floorplanning‖, Proceedings of the 2011

International Green Computing Conference and

Workshops, IEEE computer society Washington, 2011,

pp. 1-6.

[27] Zhen Chen, Jinzhu Chen, Wenzhong Guo, Guolong

Chen, ‖A Coevolutionary Multi-Objective PSO

algorithm for VLSI Floorplanning‖ 8th International

Conference on Natural Computation (ICNC), IEEE,

2012, pp. 712-728.

[28] Samsuddin, AbAl-Hadi Ab Rahman, Andaljayalakshmi

G, ‖A Genetic Algorithm Approach to VLSI Macro Cell

Non-Slicing Floorplans Using Binary Tree‖, Proceedings

of the International Conference on Computer and

Communication Engineering, IEEE, 2008.

[29] Fubing Mao, Ning Xu, Yuchun Ma, ‖Hybrid Algorithm

for Floorplanning Using B*-tree Representation‖, Third

International Symposium on Intelligent Information

Technology Application, IEEE, 2009, pp. 228-231.

[30] Chen, J., & Chen, J., ―A hybrid evolution algorithm for

VLSI floorplanning‖, Int. Conf. Comput. Intell. Software

Eng. (CiSE), IEEE, 2010, pp. 1-4.

[31] Jianli Chen, Wenxing Zhu, ‖A Hybrid Genetic

Algorithm for VLSI Floorplanning‖, International

Conference on Intelligent Computing and Intelligent

Systems (ICIS), IEEE, 2010, pp. 128-132.

[32] S. Anand · S. Saravanasankar · P. Subbaraj, ‖Customized

simulated annealing based decision algorithms for

combinatorial optimization in VLSI floorplanning

problem‖, Springer , 2011.

[33] Yiding Han, Koushik Chakraborty, Sanghamitra Roy,

Vilasita Kuntamukkala, ‖A GPU Algorithm for IC

Floorplanning: Specification, Analysis and

Optimization‖, 24th Annual Conference on VLSI

Design, IEEE, 2011.

[34] Jai-Ming Lin and Yao-Wen Chang, ―TCG: A Transitive

Closure Graph-Based Representation for Non-Slicing

Floorplans‖, Proc. DAC, IEEE, 2001, pp. 764-769.

[35] Guolong Chen, Wenzhong Guo, Hongju Cheng, Xiang

Fen and Xiaotong Fang, ‖VLSI Floorplanning Based on

Particle Swarm Optimization‖ Proceedings of 3rd

International Conference on Intelligent System and

Knowledge Engineering, IEEE ,2008, pp. 1020-1025.

[36] Guolong Chen, Wenzhong Guo, Yuzhong Chen, ‖A

PSO-based intelligent decision algorithm for VLSI

Floorplanning‖, Soft Computing, VOL. 14, NO. 12,

Springer, 2009, pp. 1329-1337.

[37] Pei-Ning Guo, Toshihiko Takahashi, Chung-Kuan

Cheng, ‖Floorplanning Using a Tree Representation‖,

IEEE transactions on computer-aided design of

integrated circuits and systems, VOL. 20, NO. 2, 2001,

pp. 281-289.

[38] Hiroshi Ninomiya, Kimihiko Numayama and Hideki

Asai, ‖Two-staged Tabu Search for Floorplan Problem

Using O-Tree Representation‖, IEEE Congress on

Evolutionary Computation, Vancouver, BC, Canada,

July 16-21, 2006.

[39] Maolin Tang and Xin Yao, ‖A Memetic Algorithm for

VLSI Floorplanning‖, IEEE transactions on systems,

man, and cybernetics—part b: cybernetics, VOL. 37,

NO. 1, 2007, pp. 62-69.

[40] Maolin Tang, Raymond Y.K. Lau,‖ A Parallel Genetic

Algorithm for Floorplan Area Optimization‖, Seventh

International Conference on Intelligent Systems Design

and Applications,IEEE, 2007, pp.801-806

[41] H. H. Chan, I. L. Markov, ―Practical Slicing and Non-

slicing Block-Packing without Simulated Annealing‖,

ACM/IEEE Great Lakes Symp. on VLSI, 2004, pp. 282-

287.

[42] Tang, X., Wong, D.F., ―FAST-SP: a fast algorithm for

block placement based on sequence pair‖, In Proceedings

of the ASP-DAC, 2000, pp. 521–526.

[43] Chang-Tzu Lin, De-Sheng Chen, Yi-Wen Wang., ―GPE:

A New Representation for VLSI Floorplan Problem‖,

Proc. ICCD, IEEE, 2002, pp. 531 -533.

[44] Adya, S.N., Markov, I.L., ―Fixed-outline floorplanning:

enabling hierarchical design‖, Transactions on Very

Large Scale Integration (VLSI) Systems, IEEE

Transactions , VOl. 11, Issue: 6 , 2003, pp. 1120-1135.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5639100
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5639100
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5639100

