
International Journal of Computer Applications (0975 – 8887)

Volume 67– No.2, April 2013

6

NoSQL, a Solution for Distributed Database
Management System

Renu Kanwar

M-Tech, Department of C.S
Govt. Engg. College, Ajmer

Ajmer (Rajasthan), India

Prakriti Trivedi
Asst.Prof, Department of C.S
Govt. Engg. College, Ajmer

Ajmer (Rajasthan), India

Kuldeep Singh
Senior Software Developer

Royal Bank of Scotland
Gurgaon (Haryana), India

ABSTRACT

The recent advance in distributed data management

techniques are growing, today the world need databases to be

able to store and process big data effectively, demand for very

high-performance when reading and writing, these effects

especially in large scale and high concurrency applications,

such as search engines hence the traditional database limits

itself for such complex requirements, therefore various types

of non-relational databases that are commonly referred to as

NoSQL databases which is abbreviation of “ Not only

structured query language”. Their primary advantage which is

worth emphasizing is that, unlike relational databases, they

handle unstructured data. NoSql is the solution for use cases

where ACID is not the major concern and uses BASE instead

which works up on eventual consistency. Here introducing

Coherence which is a technology developed by oracle which

works on NoSQL Principles.

Keywords

NoSQL, Data-bottleneck, Coherence.

1. INTRODUCTION
While considering the current scenarios and the recent

advances in cloud computing there are various outlooks where

the traditional relational database limits itself considering the

following aspects:

Big Data Storage: Large application like search engines

require enormous amount of data to be stored and respond

well with millions of data traffic.

Speed and Scalability: As the number of concurrent request

increases there should be provision for easy expansion and up

gradation.

Highly available and fault tolerant: The system should be

available any ways and there shouldn’t be single point of

failure, it should provide fast data backup and recovery.

In other words there is requirement of applications which are

highly scalable and can be manipulated according to ones

needs and requirements. Therefore as day by day many

applications have raised where the traditional database limits

itself and there is a need for some reincarnation NoSQL

databases have proved to be a solution, Internet is yet another

example for the big data storage as it is the biggest database of

the world hence for these unstructured data[6], a solution

which bless the users by a wish by which they could design a

database of their own according to their requirements, NoSQL

are called so because they don’t work on the traditional SQL

protocols[8], Introducing Coherence which is a technology

developed by oracle which works on NoSQL principles and

make use of data partitioning in a very refined way that

makes data scaling a child’s play, it not only help in data

partitioning but is fault tolerant and avoids single point of

failure.

2. DATA BOTTLENECK
Traditional RDBMS encounters a very predominant problem

of data bottlenecking which arises when there is large number

of concurrent requests for a single application and system fails

to respond to all the requests simultaneously. Considering the

problem of data bottleneck there are some statistics of the

traditional RDBMS that is to be rectified like scaling up the

system through database clustering where data is made

available at multiple sites thus it could be a solution and

bottlenecking could be avoided but only to a certain extend as

the replication of data is limited and could again face the same

problem with the growing data numbers plus there is an

important issue of data synchronization because a change at a

single data site would require all the data sites to be updated

and hence results into another problem of data distributed

locking. To avoid the problem of distributed locking another

appropriate solution is to shard the data repository into

multiple data storage without replicating whole data like

dividing the customer and product database so that both the

problem of data bottlenecking and distributed locking is

solved but a problem of data synchronization is encountered

with such data sharding.

Fig 1. Database Sharding

Traditional RDBMS encounters a database schema which

consists of a too many joins and relationships which makes

the data storage a complex issue. Set of instructions which are

not required for the application are often performed and hence

increases the overheads on the system, The system have to

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.2, April 2013

7

deal with several tables and apply the possible joins in them

which result in data locking and latching also following the

strict rules of ACID which stands for Atomicity, Consistency,

Isolation and Durability further adds up to the complexity

that makes scaling of the database a complex task as when

database need to be consistent various instructions are taken

care of like buffer manager, hand code optimization etc

whereas the overall useful work done is considerably low that

increases unneeded complexities and overhead.

3. ACID->BASE
To avoid the un-needed complexities caused by the strict

semantics of ACID NoSQL works on BASE [1].

The acronym BASE stands for

• Basically available

• Soft state

• Eventual Consistency

Hence the focus is on the eventual consistency that means

while working the system is not obliged to maintain

consistency at each state rather the belief is on making the

system consistent at the end of any process means the readers

will see writes as time goes on and then in a steady state the

system will eventually return the last value which was written

Clients therefore may face an inconsistent state of data as

updates are in progress.

Table 1. ACID-BASE

ACID BASE

Strict consistency Weak constancy

Isolated Availability first

Focus on “commit” Best effort

Nested Transactions Approximate answers

Conservative Simpler

Difficult evolution (e.g.

schema)

Fast, Easier evolution

Table 1 contrast between the two different semantics of ACID

and BASE where the former laid emphasis on strict

consistency and later on eventual consistency [12].

4. NOSQL ARCHITECTURE
NoSql architecture basically tries to achieve the shared

nothing architecture, the term shared nothing means that when

the data repository is being sharded the clusters should not be

dependent on each other for any kind of updates any change

inside any cluster should not affect the others.

To achieve this kind of architecture an extra scalable state is

introduced which lies in the application layer and data is

stored inside the memory RAM which is much more quick as

compared to the disk, or it can be said that this is the caching

layer which can be scaled out easily and also as data is stored

In-Memory time is not wasted in the disk access.

• Ideally, this new layer should have the following

characteristics: It should manage data as objects, because

objects are what the application needs.

• It should keep these objects in memory, in order to improve

performance and avoid the disk I/O bottlenecks that plague

databases.

• It should be able to transparently load missing data from the

persistent store behind it.

• It should be able to propagate data modifications to the

persistent store, possibly asynchronously.

• It should be as simple to scale out as the stateless application

layer.

Fig 2.Shared nothing architecture

But the major problem with the In-memory data storage is that

it is fragile and data could be lost. Therefore it is important to

propagate the data modifications to the persistent store,

possibly asynchronously, data is stored in the persistent data

store asynchronously because the access to the disk takes time

so the read write request of the user are entertained by the data

stored in memory so that that the request are responded at

high speed and then the data is stored inside the disk so that it

won’t be lost if any miss happening occurs.

5. INTRODUCING COHERENCE
Coherence is the product of Oracle used in various banking

multinationals, it can be thought as a cache, as it is designed

for but it subsequently offers much functionality as query

functionality, indexing etc. Coherence works on the same

NoSql architectures were the clusters work as a cache which

is called the Nodes and behind there is a persistent data store

attached is the data is stored possible asynchronously.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.2, April 2013

8

Fig 3.Coherence Architecture

There are three distinct layers in its architecture [10]; client,

cluster, persistence data store, the cluster is sandwiched

between the two layers of client and the persistent data source.

The persistence data source is basically used for the data

writes, it does not contributes to the data retrieval for that

purpose the cluster in the centre is used which is usually pre-

populated by the persistence data source.

Feature of Coherence

The three main features of Coherence is

• Fast

• Fault tolerant

• Scalable

Coherence is fast as it stores all the data solely in memory and

therefore the disk access is not required which basically takes

time and hampers the speed of the system[11]. Secondly the

objects are always held in serialized form which allows

coherence to skip the serialization step that cut down the extra

load. Writes to the database are usually performed

asynchronously, asynchronous persistence data store is

important so that Coherence does not have to wait for disk

access on a potential bottleneck source of data, It crafts the

queries to run in parallel so that it can engages the entire

hardware cluster simultaneously.

Coherence is Scalable because in RDBMS scaling is done

through database clustering but with database clustering an

obvious problem of distributed data locking is prevalent but

with coherence these distributed locking problems are handled

quite efficiently as all data is stored as key value pairs in small

data clusters known as data nodes these nodes are quite

flexible and can be increased and decreased easily [11],

According to the requirement the nodes are scaled the

performance of coherence is comparatively better then

RDBMS scaling.

Fig 4.Scalability performance

Coherence is fault tolerant as well as highly available because

with this product loss of single machine would not have

significant impact on the operation of cluster [11]. Its

resilience lies in the back up structure as loss of single node

will result in failover to a backup copy held some were else in

the cluster and all the operations which were going on will

resume elsewhere in the cluster. It is the most powerful

feature of the product plus it also detects node loss and

effectively deal with it by adding of new nodes whenever the

system require. Coherence says the more machines, the faster

the failover will be.

International Journal of Computer Applications (0975 – 8887)

Volume 67– No.2, April 2013

9

Fig 5.Failover and Backup

Coherence detects the Node which has died and redistributes

the data among the remaining nodes. Cluster of nodes holding

primary data locally the Back-up of primary data is distributed

across all other nodes and hence a logical view can be

obtained of all data from any node. All nodes verify health of

each other by sending alert messages, In the event if a node is

unhealthy, other nodes diagnose state of the unhealthy node as

if for a long time if no messages are heard from a single node

and a number of such alert messages are encountered the

cluster term it as unhealthy. Unhealthy node is isolated from

the cluster, and Remaining nodes redistribute primary and

back-up responsibilities to all other healthy nodes. The

distribution is completely fair and transparent.

6. CONCLUSIONS
Traditional database architectures have proved to be

inappropriate for many use cases because in current scenario

Speed and scalability are need of an hour. Therefore

nowadays applications are shifting towards In-Memory data

storage which could boost the data access and the system

could look forward for databases which could work according

to the use cases and NoSql is the solution for use cases where

ACID is not the major concern. In this regard a very fine

product of oracle that is Coherence provides us with three

basic enterprise functionalities i.e. speed, scalability and fault

tolerance. It has no single points of failure, it automatically

and transparently fails over and redistributes its clustered data

management services when a server becomes inoperative or is

disconnected from the network. It Transparently redistribute

the cluster load, Coherence runs on the java platform and is an

example of NoSQL databases , It does however support an

object based query language which is not dissimilar to SQL It

is designed for very fast data access via lookups based on

simple attributes, but have limitations of its own that when

complexity increases and data needs to be centralized then

coherence limits itself as data partitioning becomes difficult It

is not suited for complex data operations or long transactions.

 The combination of relational databases and NoSQL will

bring a big change in data storage and by the popularity

gained by NoSQL databases it seems as if after ten years may

be the traditional database would get eradicated and NoSQL

would take up its position.

7. ACKNOWLEDGMENT

I extend my thanks and gratitude to Mrs. Prakriti Trivedi

(Asst. Prof.) my guide whose guidance, teaching and certain

suggestion provide me the timely valuable input which

enhanced my knowledge and motivated me for my work. I

also wish to extent thanks to Mr. Kuldeep Singh who serves

Royal bank of Scotland as a senior software developer for his

contribution to the research work.

8. REFERENCES
[1] Bogdan George Tudorica, Cristian Bucur “A comparison

between several NoSQL databases with comments and

notes” 2011 IEEE Conference on Commerce and

Enterprise Computing. April 6-7,2011

[2] A. Lakshman and P. Malik. “Cassandra: a decentralized

structured storage system.” SIGOPS Oper. Syst. Rev.,

44:35–40, April 2010.

[3] Kai fan “Survey on NoSql databases” 10th IEEE /ACIS

international conference on computer and information

technology. 5-6 May 2011

[4] Jing Han, Meina Song, Junde Song, “A Novel Solution

of Distributed Memory NoSQL Database for Cloud

Computing” 10th IEEE/ACIS International Conference

on Computer and Information Science. June 2011.

[5] Neal leavitt “will Nosql databases live up to their

promise” IEEE computer society

[6] Hailing Zhang, Yang Wang, Junhui Han “Middleware

Design for Integrating Relational Database and NOSQL

based on Data Dictionary”, 2011 International

Conference on Transportation, Mechanical, and

Electrical Engineering (TMEE), December 16-18,

Changchun, China.

[7] Bucur, Cristian; Tudorica, Bogdan George, “Solutions

for working with large data volumes in web

applications”, The Proceedings of the IE 2011

“Education, Research & Business Technologies”

International Conference, 5-7 May 2011

[8] Michael Stonebraker, Uğur Çetintemel ““One Size Fits

All”: An Idea Whose Time Has Come and Gone”

IEEE/ACIS International conference 2012.

[9] Lior Okman, Nurit Gal-Oz, Yaron Gonen, Ehud Gudes,

Jenny Abramov,” Security Issues in NoSQL Databases”,

2011 International Joint Conference of IEEE TrustCom-

11/IEEE ICESS-11/FCST-11

[10] Understanding distributed and in-Memory architectures

http:www.benstopford.com/2011/08/14/distributed-

storage-phase-change-memory-and-the-rebirth-of-the-in-

memory-databases

[11] Understanding distributed and in-Memory architectures
http;//www.benstopford.com/a-thing-of-the-past

[12] Cook, John D., “ACID versus BASE for database

transactions”,

www.johndcook.com/blog/2009/07/06/brewer-cap-

theorem-base/

